1
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
2
|
Guerra J, Matta L, Bartelt A. Cardiac proteostasis in obesity and cardiovascular disease. Herz 2024; 49:118-123. [PMID: 38329532 PMCID: PMC10917825 DOI: 10.1007/s00059-024-05233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/09/2024]
Abstract
Cardiovascular diseases (CVD) are closely linked to protein homeostasis (proteostasis) and its failure. Beside genetic mutations that impair cardiac protein quality control, obesity is a strong risk factor for heart disease. In obesity, adipose tissue becomes dysfunctional and impacts heart function and CVD progression by releasing cytokines that contribute to systemic insulin resistance and cardiovascular dysfunction. In addition, chronic inflammation and lipotoxicity compromise endoplasmic reticulum (ER) function, eliciting stress responses that overwhelm protein quality control beyond its capacity. Impairment of proteostasis-including dysfunction of the ubiquitin-proteasome system (UPS), autophagy, and the depletion of chaperones-is intricately linked to cardiomyocyte dysfunction. Interventions targeting UPS and autophagy pathways are new potential strategies for re-establishing protein homeostasis and improving heart function. Additionally, lifestyle modifications such as dietary interventions and exercise have been shown to promote cardiac proteostasis and overall metabolic health. The pursuit of future research dedicated to proteostasis and protein quality control represents a pioneering approach for enhancing cardiac health and addressing the complexities of obesity-related cardiac dysfunction.
Collapse
Affiliation(s)
- Joel Guerra
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Max-Lebsche-Platz 30, 81377, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Leonardo Matta
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Max-Lebsche-Platz 30, 81377, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention (IPEK), Faculty of Medicine, Ludwig-Maximilians-Universität München, Max-Lebsche-Platz 30, 81377, Munich, Germany.
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- German Center for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany.
- German Center for Diabetes Research, Neuherberg, Germany.
| |
Collapse
|
3
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Wang X, Ling G, Wei Y, Li W, Zhang Y, Tan N, Li W, Li H, Qiu Q, Wang W, Wang Y. Activation of ULK1 to trigger FUNDC1-mediated mitophagy in heart failure: Effect of Ginsenoside Rg3 intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155042. [PMID: 37659296 DOI: 10.1016/j.phymed.2023.155042] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/18/2023] [Indexed: 09/04/2023]
Abstract
BACKGROUND Although the development of therapies for heart failure (HF) continues apace, clinical outcomes are often far from ideal. Unc51-like-kinase 1 (ULK1)-mediated mitophagy prevents pathological cardiac remodeling and heart failure (HF). Molecularly ULK1-targeted agent to enhance mitophagy is scanty. HYPOTHESIS/PURPOSE This study aimed to investigate whether Ginsenoside Rg3 (Rg3) can activate ULK1 to trigger FUNDC1-mediated mitophagy for protecting heart failure. METHODS Molecular docking and surface plasmon resonance were used to detect the ULK1 binding behavior of Rg3. Established HF model in rats and transcriptome sequencing were used to evaluate the therapeutic effect and regulatory mechanism of Rg3. Loss-of-function approaches in vivo and in vitro were performed to determine the role of ULK1 in Rg3-elicited myocardial protection against HF. FUNDC1 recombinant plasmid of site mutation was applied to elucidate more in-depth mechanisms. RESULTS Structurally, a good binding mode was unveiled between ULK1 and Rg3. In vivo, Rg3 improved cardiac dysfunction, adverse remodeling, and mitochondrial damage in HF rats. Furthermore, Rg3 promoted Ulk1-triggered mitophagy both in vivo and in vitro, manifested by the impetus of downstream Fundc1-Lc3 interaction. Of note, the protective effects conferred by Rg3 against mitophagy defects, pathological remodeling, and cardiac dysfunction were compromised by Ulk1 gene silencing both in vivo and in vitro. Mechanistically, Rg3 activated mitophagy by inducing ULK1-mediated phosphorylation of FUNDC1 at the Ser17 site, not the Ser13 site. CONCLUSION Together these observations demonstrated that Rg3 acts as a ULK1 activator for the precise treatment of HF, which binds to ULK1 to activate FUNDC1-mediated mitophagy.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Guanjing Ling
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weili Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haijing Li
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
5
|
Luo F, Fu M, Wang T, Qi Y, Zhong X, Li D, Liu B. Down-regulation of the mitochondrial fusion protein Opa1/Mfn2 promotes cardiomyocyte hypertrophy in Su5416/hypoxia-induced pulmonary hypertension rats. Arch Biochem Biophys 2023; 747:109743. [PMID: 37696382 DOI: 10.1016/j.abb.2023.109743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Maladaptive right ventricular (RV) remodeling is the most important pathological feature of pulmonary hypertension (PH), involving processes such as myocardial hypertrophy and fibrosis. A growing number of studies have shown that mitochondria-associated endoplasmic reticulum membranes (MAMs) are involved in various physiological and pathological processes, such as calcium homeostasis, lipid metabolism, inflammatory response, mitochondrial dynamics, and autophagy/mitophagy. The abnormal expression of MAMs-related factors is closely related to the occurrence and development of heart-related diseases. However, the role of MAM-related factors in the maladaptive RV remodeling of PH rats remains unclear. METHODS AND RESULTS We first obtained the transcriptome data of RV tissues from PH rats induced by Su5416 combined with hypoxia treatment (SuHx) from the Gene Expression Omnibus (GEO) database. The results showed that two MAMs-related genes (Opa1 and Mfn2) were significantly down-regulated in RV tissues of SuHx rats, accompanied by significant up-regulation of cardiac hypertrophy-related genes (such as Nppb and Myh7). Subsequently, using the SuHx-induced PH rat model, we found that the downregulation of mitochondrial fusion proteins Opa1 and Mfn2 may be involved in maladaptive RV remodeling by accelerating mitochondrial dysfunction. Finally, at the cellular level, we found that overexpression of Opa1 and Mfn2 could inhibit hypoxia-induced mitochondrial fission and reduce ROS production in H9c2 cardiomyocytes, thereby retarded the progression of cardiomyocyte hypertrophy. CONCLUSIONS The down-regulation of mitochondrial fusion protein Opa1/Mfn2 can accelerate cardiomyocyte hypertrophy and then participate in maladaptive RV remodeling in SuHx-induced PH rats, which may be potential targets for preventing maladaptive RV remodeling.
Collapse
Affiliation(s)
- Fangmei Luo
- Department of Pharmacy, Hunan Children's Hospital, Changsha, 410007, China
| | - Minyi Fu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ting Wang
- Department of Pharmacy, Hunan Children's Hospital, Changsha, 410007, China
| | - Yanan Qi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xuefeng Zhong
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Dai Li
- Phase Ⅰ Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Bin Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China; The Hunan Institute of Pharmacy Practice and Clinical Research, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
6
|
Silva-Palacios A, Arana-Hidalgo D, Colín-Val Z, Castrejón-Téllez V, Soria-Castro E, Pedraza-Chaverrí J, López-Marure R, Zazueta C. Sulforaphane modifies mitochondrial-endoplasmic reticulum associations through reductive stress in cardiomyocytes. Chem Biol Interact 2023; 382:110616. [PMID: 37385402 DOI: 10.1016/j.cbi.2023.110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Mitochondria-endoplasmic reticulum (ER) communication relies on platforms formed at the ER membrane with the mitochondrial outer membrane contact sites (MERCs). MERCs are involved in several processes including the unfolded protein response (UPR) and calcium (Ca2+) signaling. Therefore, as alterations in MERCs greatly impact cellular metabolism, pharmacological interventions to preserve productive mitochondrial-ER communication have been explored to maintain cellular homeostasis. In this regard, extensive information has documented the beneficial and potential effects of sulforaphane (SFN) in different pathological conditions; however, controversy has arisen regarding the effect of this compound on mitochondria-ER interaction. Therefore, in this study, we investigated whether SFN could induce changes in MERCs under normal culture conditions without damaging stimuli. Our results indicate that non-cytotoxic concentration of 2.5 μM SFN increased ER stress in cardiomyocytes in conjunction with a reductive stress environment, that diminishes ER-mitochondria association. Additionally, reductive stress promotes Ca2+ accumulation in the ER of cardiomyocytes. These data show an unexpected effect of SFN on cardiomyocytes grown under standard culture conditions, promoted by the cellular redox unbalance. Therefore, it is necessary to rationalize the use of compounds with antioxidant properties to avoid triggering cellular side effects.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico.
