1
|
Zhang WJ, Chen D. Mesenchymal stem cell transplantation plays a role in relieving cancer pain. Front Pharmacol 2024; 15:1483716. [PMID: 39679363 PMCID: PMC11637888 DOI: 10.3389/fphar.2024.1483716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Tumors can invade, compress, and damage nerves, leading to persistent pain and seriously affecting the quality of life of patients. However, their treatment is challenging. Sensitization of peripheral receptors, abnormal activity of primary sensory neurons, activation of glial cells, enhanced inflammatory responses, and sensory information transmission contribute towards cancer pain. Therefore, considerable attention has been paid to exploring prospective methods to inhibit the occurrence of these factors and relieve cancer pain. Studies on different types of pains have revealed that the transplantation of functionally active cells into the host has the pharmacological effect of producing analgesia. Mesenchymal stem cells (MSCs) can act as small active pumps to reduce the expression of pain-related molecules and produce analgesic effects. Moreover, MSCs can establish complex communication networks with non-tumor and cancer cells in the microenvironment, interact with each other, and can be used as destinations for inflammation and tumor sites, affecting their potential for invasion and metastasis. This emphasizes the key role of MSCs in cancer and pain management. The pain relief mechanisms of MSCs include neuronutrition, neural protection, neural network reconstruction, immune regulation, and improvement of the inflammatory microenvironment around the nerve injury. All of these are beneficial for the recovery of injured or stimulated nerves and the reconstruction of neural function, and play a role in relieving pain. The pain treatment strategy of cell transplantation is to repair injured nerves and produce analgesic pharmacological properties that are different from those of painkillers and other physiotherapies. Although the therapeutic role of MSCs in cancer and pain is in its early stages, the therapeutic value of MSCs for cancer pain has great prospects. Therefore, in this study, we explored the possible mechanism between MSCs and cancer pain, the potential therapeutic role of therapeutic cells in cancer pain, and some problems and challenges.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| | - Dingyi Chen
- Emergency department, The Second Affiliated Hospital, Nanchang University, Jiangxi Medical college, Nanchang, China
| |
Collapse
|
2
|
Ding L, Hu DX, Yang L, Zhang WJ. Application of olfactory ensheathing cells in peripheral nerve injury and its complication with pathological pain. Neuroscience 2024; 560:120-129. [PMID: 39307415 DOI: 10.1016/j.neuroscience.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Direct or indirect injury of peripheral nerve can lead to sensory and motor dysfunction, which can lead to pathological pain and seriously affect the quality of life and psychosomatic health of patients. While the internal repair function of the body after peripheral nerve injury is limited. Nerve regeneration is the key factor hindering the recovery of nerve function. At present, there is no effective treatment. Therefore, more and more attention have been paid to the development of foreground treatment to achieve functional recovery after peripheral nerve injury, including relief of pathological pain. Cell transplantation strategy is a therapeutic method with development potential in recent years, which can exert endogenous alternative repair by transplanting exogenous functional bioactive cells to the site of nerve injury. Olfactory ensheathing cells (OECs) are a special kind of glial cells, which have the characteristics of continuous renewal and survival. The mechanisms of promoting nerve regeneration and functional repair and relieving pathological pain by transplantation of OECs to peripheral nerve injury include secretion of a variety of neurotrophic factors, axonal regeneration and myelination, immune regulation, anti-inflammation, neuroprotection, promotion of vascular growth and improvement of inflammatory microenvironment around nerve injury. Different studies have shown that OECs combined with biomaterials have made some progress in the treatment of peripheral nerve injury and pathological pain. These biomaterials enhance the therapeutic effect of OECs. Therefore, the functional role of OECs in peripheral nerve injury and pathological pain was discussed in this paper.Although OECs are in the primary stage of exploration in the repair of peripheral nerve injury and the application of pain, but OECs transplantation may become a prospective therapeutic strategy for the treatment of peripheral nerve injury and pathological pain.