| | - Dana Arana-Hidalgo
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Zaira Colín-Val
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | | | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverrí
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Rebeca López-Marure
- Department of Physiology, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
7
|
Xu H, Wang X, Yu W, Sun S, Wu NN, Ge J, Ren J, Zhang Y. Syntaxin 17 Protects Against Heart Failure Through Recruitment of CDK1 to Promote DRP1-Dependent Mitophagy. JACC Basic Transl Sci 2023; 8:1215-1239. [PMID: 37791317 PMCID: PMC10544097 DOI: 10.1016/j.jacbts.2023.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 10/05/2023]
Abstract
Mitochondrial dysfunction is suggested to be a major contributor for the progression of heart failure (HF). Here we examined the role of syntaxin 17 (STX17) in the progression of HF. Cardiac-specific Stx17 knockout manifested cardiac dysfunction and mitochondrial damage, associated with reduced levels of p(S616)-dynamin-related protein 1 (DRP1) in mitochondria-associated endoplasmic reticulum membranes and dampened mitophagy. Cardiac STX17 overexpression promoted DRP1-dependent mitophagy and attenuated transverse aortic constriction-induced contractile and mitochondrial damage. Furthermore, STX17 recruited cyclin-dependent kinase-1 through its SNARE domain onto mitochondria-associated endoplasmic reticulum membranes, to phosphorylate DRP1 at Ser616 and promote DRP1-mediated mitophagy upon transverse aortic constriction stress. These findings indicate the potential therapeutic benefit of targeting STX17 in the mitigation of HF.
Collapse
Affiliation(s)
- Haixia Xu
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, China
| | - Xiang Wang
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenjun Yu
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shiqun Sun
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ne N. Wu
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Yingmei Zhang
- Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Jiang RQ, Li QQ, Sheng R. Mitochondria associated ER membrane and cerebral ischemia: molecular mechanisms and therapeutic strategies. Pharmacol Res 2023; 191:106761. [PMID: 37028777 DOI: 10.1016/j.phrs.2023.106761] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are two important organelles that are highly dynamic in mammalian cells. The physical connection between them is mitochondria associated ER membranes (MAM). In recent years, studies on endoplasmic reticulum and mitochondria have shifted from independent division to association and comparison, especially MAM has gradually become a research hotspot. MAM connects the two organelles, not only to maintain their independent structure and function, but also to promote metabolism and signal transduction between them. This paper reviews the morphological structure and protein localization of MAM, and briefly analyzes the functions of MAM in regulating Ca2+ transport, lipid synthesis, mitochondrial fusion and fission, endoplasmic reticulum stress and oxidative stress, autophagy and inflammation. Since ER stress and mitochondrial dysfunction are important pathological events in neurological diseases including ischemic stroke, MAM is likely to play an important role in cerebral ischemia by regulating the signaling of the two organelles and the crosstalk of the two pathological events.
Collapse
Affiliation(s)
- Rui-Qi Jiang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
9
|
Peng C, Yang S, Yang F, Xiong Z, Liu Q, Liao S, Huang K, Wan W, Cao H. Crosstalk between Mfn2-mediated mitochondria associated membranes disorder and autophagy induced by molybdenum and cadmium in sheep heart. Food Chem Toxicol 2023; 174:113660. [PMID: 36803920 DOI: 10.1016/j.fct.2023.113660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
To investigate the crosstalk of mitochondria associated membranes (MAMs) disorder and autophagy co-induced by molybdenum (Mo) and cadmium (Cd) in sheep hearts. A total of 48 sheep were randomly divided into 4 groups: control group, Mo group, Cd group and Mo + Cd group. The intragastric administration lasted for 50 days. The results showed that Mo or/and Cd exposure could cause morphological damage, imbalance of trace elements and antioxidant function, Ca2+ concentration decreased markedly, and significantly increase the contents of Mo or/and Cd in myocardium. Additionally, the mRNA and protein levels of endoplasmic reticulum stress (ERS) related factors and mitochondrial biogenesis related factors were altered by Mo or/and Cd, as well as the content of ATP, inducing ERS and mitochondrial dysfunction. Meanwhile, Mo or/and Cd could lead to the alteration of expression level of MAMs-related genes and proteins, and the distance between mitochondria and endoplasmic reticulum (ER), resulting in MAMs disorder. Moreover, Mo or/and Cd exposure upregulated the mRNA and protein levels of autophagy related factors. In conclusion, our results revealed that Mo or/and Cd exposure caused ERS, mitochondrial dysfunction and structural MAMs disruption, ultimately leading to autophagy in sheep hearts, and the effects of Mo and Cd co-exposure were more obvious.
Collapse
Affiliation(s)
- Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China; Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, 257 Liu-shi Road, Liuzhou, 545005, Guangxi, PR China
| | - Shuqiu Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zhiwei Xiong
- Jiangxi Biotech Vocational College, Nanchang, 330045, Jiangxi, PR China
| | - Qiang Liu
- Zhangshu Agriculture and Rural Affars Bureau, Zhangshu, PR China
| | - Shuxian Liao
- Fengxin County Modern Agricultural Technology Service Center, Fengxin, PR China
| | - Kai Huang
- Jiangxi Agricultural Engineering College, Zhangshu, PR China
| | - Wengen Wan
- Jiangxi Agricultural Technology Extension Center, Nanchang, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
10
|
Xu H, Yu W, Sun M, Bi Y, Wu NN, Zhou Y, Yang Q, Zhang M, Ge J, Zhang Y, Ren J. Syntaxin17 contributes to obesity cardiomyopathy through promoting mitochondrial Ca 2+ overload in a Parkin-MCUb-dependent manner. Metabolism 2023; 143:155551. [PMID: 36948287 DOI: 10.1016/j.metabol.2023.155551] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 03/17/2023] [Indexed: 03/24/2023]
Abstract
OBJECTIVE Uncorrected obesity is accompanied by unfavorable structural and functional changes in the heart, known as obesity cardiomyopathy. Recent evidence has revealed a crucial role for mitochondria-associated endoplasmic reticulum membranes (MAMs) in obesity-induced cardiac complication. Syntaxin 17 (STX17) serves as a scaffolding molecule localized on MAMs although its role in obesity heart complication remains elusive. METHODS AND MATERIALS This study examined the role of STX17 in MAMs and mitochondrial Ca2+ homeostasis in HFD-induced obesity cardiomyopathy using tamoxifen-induced cardiac-specific STX17 knockout (STX17cko) and STX17 overexpression mice using intravenously delivered recombinant adeno-associated virus serotype-9 (AAV9-cTNT-STX17). RESULTS STX17 levels were significantly elevated in plasma from obese patients and heart tissues of HFD-fed mice. Our data revealed that cardiac STX17 knockout alleviated cardiac remodeling and dysfunction in obese hearts without eliciting any notable effect itself, while STX17 overexpression aggravated cardiac dysfunction in obese mice. STX17 deletion and STX17 overexpression annihilated and aggravated, respectively, HFD-induced oxidative stress (O2- production) and mitochondrial injury in the heart. Furthermore, STX17 transfection facilitated obesity-induced MAMs formation in cardiomyocytes and evoked excess mitochondrial Ca2+ influx, dependent upon interaction with mitochondrial Ca2+ uniporter dominant negative β (MCUb) through Habc domain. Our data also suggested that STX17 promoted ubiquitination and degradation of MCUb through the E3 ligase parkin in the face of palmitate challenging. CONCLUSION Taken together, our results identified a novel role for STX17 in facilitating obesity-induced MAMs formation, and subsequently mitochondrial Ca2+ overload, mitochondrial O2- accumulation, lipid peroxidation, resulting in cardiac impairment. Our findings denoted therapeutic promises of targeting STX17 in obesity.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China
| | - Mingming Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Ne N Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mengjiao Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China.
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, China; Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Liu IF, Lin TC, Wang SC, Yen CH, Li CY, Kuo HF, Hsieh CC, Chang CY, Chang CR, Chen YH, Liu YR, Lee TY, Huang CY, Hsu CH, Lin SJ, Liu PL. Long-term administration of Western diet induced metabolic syndrome in mice and causes cardiac microvascular dysfunction, cardiomyocyte mitochondrial damage, and cardiac remodeling involving caveolae and caveolin-1 expression. Biol Direct 2023; 18:9. [PMID: 36879344 PMCID: PMC9987103 DOI: 10.1186/s13062-023-00363-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Long-term consumption of an excessive fat and sucrose diet (Western diet, WD) has been considered a risk factor for metabolic syndrome (MS) and cardiovascular disease. Caveolae and caveolin-1 (CAV-1) proteins are involved in lipid transport and metabolism. However, studies investigating CAV-1 expression, cardiac remodeling, and dysfunction caused by MS, are limited. This study aimed to investigate the correlation between the expression of CAV-1 and abnormal lipid accumulation in the endothelium and myocardium in WD-induced MS, and the occurrence of myocardial microvascular endothelial cell dysfunction, myocardial mitochondrial remodeling, and damage effects on cardiac remodeling and cardiac function. METHODS We employed a long-term (7 months) WD feeding mouse model to measure the effect of MS on caveolae/vesiculo-vacuolar organelle (VVO) formation, lipid deposition, and endothelial cell dysfunction in cardiac microvascular using a transmission electron microscopy (TEM) assay. CAV-1 and endothelial nitric oxide synthase (eNOS) expression and interaction were evaluated using real-time polymerase chain reaction, Western blot, and immunostaining. Cardiac mitochondrial shape transition and damage, mitochondria-associated endoplasmic reticulum membrane (MAM) disruption, cardiac function change, caspase-mediated apoptosis pathway activation, and cardiac remodeling were examined using TEM, echocardiography, immunohistochemistry, and Western blot assay. RESULTS Our study demonstrated that long-term WD feeding caused obesity and MS in mice. In mice, MS increased caveolae and VVO formation in the microvascular system and enhanced CAV-1 and lipid droplet binding affinity. In addition, MS caused a significant decrease in eNOS expression, vascular endothelial cadherin, and β-catenin interactions in cardiac microvascular endothelial cells, accompanied by impaired vascular integrity. MS-induced endothelial dysfunction caused massive lipid accumulation in the cardiomyocytes, leading to MAM disruption, mitochondrial shape transition, and damage. MS promoted brain natriuretic peptide expression and activated the caspase-dependent apoptosis pathway, leading to cardiac dysfunction in mice. CONCLUSION MS resulted in cardiac dysfunction, remodeling by regulating caveolae and CAV-1 expression, and endothelial dysfunction. Lipid accumulation and lipotoxicity caused MAM disruption and mitochondrial remodeling in cardiomyocytes, leading to cardiomyocyte apoptosis and cardiac dysfunction and remodeling.
Collapse
Affiliation(s)
- I-Fan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan.,Heart Center, Cheng Hsin General Hospital, Taipei, 112401, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Hsuan-Fu Kuo
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chia-Yuan Chang
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Chuang-Rung Chang
- Department of Medical Science, National Tsing Hua University, Hsinchu, 300044, Taiwan.,Institute of Biotechnology, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 413305, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan
| | - Chih-Hsin Hsu
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, 701401, Taiwan.
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei, 112201, Taiwan. .,Taipei Heart Institute, Taipei Medical University, Taipei, 110301, Taiwan. .,Heart Center, Cheng-Hsin General Hospital, Taipei, 112401, Taiwan.
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807378, Taiwan. .,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, 807378, Taiwan.
| |
Collapse
|
12
|
Vera-Zambrano A, Baena-Nuevo M, Rinné S, Villegas-Esguevillas M, Barreira B, Telli G, de Benito-Bueno A, Blázquez JA, Climent B, Pérez-Vizcaino F, Valenzuela C, Decher N, Gonzalez T, Cogolludo A. Sigma-1 receptor modulation fine-tunes K V1.5 channels and impacts pulmonary vascular function. Pharmacol Res 2023; 189:106684. [PMID: 36740150 DOI: 10.1016/j.phrs.2023.106684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
KV1.5 channels are key players in the regulation of vascular tone and atrial excitability and their impairment is associated with cardiovascular diseases including pulmonary arterial hypertension (PAH) and atrial fibrillation (AF). Unfortunately, pharmacological strategies to improve KV1.5 channel function are missing. Herein, we aimed to study whether the chaperone sigma-1 receptor (S1R) is able to regulate these channels and represent a new strategy to enhance their function. By using different electrophysiological and molecular techniques in X. laevis oocytes and HEK293 cells, we demonstrate that S1R physically interacts with KV1.5 channels and regulate their expression and function. S1R induced a bimodal regulation of KV1.5 channel expression/activity, increasing it at low concentrations and decreasing it at high concentrations. Of note, S1R agonists (PRE084 and SKF10047) increased, whereas the S1R antagonist BD1047 decreased, KV1.5 expression and activity. Moreover, PRE084 markedly increased KV1.5 currents in pulmonary artery smooth muscle cells and attenuated vasoconstriction and proliferation in pulmonary arteries. We also show that both KV1.5 channels and S1R, at mRNA and protein levels, are clearly downregulated in samples from PAH and AF patients. Moreover, the expression of both genes showed a positive correlation. Finally, the ability of PRE084 to increase KV1.5 function was preserved under sustained hypoxic conditions, as an in vitro PAH model. Our study provides insight into the key role of S1R in modulating the expression and activity of KV1.5 channels and highlights the potential role of this chaperone as a novel pharmacological target for pathological conditions associated with KV1.5 channel dysfunction.
Collapse
Affiliation(s)
- Alba Vera-Zambrano
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain.
| | - Maria Baena-Nuevo
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain
| | - Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Marta Villegas-Esguevillas
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Gokcen Telli
- Hacettepe University, Department of Pharmacology, Faculty of Pharmacy, Ankara, Turkey
| | | | | | - Belén Climent
- Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Spanish Network for Biomedical Research in Cardiovascular Research (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35043 Marburg, Germany
| | - Teresa Gonzalez
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain; Department of Physiology, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.
| |
Collapse
|
13
|
Anto EM, Sruthi CR, Krishnan L, Raghu KG, Purushothaman J. Tangeretin alleviates Tunicamycin-induced endoplasmic reticulum stress and associated complications in skeletal muscle cells. Cell Stress Chaperones 2023; 28:151-165. [PMID: 36653727 PMCID: PMC10050522 DOI: 10.1007/s12192-023-01322-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Endoplasmic reticulum (ER) stress and associated oxidative stress are involved in the genesis and progression of skeletal muscle diseases such as myositis and atrophy or muscle wasting. Targeting the ER stress and associated downstream pathways can aid in the development of better treatment strategies for these diseases with limited therapeutic approaches. There is a growing interest in identifying natural products against ER stress due to the lower toxicity and cost effectiveness. In the present study, we investigated the protective effect of Tangeretin, a citrus methoxyflavone found in citrus peels against Tunicamycin (pharmacological ER stress inducer)-induced ER stress and associated complications in rat skeletal muscle L6 cell lines. Treatment with Tunicamycin for a period of 24 h resulted in the upregulation of ER stress marker proteins, ER resident oxidoreductases and cellular reactive oxygen species (ROS). Co-treatment with Tangeretin was effective in alleviating Tunicamycin-induced ER stress and associated redox-related complications by significantly downregulating the unfolded protein response (UPR), ER resident oxidoreductase proteins, cellular ROS and improving the antioxidant enzyme activity. Tunicamycin also induced upregulation of phosphorylated p38 MAP Kinase and loss of mitochondrial membrane potential. Tangeretin significantly reduced the levels of phosphorylated p38 MAP Kinase and improved the mitochondrial membrane potential. From the results, it is evident that Tangeretin can be explored further as a potential candidate for skeletal muscle diseases involving protein misfolding and ER stress.
Collapse
Affiliation(s)
- Eveline M Anto
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C R Sruthi
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Lekshmy Krishnan
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India
| | - K G Raghu
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Jayamurthy Purushothaman
- Department of Biochemistry, Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, 695019, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and Heart Failure: Searching for the Enemy-Reaching the Entelechy. J Cardiovasc Dev Dis 2023; 10:jcdd10010019. [PMID: 36661914 PMCID: PMC9866611 DOI: 10.3390/jcdd10010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The pivotal role of inflammation in the pathophysiology of heart-failure (HF) development and progression has long been recognized. High blood levels of pro-inflammatory and inflammatory markers are present and associated with adverse outcomes in patients with HF. In addition, there seems to be an interrelation between inflammation and neurohormonal activation, the cornerstone of HF pathophysiology and management. However, clinical trials involving anti-inflammatory agents have shown inconclusive or even contradictory results in improving HF outcomes. In the present review, we try to shed some light on the reciprocal relationship between inflammation and HF in an attempt to identify the central regulating factors, such as inflammatory cells and soluble mediators and the related inflammatory pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Dimitrios Farmakis
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-895235
| | - Georgios Papingiotis
- Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| |
Collapse
|
15
|
GRP75 Modulates Endoplasmic Reticulum-Mitochondria Coupling and Accelerates Ca 2+-Dependent Endothelial Cell Apoptosis in Diabetic Retinopathy. Biomolecules 2022; 12:biom12121778. [PMID: 36551205 PMCID: PMC9776029 DOI: 10.3390/biom12121778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Endoplasmic reticulum (ER) and mitochondrial dysfunction play fundamental roles in the pathogenesis of diabetic retinopathy (DR). However, the interrelationship between the ER and mitochondria are poorly understood in DR. Here, we established high glucose (HG) or advanced glycosylation end products (AGE)-induced human retinal vascular endothelial cell (RMEC) models in vitro, as well as a streptozotocin (STZ)-induced DR rat model in vivo. Our data demonstrated that there was increased ER-mitochondria coupling in the RMECs, which was accompanied by elevated mitochondrial calcium ions (Ca2+) and mitochondrial dysfunction under HG or AGE incubation. Mechanistically, ER-mitochondria coupling was increased through activation of the IP3R1-GRP75-VDAC1 axis, which transferred Ca2+ from the ER to the mitochondria. Elevated mitochondrial Ca2+ led to an increase in mitochondrial ROS and a decline in mitochondrial membrane potential. These events resulted in the elevation of mitochondrial permeability and induced the release of cytochrome c from the mitochondria into the cytoplasm, which further activated caspase-3 and promoted apoptosis. The above phenomenon was also observed in tunicamycin (TUN, ER stress inducer)-treated cells. Meanwhile, BAPTA-AM (calcium chelator) rescued mitochondrial dysfunction and apoptosis in DR, which further confirmed of our suspicions. In addition, 4-phenylbutyric acid (4-PBA), an ER stress inhibitor, was shown to reverse retinal dysfunction in STZ-induced DR rats in vivo. Taken together, our findings demonstrated that DR fueled the formation of ER-mitochondria coupling via the IP3R1-GRP75-VDAC1 axis and accelerated Ca2+-dependent cell apoptosis. Our results demonstrated that inhibition of ER-mitochondrial coupling, including inhibition of GRP75 or Ca2+ overload, may be a potential therapeutic target in DR.
Collapse
|
16
|
Zhang J, Zuo Z, Li J, Wang Y, Huang J, Xu L, Jin K, Lu H, Dai Y. In situ assessment of statins’ effect on autophagic activity in zebrafish larvae cardiomyocytes. Front Cardiovasc Med 2022; 9:921829. [DOI: 10.3389/fcvm.2022.921829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/28/2022] [Indexed: 11/18/2022] Open
Abstract
Improving the survival rate of cardiomyocytes is the key point to treat most of the heart diseases, and targeting autophagy is a potential advanced therapeutic approach. Monitoring autophagic activity in cardiomyocytes in situ will be useful for studying autophagy-related heart disease and screening autophagy-modulating drugs. Zebrafish, Danio rerio, has been proven as an animal model for studying heart diseases in situ. Taken the advantage of zebrafish, especially the imaging of intact animals, here we generated two stable transgenic zebrafish lines that specifically expressed EGFP-map1lc3b or mRFP-EGFP-map1lc3b in cardiomyocytes under the promoter of myosin light chain 7. We first used a few known autophagy-modulating drugs to confirm their usefulness. By quantifying the density of autophagosomes and autolysosomes, autophagy inducers and inhibitors showed their regulatory functions, which were consistent with previous studies. With the two lines, we then found a significant increase in the density of autophagosomes but not autolysosomes in zebrafish cardiomyocytes at the early developmental stages, indicating the involvement of autophagy in early heart development. To prove their applicability, we also tested five clinical statins by the two lines. And we found that statins did not change the density of autophagosomes but reduced the density of autolysosomes in cardiomyocytes, implying their regulation in autophagic flux. Our study provides novel animal models for monitoring autophagic activity in cardiomyocytes in situ, which could be used to study autophagy-related cardiomyopathy and drug screening.
Collapse
|
17
|
Li J, Wang Z, Li C, Song Y, Wang Y, Bo H, Zhang Y. Impact of Exercise and Aging on Mitochondrial Homeostasis in Skeletal Muscle: Roles of ROS and Epigenetics. Cells 2022; 11:cells11132086. [PMID: 35805170 PMCID: PMC9266156 DOI: 10.3390/cells11132086] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Aging causes degenerative changes such as epigenetic changes and mitochondrial dysfunction in skeletal muscle. Exercise can upregulate muscle mitochondrial homeostasis and enhance antioxidant capacity and represents an effective treatment to prevent muscle aging. Epigenetic changes such as DNA methylation, histone posttranslational modifications, and microRNA expression are involved in the regulation of exercise-induced adaptive changes in muscle mitochondria. Reactive oxygen species (ROS) play an important role in signaling molecules in exercise-induced muscle mitochondrial health benefits, and strong evidence emphasizes that exercise-induced ROS can regulate gene expression via epigenetic mechanisms. The majority of mitochondrial proteins are imported into mitochondria from the cytosol, so mitochondrial homeostasis is regulated by nuclear epigenetic mechanisms. Exercise can reverse aging-induced changes in myokine expression by modulating epigenetic mechanisms. In this review, we provide an overview of the role of exercise-generated ROS in the regulation of mitochondrial homeostasis mediated by epigenetic mechanisms. In addition, the potential epigenetic mechanisms involved in exercise-induced myokine expression are reviewed.
Collapse
Affiliation(s)
- Jialin Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Zhe Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Can Li
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yu Song
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Yan Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
| | - Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Department of Military Training Medicines, Logistics University of Chinese People’s Armed Police Force, Tianjin 300162, China
- Correspondence: (H.B.); (Y.Z.)
| | - Yong Zhang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Exercise and Health, Tianjin University of Sport, Tianjin 301617, China; (J.L.); (Z.W.); (C.L.); (Y.S.); (Y.W.)
- Correspondence: (H.B.); (Y.Z.)
| |
Collapse
|
18
|
Gao L, Yuan P, Wei Y, Fu Y, Hou Y, Li P, Chen Y, Ruan Y, Zhou N, Zheng X, Feng W. Total flavonoids of Selaginella tamariscina (P.Beauv.) Spring ameliorates doxorubicin-induced cardiotoxicity by modulating mitochondrial dysfunction and endoplasmic reticulum stress via activating MFN2/PERK. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154065. [PMID: 35358932 DOI: 10.1016/j.phymed.2022.154065] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective chemotherapeutic that is effective for various tumours. However, the clinical application of DOX has been limited by adverse reactions such as cardiotoxicity and heart failure. Since DOX-induced cardiotoxicity is irreversible, drugs to prevent DOX-induced cardiotoxicity are needed. PURPOSE This study aimed to investigate the effect of total flavonoids of Selaginella tamariscina (P.Beauv.) Spring (TFST) on doxorubicin-induced cardiotoxicity. METHODS The present study established DOX-induced cardiotoxicity models in C57BL/6 mice treated with DOX (cumulative dose: 20 mg/kg body weight) and H9c2 cells incubated with DOX (1 μM/l) to explore the intervention effect and potential mechanism of TFST. Echocardiography was performed to evaluate left ventricular functions. Heart tissue samples were collected for histological evaluation. Myocardial injury markers and oxidative stress markers were examined. Mitochondrial energy metabolism pathway associated proteins PPARα/PGC-1α/Sirt3 were detected. We also explored the effects of TFST on endoplasmic reticulum (ER) stress and apoptosis. To further investigate the protective mechanism of TFST, we used the specific small interfering RNA MFN2 (siMFN2) to explore the effect of MFN2 on TFST against DOX-induced cardiotoxicity in vitro. Flow cytometry detected reactive oxygen species, mitochondrial membrane potential and apoptosis. Cell mitochondrial stress was measured by Seahorse XF analyser. RESULTS Both in vivo and in vitro studies verified that TFST observably alleviated DOX-induced mitochondrial dysfunction and ER stress. However, these effects were reversed after transfected siMFN2. CONCLUSION Our results indicated that TFST ameliorates DOX-induced cardiotoxicity by alleviating mitochondrial dysfunction and ER stress by activating MFN2/PERK. MFN2/PERK pathway activation may be a novel mechanism to protect against DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liyuan Gao
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Peipei Yuan
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Yaxin Wei
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yang Fu
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Hou
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Panying Li
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yi Chen
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuan Ruan
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning Zhou
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| | - Weisheng Feng
- Department of Medicine, Henan University of Chinese Medicine, Zhengzhou, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.
| |
Collapse
|
19
|
Li YE, Sowers JR, Hetz C, Ren J. Cell death regulation by MAMs: from molecular mechanisms to therapeutic implications in cardiovascular diseases. Cell Death Dis 2022; 13:504. [PMID: 35624099 PMCID: PMC9142581 DOI: 10.1038/s41419-022-04942-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
The endoplasmic reticulum (ER) and mitochondria are interconnected intracellular organelles with vital roles in the regulation of cell signaling and function. While the ER participates in a number of biological processes including lipid biosynthesis, Ca2+ storage and protein folding and processing, mitochondria are highly dynamic organelles governing ATP synthesis, free radical production, innate immunity and apoptosis. Interplay between the ER and mitochondria plays a crucial role in regulating energy metabolism and cell fate control under stress. The mitochondria-associated membranes (MAMs) denote physical contact sites between ER and mitochondria that mediate bidirectional communications between the two organelles. Although Ca2+ transport from ER to mitochondria is vital for mitochondrial homeostasis and energy metabolism, unrestrained Ca2+ transfer may result in mitochondrial Ca2+ overload, mitochondrial damage and cell death. Here we summarize the roles of MAMs in cell physiology and its impact in pathological conditions with a focus on cardiovascular disease. The possibility of manipulating ER-mitochondria contacts as potential therapeutic approaches is also discussed.
Collapse
Affiliation(s)
- Yiran E Li
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
20
|
Dana AH, Alejandro SP. Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response. Life Sci 2022; 299:120554. [PMID: 35452639 DOI: 10.1016/j.lfs.2022.120554] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 02/09/2023]
Abstract
Nowadays, the nutraceutical agent sulforaphane (SFN) shows great versatility in turning on different cellular responses. Mainly, this isothiocyanate acts as a master regulator of cellular homeostasis due to its antioxidant response and cytoplasmic, mitochondrial, and endoplasmic reticulum (ER) protein modulation. Even more, SFN acts as an effective strategy to counteract oxidative stress, apoptosis, and ER stress, among others as seen in different injury models. Particularly, ER stress is buffered by the unfolded protein response (UPR) activation, which is the first instance in orchestrating the recovery of ER function. Interestingly, different studies highlight a close interrelationship between ER stress and oxidative stress, two events driven by the accumulation of reactive oxygen species (ROS). This response inevitably perpetuates itself and acts as a vicious cycle that triggers the development of different pathologies, such as cardiovascular diseases, neurodegenerative diseases, and others. Accordingly, it is vital to target ER stress and oxidative stress to increase the effectiveness of clinical therapies used to treat these diseases. Therefore, our study is focused on the role of SFN in preserving cellular homeostasis balance by regulating the ER stress response through the Nrf2-modulated antioxidant pathway.
Collapse
Affiliation(s)
- Arana-Hidalgo Dana
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico
| | - Silva-Palacios Alejandro
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
21
|
Wren G, Davies W. Sex-linked genetic mechanisms and atrial fibrillation risk. Eur J Med Genet 2022; 65:104459. [PMID: 35189376 DOI: 10.1016/j.ejmg.2022.104459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/11/2022] [Accepted: 02/16/2022] [Indexed: 01/14/2023]
Abstract
Atrial fibrillation (AF) is a cardiac condition characterised by an irregular heartbeat, atrial pathology and an elevated downstream risk of thrombosis and heart failure, as well as neurological sequelae including stroke and dementia. The prevalence and presentation of, risk factors for, and therapeutic responses to, AF differ by sex, and this sex bias may be partially explained in terms of genetics. Here, we consider four sex-linked genetic mechanisms that may influence sex-biased phenotypes related to AF and provide examples of each: X-linked gene dosage, X-linked genomic imprinting, sex-biased autosomal gene expression, and male-limited Y-linked gene expression. We highlight novel candidate risk genes and pathways that warrant further investigation in clinical and preclinical studies. Understanding the biological basis of sex differences in AF should allow better prediction of disease risk, identification of novel risk/protective factors, and the development of more effective sex-tailored interventions.
Collapse
Affiliation(s)
| | - William Davies
- School of Psychology, Cardiff University, UK; School of Medicine, Cardiff University, UK.
| |
Collapse
|
22
|
Li G, Li J, Shao R, Zhao J, Chen M. FUNDC1: A Promising Mitophagy Regulator at the Mitochondria-Associated Membrane for Cardiovascular Diseases. Front Cell Dev Biol 2022; 9:788634. [PMID: 35096821 PMCID: PMC8797154 DOI: 10.3389/fcell.2021.788634] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial autophagy (or mitophagy) regulates the mitochondrial network and function to contribute to multiple cellular processes. The protective effect of homeostatic mitophagy in cardiovascular diseases (CVDs) has attracted increasing attention. FUN14 domain containing 1 (FUNDC1), an identified mitophagy receptor, plays an essential role in CVDs. Different expression levels of FUNDC1 and its phosphorylated state at different sites alleviate or exacerbate hypoxia and ischemia/reperfusion injury, cardiac hypertrophy, or metabolic damage through promotion or inhibition of mitophagy. In addition, FUNDC1 can be enriched at contact sites between mitochondria and the endoplasmic reticulum (ER), determining the formation of mitochondria-associated membranes (MAMs) that regulate cellular calcium (Ca2+) homeostasis and mitochondrial dynamics to prevent heart dysfunction. Moreover, FUNDC1 has also been involved in inflammatory cardiac diseases such as septic cardiomyopathy. In this review, we collect and summarize the evidence on the roles of FUNDC1 exclusively in various CVDs, describing its interactions with different cellular organelles, its involvement in multiple cellular processes, and its associated signaling pathways. FUNDC1 may become a promising therapeutic target for the prevention and management of various CVDs.
Collapse
Affiliation(s)
- Guoyong Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Ruochen Shao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiahao Zhao
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
What Role do Mitochondria have in Diastolic Dysfunction? Implications for Diabetic Cardiomyopathy and Heart Failure with Preserved Ejection Function (HFpEF). J Cardiovasc Pharmacol 2022; 79:399-406. [DOI: 10.1097/fjc.0000000000001228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/08/2022] [Indexed: 11/26/2022]
|
24
|
Zhang P, Konja D, Zhang Y, Xu A, Lee IK, Jeon JH, Bashiri G, Mitra A, Wang Y. Clusterin is involved in mediating the metabolic function of adipose SIRT1. iScience 2022; 25:103709. [PMID: 35072003 PMCID: PMC8762396 DOI: 10.1016/j.isci.2021.103709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
SIRT1 is a metabolic sensor regulating energy homeostasis. The present study revealed that mice with selective overexpression of human SIRT1 in adipose tissue (Adipo-SIRT1) were protected from high-fat diet (HFD)-induced metabolic abnormalities. Adipose SIRT1 was enriched at mitochondria-ER contacts (MERCs) to trigger mitohormesis and unfolded protein response (UPRmt), in turn preventing ER stress. As a downstream target of UPRmt, clusterin was significantly upregulated and acted together with SIRT1 to regulate the protein and lipid compositions at MERCs of adipose tissue. In mice lacking clusterin, HFD-induced metabolic abnormalities were significantly enhanced and could not be prevented by overexpression of SIRT1 in adipose tissue. Treatment with ER stress inhibitors restored adipose SIRT1-mediated beneficial effects on systemic energy metabolism. In summary, adipose SIRT1 facilitated the dynamic interactions and communications between mitochondria and ER, via MERCs, in turn triggering a mild mitochondrial stress to instigate the defense responses against dietary obesity-induced metabolic dysfunctions.
Collapse
Affiliation(s)
- Pengcheng Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Yiwei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Aimin Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University Hospital, Daegu41944, South Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu41404, South Korea
| | - Ghader Bashiri
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Alok Mitra
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
25
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
26
|
Melatonin Attenuates Cardiac Ischemia-Reperfusion Injury through Modulation of IP3R-Mediated Mitochondria-ER Contact. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1370862. [PMID: 34422206 PMCID: PMC8371645 DOI: 10.1155/2021/1370862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/17/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
Although the interplay between mitochondria and ER has been identified as a crucial regulator of cellular homeostasis, the pathogenic impact of alterations in mitochondria-ER contact sites (MERCS) during myocardial postischemic reperfusion (I/R) injury remains incompletely understood. Therefore, in our study, we explored the beneficial role played by melatonin in protecting cardiomyocytes against reperfusion injury via stabilizing mitochondria-ER interaction. In vitro exposure of H9C2 rat cardiomyocytes to hypoxia/reoxygenation (H/R) augmented mitochondrial ROS synthesis, suppressed both mitochondrial potential and ATP generation, and increased the mitochondrial permeability transition pore (mPTP) opening rate. Furthermore, H/R exposure upregulated the protein content of CHOP and caspase-12, two markers of ER stress, and enhanced the transcription of main MERCS tethering proteins, namely, Fis1, BAP31, Mfn2, and IP3R. Interestingly, all the above changes could be attenuated or reversed by melatonin treatment. Suggesting that melatonin-induced cardioprotection works through normalization of mitochondria-ER interaction, overexpression of IP3R abolished the protective actions offered by melatonin on mitochondria-ER fitness. These results expand our knowledge on the cardioprotective actions of melatonin during myocardial postischemic reperfusion damage and suggest that novel, more effective treatments for acute myocardial reperfusion injury might be achieved through modulation of mitochondria-ER interaction in cardiac cells.
Collapse
|
27
|
Zhong Y, Jin C, Han J, Zhu J, Liu Q, Sun D, Xia X, Zhang Y, Peng X. Diosgenin Protects Against Kidney Injury and Mitochondrial Apoptosis Induced by 3-MCPD Through the Regulation of ER Stress, Ca 2+ Homeostasis, and Bcl2 Expression. Mol Nutr Food Res 2021; 65:e2001202. [PMID: 34075698 DOI: 10.1002/mnfr.202001202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/05/2021] [Indexed: 12/20/2022]
Abstract
SCOPE Diosgenin (DIO) is a natural steroid sapogenin presented in various plants. It exerts anti-oxidant, anti-inflammatory and anti-diabetic nephropathy properties. The present study evaluates the intervention effect of DIO on nephrotoxicity induced by food contaminant 3-chloro-1, 2-propanediol (3-MCPD) in vivo and in vitro. METHODS AND RESULTS Treatment with DIO (15 mg kg-1 d-1 ) in Sprague-Dawley rats for 4-week relieves kidney injury induced by 3-MCPD (30 mg kg-1 d-1 ). In vitro, DIO (2, 6, and 8 µM) alleviates cell injury and apoptosis effectively in human embryonic kidney (HEK293) cells. DIO realizes its protective function via the regulation of endoplasmic reticulum (ER) stress and mitochondrial apoptosis pathway. Blockage of ER stress by 4-phenylbutyric acid (4-PBA), a specific ER stress antagonist, inhibits mitochondrial apoptosis, suggesting a connection between mitochondrial apoptosis and ER stress. Furthermore, the study demonstrates that the maintenance of Ca2+ homeostasis and Bcl2 expression, two main targets of ER stress, contributes to the protection role of DIO on mitochondrial-dependent apoptosis. In addition, DIO relieves the impairment of oxidative phosphorylation. CONCLUSION This study demonstrates that DIO exerts protective effect against kidney injury, mitochondrial dysfunction, and apoptosis through the inhibition of ER stress and the further maintenance of Ca2+ homeostasis and Bcl2 expression.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Chengni Jin
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiahui Han
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Jiachang Zhu
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Qi Liu
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Dianjun Sun
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
| | - Yu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University (NWAFU), Yangling, Shaanxi, 712100, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, China
| |
Collapse
|
28
|
Prieto-Carrasco R, Silva-Palacios A, Rojas-Morales P, Aparicio-Trejo OE, Medina-Reyes EI, Hernández-Cruz EY, Sánchez-Garibay C, Salinas-Lara C, Pavón N, Roldán FJ, Zazueta C, Tapia E, Pedraza-Chaverri J. Unilateral Ureteral Obstruction for 28 Days in Rats Is Not Associated with Changes in Cardiac Function or Alterations in Mitochondrial Function. BIOLOGY 2021; 10:671. [PMID: 34356526 PMCID: PMC8301354 DOI: 10.3390/biology10070671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Our work evaluated cardiac function and mitochondrial bioenergetics parameters in hearts from male Wistar rats subjected to the UUO model during 28 days of progression. We measured markers of kidney damage and inflammation in plasma and renal fibrosis by histological analysis and Western blot. Cardiac function was evaluated by echocardiography and proteins involved in cardiac damage by Western blot. Oxygen consumption and transmembrane potential were monitored in cardiac mitochondria using high-resolution respirometry. We also determined the activity of ATP synthase and antioxidant enzymes such as glutathione peroxidase, glutathione reductase, and catalase. Our results show that, although renal dysfunction is established in animals subjected to ureteral obstruction, cardiac function is maintained along with mitochondrial function and antioxidant enzymes activity after 28 days of injury evolution. Our results suggest that renocardiac syndrome might develop but belatedly in obstruction-induced renal damage, opening the opportunity for treatment to prevent this condition.
Collapse
Affiliation(s)
- Rodrigo Prieto-Carrasco
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Alejandro Silva-Palacios
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (A.S.-P.); (C.Z.)
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Estefany Ingrid Medina-Reyes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Estefani Yaquelin Hernández-Cruz
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| | - Carlos Sánchez-Garibay
- Department of Neuropathology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.S.-G.); (C.S.-L.)
| | - Citlaltepetl Salinas-Lara
- Department of Neuropathology, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City 14269, Mexico; (C.S.-G.); (C.S.-L.)
| | - Natalia Pavón
- Department of Pharmacology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Francisco Javier Roldán
- Department of External Consultation, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - Cecilia Zazueta
- Department of Cardiovascular Biomedicine, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico; (A.S.-P.); (C.Z.)
| | - Edilia Tapia
- Department of Cardio-Renal Pathophysiology, National Institute of Cardiology Ignacio Chávez, Mexico City 14080, Mexico;
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (R.P.-C.); (P.R.-M.); (O.E.A.-T.); (E.I.M.-R.); (E.Y.H.-C.)
| |
Collapse
|
29
|
Chen LT, Xu TT, Qiu YQ, Liu NY, Ke XY, Fang L, Yan JP, Zhu DY. Homocysteine induced a calcium-mediated disruption of mitochondrial function and dynamics in endothelial cells. J Biochem Mol Toxicol 2021; 35:e22737. [PMID: 33751715 DOI: 10.1002/jbt.22737] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/03/2020] [Accepted: 01/20/2021] [Indexed: 12/24/2022]
Abstract
Homocysteine (Hcy) is a sulfur-containing amino acid that originated in methionine metabolism and the elevated level of Hcy in plasma is considered to be an independent risk factor for cardiovascular diseases (CVD). Endothelial dysfunction plays a major role in the development of CVD, while the potential mechanism of Hcy-induced endothelial dysfunction is still unclear. Here, in Hcy-treated endothelial cells, we observed the destruction of mitochondrial morphology and the decline of mitochondrial membrane potential. Meanwhile, the level of ATP was reduced and the reactive oxygen species was increased. The expressions of dynamin-related protein 1 (Drp1) and phosphate-Drp1 (Ser616) were upregulated, whereas the expression of mitofusin 2 was inhibited by Hcy treatment. These findings suggested that Hcy not only triggered mitochondrial dysfunction but also incurred an imbalance of mitochondrial dynamics in endothelial cells. The expression of mitochondrial calcium uniporter (MCU) was activated by Hcy, contributing to calcium transferring into mitochondria. Interestingly, the formation of mitochondria-associated membranes (MAMs) was increased in endothelial cells after Hcy administration. The inositol 1,4,5-triphosphate receptor (IP3R)-glucose-regulated protein 75 (Grp75)-voltage-dependent anion channel (VDAC) complex, which was enriched in MAMs, was also increased. The accumulation of mitochondrial calcium could be blocked by inhibiting with the IP3R inhibitor Xestospongin C (XeC) in Hcy-treated cells. Then, we confirmed that the mitochondrial dysfunction and the increased mitochondrial fission induced by Hcy could be attenuated after Hcy and XeC co-treatment. In conclusion, Hcy-induced mitochondrial dysfunction and dynamics disorder in endothelial cells were mainly related to the increase of calcium as a result of the upregulated expressions of the MCU and the IP3R-Grp75-VDAC complex in MAMs.
Collapse
Affiliation(s)
- Li-Ting Chen
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ting-Ting Xu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Ya-Qing Qiu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Nuo-Ya Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Xin-Yu Ke
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Lu Fang
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| | - Jie-Ping Yan
- Department of Pharmacy, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dan-Yan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, Hangzhou, China
| |
Collapse
|
30
|
Zhong Y, Jin C, Han J, Zhu J, Liu Q, Sun D, Xia X, Peng X. Inhibition of ER stress attenuates kidney injury and apoptosis induced by 3-MCPD via regulating mitochondrial fission/fusion and Ca 2+ homeostasis. Cell Biol Toxicol 2021; 37:795-809. [PMID: 33651226 DOI: 10.1007/s10565-021-09589-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022]
Abstract
3-Chloro-1, 2-propanediol (3-MCPD) is a food-borne toxic substance well-known for more than 40 years that is mainly associated with nephrotoxicity. A better understanding of 3-MCPD nephrotoxicity is required to devise efficacious strategies to counteract its toxicity. In the present work, the role of endoplasmic reticulum (ER) stress along with its underlying regulatory mechanism in 3-MCPD-mediated renal cytotoxicity was investigated in vivo and in vitro. Our data indicated that 3-MCPD-stimulated ER stress response evidenced by sustained activation of PERK-ATF4-p-CHOP and IRE1 branches in Sprague Dawley (SD) rats and human embryonic kidney (HEK293) cells. Moreover, ER stress-associated specific apoptotic initiator, caspase 12, was over-expressed. Blocking ER stress with its antagonist, 4-phenylbutyric acid (4-PBA), improved the morphology and function of kidney effectively. 4-PBA also increased cell viability, relieved mitochondrial vacuolation, and inhibited cell apoptosis through regulating caspase-dependent intrinsic apoptosis pathways. Furthermore, the enhanced expressions of two mitochondrial fission proteins, DRP1/p-DRP1 and FIS1, and the relocation of DRP1 on mitochondria subjected to 3-MPCD were reversed by 4-PBA, while the expression of the fusion protein, MFN2, was restored. Moreover, cellular Ca2+ overload, the over-expression of CaMKK2, and the loss of mitochondria-associated membranes (MAM) were also relieved after 4-PBA co-treatment. Collectively, our data emphasized that ER stress plays critical role in 3-MCPD-mediated mitochondrial dysfunction and subsequent apoptosis as well as blockage of ER stress ameliorated kidney injury through improving mitochondrial fission/fusion and Ca2+ homeostasis. These findings provide a novel insight into the regulatory role of ER stress in 3-MCPD-associated nephropathy and a potential therapeutic strategy. Graphical Headlights 1. 4-PBA inhibits ER stress mainly through regulating PERK-ATF4-CHOP and IRE1-XBP1s branches. 2. Inhibition of ER stress by 4-PBA mitigates ER associated and mitochondrial apoptosis 3. Inhibition of ER stress by 4-PBA helps maintaining calcium homeostasis and mitochondrial dynamic.
Collapse
Affiliation(s)
- Yujie Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiahui Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiachang Zhu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dianjun Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
31
|
Gil-Hernández A, Arroyo-Campuzano M, Simoni-Nieves A, Zazueta C, Gomez-Quiroz LE, Silva-Palacios A. Relevance of Membrane Contact Sites in Cancer Progression. Front Cell Dev Biol 2021; 8:622215. [PMID: 33511135 PMCID: PMC7835521 DOI: 10.3389/fcell.2020.622215] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 01/01/2023] Open
Abstract
Membrane contact sites (MCS) are typically defined as areas of proximity between heterologous or homologous membranes characterized by specific proteins. The study of MCS is considered as an emergent field that shows how crucial organelle interactions are in cell physiology. MCS regulate a myriad of physiological processes such as apoptosis, calcium, and lipid signaling, just to name a few. The membranal interactions between the endoplasmic reticulum (ER)–mitochondria, the ER–plasma membrane, and the vesicular traffic have received special attention in recent years, particularly in cancer research, in which it has been proposed that MCS regulate tumor metabolism and fate, contributing to their progression. However, as the therapeutic or diagnostic potential of MCS has not been fully revisited, in this review, we provide recent information on MCS relevance on calcium and lipid signaling in cancer cells and on its role in tumor progression. We also describe some proteins associated with MCS, like CERT, STIM1, VDAC, and Orai, that impact on cancer progression and that could be a possible diagnostic marker. Overall, these information might contribute to the understanding of the complex biology of cancer cells.
Collapse
Affiliation(s)
- Aurora Gil-Hernández
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Miguel Arroyo-Campuzano
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Arturo Simoni-Nieves
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis Enrique Gomez-Quiroz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
32
|
Yeh CH, Chou YJ, Kao CH, Tsai TF. Mitochondria and Calcium Homeostasis: Cisd2 as a Big Player in Cardiac Ageing. Int J Mol Sci 2020; 21:ijms21239238. [PMID: 33287440 PMCID: PMC7731030 DOI: 10.3390/ijms21239238] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022] Open
Abstract
The ageing of human populations has become a problem throughout the world. In this context, increasing the healthy lifespan of individuals has become an important target for medical research and governments. Cardiac disease remains the leading cause of morbidity and mortality in ageing populations and results in significant increases in healthcare costs. Although clinical and basic research have revealed many novel insights into the pathways that drive heart failure, the molecular mechanisms underlying cardiac ageing and age-related cardiac dysfunction are still not fully understood. In this review we summarize the most updated publications and discuss the central components that drive cardiac ageing. The following characters of mitochondria-related dysfunction have been identified during cardiac ageing: (a) disruption of the integrity of mitochondria-associated membrane (MAM) contact sites; (b) dysregulation of energy metabolism and dynamic flexibility; (c) dyshomeostasis of Ca2+ control; (d) disturbance to mitochondria–lysosomal crosstalk. Furthermore, Cisd2, a pro-longevity gene, is known to be mainly located in the endoplasmic reticulum (ER), mitochondria, and MAM. The expression level of Cisd2 decreases during cardiac ageing. Remarkably, a high level of Cisd2 delays cardiac ageing and ameliorates age-related cardiac dysfunction; this occurs by maintaining correct regulation of energy metabolism and allowing dynamic control of metabolic flexibility. Together, our previous studies and new evidence provided here highlight Cisd2 as a novel target for developing therapies to promote healthy ageing
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Linko 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung Branch, Keelung 204, Taiwan
| | - Yi-Ju Chou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| | - Ting-Fen Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan 350, Taiwan;
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan 350, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (C.-H.K.); (T.-F.T.); Tel.: +886-3-211-8800 (ext. 5149) (C.-H.K.); +886-2-2826-7293 (T.-F.T.); Fax: +886-3-211-8700 (C.-H.K.); +886-2-2828-0872 (T.-F.T.)
| |
Collapse
|
33
|
Ma RH, Ni ZJ, Thakur K, Zhang F, Zhang YY, Zhang JG, Wei ZJ. Natural Compounds Play Therapeutic Roles in Various Human Pathologies via Regulating Endoplasmic Reticulum Pathway. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
Gil-Hernández A, Silva-Palacios A. Relevance of endoplasmic reticulum and mitochondria interactions in age-associated diseases. Ageing Res Rev 2020; 64:101193. [PMID: 33069818 DOI: 10.1016/j.arr.2020.101193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Although the elixir of youth remains in the darkness, medical and scientific advances have succeeded in increasing human longevity; however, the predisposition to disease and its high economic cost are raising. Different strategies (e.g., antioxidants) and signaling pathways (e.g., Nrf2) have been identified to help regulate disease progression, nevertheless, there are still missing links that we need to understand. Contact sites called mitochondria-associated membranes (MAM) allow bi-directional communication between organelles as part of the essential functions in the cell to maintain its homeostasis. Different groups have deeply studied the role of MAM in aging; however, it's necessary to analyze their involvement in the progression of age-related diseases. In this review, we highlight the role of contact sites in these conditions, as well as the morphological and functional changes of mitochondria and ER in aging. We emphasize the intimate relationship between both organelles as a reflection of the biological processes that take place in the cell to try to regulate the deterioration characteristic of the aging process; proposing MAM as a potential target to help limit the disease progression with age.
Collapse
|
35
|
Genovese I, Vezzani B, Danese A, Modesti L, Vitto VAM, Corazzi V, Pelucchi S, Pinton P, Giorgi C. Mitochondria as the decision makers for cancer cell fate: from signaling pathways to therapeutic strategies. Cell Calcium 2020; 92:102308. [PMID: 33096320 DOI: 10.1016/j.ceca.2020.102308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
As pivotal players in cellular metabolism, mitochondria have a double-faceted role in the final decision of cell fate. This is true for all cell types, but it is even more important and intriguing in the cancer setting. Mitochondria regulate cell fate in many diverse ways: through metabolism, by producing ATP and other metabolites deemed vital or detrimental for cancer cells; through the regulation of Ca2+ homeostasis, especially by the joint participation of the endoplasmic reticulum in a membranous tethering system for Ca2+ signaling called mitochondria-ER associated membranes (MAMs); and by regulating signaling pathways involved in the survival of cancer cells such as mitophagy. Recent studies have shown that mitochondria can also play a role in the regulation of inflammatory pathways in cancer cells, for example, through the release of mitochondrial DNA (mtDNA) involved in the activation of the cGAS-cGAMP-STING pathway. In this review, we aim to explore the role of mitochondria as decision makers in fostering cancer cell death or survival depending on the tumor cell stage and describe novel anticancer therapeutic strategies targeting mitochondria.
Collapse
Affiliation(s)
- Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bianca Vezzani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Virginia Corazzi
- ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Pelucchi
- ENT & Audiology Department, University Hospital of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
36
|
Fan C, Feng J, Tang C, Zhang Z, Feng Y, Duan W, Zhai M, Yan Z, Zhu L, Feng L, Zhu H, Luo E. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther 2020; 11:442. [PMID: 33059742 PMCID: PMC7560057 DOI: 10.1186/s13287-020-01948-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. Methods Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. Results Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-l-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. Conclusions Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China. .,Department of Oncology, Air Force Medical Center of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Jianyu Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Chi Tang
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhengbin Zhang
- Department of Geriatrics, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Street, Beijing, 100091, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Mingming Zhai
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zedong Yan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Liwen Zhu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, 277 Yanta West Road, Xi'an, 710077, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Erping Luo
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
37
|
Fan C, Feng J, Tang C, Zhang Z, Feng Y, Duan W, Zhai M, Yan Z, Zhu L, Feng L, Zhu H, Luo E. Melatonin suppresses ER stress-dependent proapoptotic effects via AMPK in bone mesenchymal stem cells during mitochondrial oxidative damage. Stem Cell Res Ther 2020. [PMID: 33059742 DOI: 10.1186/s13287-020-01948-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. METHODS Mouse BMSCs were isolated and exposed to H2O2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H2O2-induced injury was investigated using pharmacologic agonists and inhibitors. RESULTS Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N-acetyl-L-cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H2O2 insult. CONCLUSIONS Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China. .,Department of Oncology, Air Force Medical Center of PLA, 30 Fucheng Road, Beijing, 100142, China.
| | - Jianyu Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Chi Tang
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhengbin Zhang
- Department of Geriatrics, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Street, Beijing, 100091, China
| | - Yingtong Feng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Mingming Zhai
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zedong Yan
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Liwen Zhu
- Department of Cardiology, The First Affiliated Hospital of Xi'an Medical University, 277 Yanta West Road, Xi'an, 710077, China
| | - Lele Feng
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, 710032, China
| | - Erping Luo
- Department of Military Biomedical Engineering, Air Force Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
38
|
Mitochondrial Ca 2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacol Sin 2020; 41:1301-1309. [PMID: 32694759 PMCID: PMC7608470 DOI: 10.1038/s41401-020-0476-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) represents one of the leading causes of cardiovascular diseases with high rates of hospitalization, morbidity and mortality worldwide. Ample evidence has consolidated a crucial role for mitochondrial injury in the progression of HF. It is well established that mitochondrial Ca2+ participates in the regulation of a wide variety of biological processes, including oxidative phosphorylation, ATP synthesis, reactive oxygen species (ROS) generation, mitochondrial dynamics and mitophagy. Nonetheless, mitochondrial Ca2+ overload stimulates mitochondrial permeability transition pore (mPTP) opening and mitochondrial swelling, resulting in mitochondrial injury, apoptosis, cardiac remodeling, and ultimately development of HF. Moreover, mitochondria possess a series of Ca2+ transport influx and efflux channels, to buffer Ca2+ in the cytoplasm. Interaction at mitochondria-associated endoplasmic reticulum membranes (MAMs) may also participate in the regulation of mitochondrial Ca2+ homeostasis and plays an essential role in the progression of HF. Here, we provide an overview of regulation of mitochondrial Ca2+ homeostasis in maintenance of cardiac function, in an effort to identify novel therapeutic strategies for the management of HF.
Collapse
|