Collapse
Affiliation(s)
- Lin Ding
- The Second Affiliated Hospital, Nanchang University, Jiangxi Medical College, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Liu Yang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
3
|
Zhang WJ, Li X, Liao JX, Hu DX, Huang S. Schwann cells transplantation improves nerve injury and alleviates neuropathic pain in rats. Purinergic Signal 2024:10.1007/s11302-024-10046-7. [PMID: 39240444 DOI: 10.1007/s11302-024-10046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
The mechanism of neuropathic pain induced by nerve injury is complex and there are no effective treatment methods. P2X4 receptor expression is closely related to the occurrence of pain. Schwann cells (SCs) play a key protective role in the repair of peripheral nerve injury and myelin sheath regeneration. However, whether SCs can affect the expression of P2X4 receptor and play a role in pathological pain is still unclear. Therefore, this study investigated the effect of SCs on whether they can down regulate the expression of P2X4 receptor to affect pain. The results showed that in the neuropathic pain induced by sciatic nerve injury model, the expression of P2X4 receptor in spinal cord tissue was significantly increased and the pain sensation of rats was increased. While SCs transplantation could down regulate the expression of P2X4 receptors in spinal cord and increase the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) of rats. These data indicate that SCs can reduce the expression of P2X4 receptors to alleviate neuropathic pain, indicating that SCs can mediate P2X4 receptor signalling as a new target for pain treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xi Li
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Jun-Xiang Liao
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Song Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
4
|
Deng K, Hu DX, Zhang WJ. Application of cell transplantation in the treatment of neuropathic pain. Neuroscience 2024; 554:43-51. [PMID: 38986736 DOI: 10.1016/j.neuroscience.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
Collapse
Affiliation(s)
- Kan Deng
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Ji an College, Ji an City, Jiangxi Province, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
5
|
Liang W, Zhang T, Zhang M, Gao J, Huang R, Huang X, Chen J, Cheng L, Zhang L, Huang Z, Tan Q, Jia Z, Zhang S. Daphnetin Ameliorates Neuropathic Pain via Regulation of Microglial Responses and Glycerophospholipid Metabolism in the Spinal Cord. Pharmaceuticals (Basel) 2024; 17:789. [PMID: 38931456 PMCID: PMC11207025 DOI: 10.3390/ph17060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain (NP) is a common type of chronic pain caused by a lesion or disease of the somatosensory nervous system. This condition imposes a considerable economic burden on society and patients. Daphnetin (DAP) is a natural product isolated from a Chinese medicinal herb with various pharmacological activities, such as anti-inflammatory and analgesic properties. However, the underlying mechanisms of these effects are not fully understood. In the present study, we aimed to investigate DAP's anti-inflammatory and analgesic effects and explore the underlying mechanisms of action. The NP model was established as chronic constrictive injury (CCI) of the sciatic nerve, and pain sensitivity was evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). The activation of microglia in the spinal dorsal horn was measured via immunofluorescence staining. Protein levels were measured using a western blot assay. Using a mass-spectrometry proteomics platform and an LC-MS/MS-based metabolomics platform, proteins and metabolites in spinal cord tissues were extracted and analyzed. DAP treatment ameliorated the MWT and TWT in CCI rats. The expression of IL-1β, IL-6, and TNF-α was inhibited by DAP treatment in the spinal cords of CCI rats. Moreover, the activation of microglia was suppressed after DAP treatment. The elevation in the levels of P2X4, IRF8, IRF5, BDNF, and p-P38/P38 in the spinal cord caused by CCI was inhibited by DAP. Proteomics and metabolomics results indicated that DAP ameliorated the imbalance of glycerophospholipid metabolism in the spinal cords of CCI rats. DAP can potentially ameliorate NP by regulating microglial responses and glycerophospholipid metabolism in the CCI model. This study provides a pharmacological justification for using DAP in the management of NP.
Collapse
Affiliation(s)
- Wulin Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Tianrui Zhang
- Shanxi Provincial Key Laboratory of Drug Toxicology and Preclinical Research of Radiopharmaceuticals, Key Laboratory of Radiotoxicology and Preclinical Evaluation of Radiopharmaceuticals in China, National Atomic Energy Agency Nuclear Technology Research and Development Center, Institute of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan 030006, China
| | - Mingqian Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiahui Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rikang Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiyan Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jianhua Chen
- Shanxi Provincial Key Laboratory of Drug Toxicology and Preclinical Research of Radiopharmaceuticals, Key Laboratory of Radiotoxicology and Preclinical Evaluation of Radiopharmaceuticals in China, National Atomic Energy Agency Nuclear Technology Research and Development Center, Institute of Radiology and Environmental Medicine, China Institute For Radiation Protection, Taiyuan 030006, China
| | - Lu Cheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Liyuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhishan Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiling Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhanhong Jia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuofeng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
6
|
Lin Y, Liu T, Chen H, Zeng M, Hu S, Yu X, Chen Y, Xia C, Wang J, Wang J. Endothelin-1-mediated Brainstem Glial Activation Produces Asthmatic Airway Vagal Hypertonia Via Enhanced ATP-P2X4 Receptor Signaling in Sprague-Dawley Rats. J Neuroimmune Pharmacol 2024; 19:13. [PMID: 38613591 DOI: 10.1007/s11481-024-10116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
The occurrence of major asthma symptoms is largely attributed to airway vagal hypertonia, of which the central mechanisms remain unclear. This study tests the hypotheses that endothelin-1-mediated brainstem glial activation produces asthmatic airway vagal hypertonia via enhanced action of adenosine 5'-triphosphate on neuronal purinergic P2X4 receptors. A rat model of asthma was prepared using ovalbumin. Airway vagal tone was evaluated by the recurrent laryngeal discharge and plethysmographic measurement of pulmonary function. The changes in the brainstem were examined using ELISA, Western blot, luciferin-luciferase, quantitative reverse transcription-polymerase chain reaction, enzyme activity assay and immunofluorescent staining, respectively. The results showed that in the medulla of rats, endothelin receptor type B and P2X4 receptors were primarily expressed in astrocytes and neurons, respectively, and both of which, along with endothelin-1 content, were significantly increased after ovalbumin sensitization. Ovalbumin sensitization significantly increased recurrent laryngeal discharge, which was blocked by acute intracisternal injection of P2X4 receptor antagonist 5-BDBD, knockdown of brainstem P2X4 receptors, and chronic intraperitoneal injection of endothelin receptor type B antagonist BQ788, respectively. Ovalbumin sensitization activated microglia and astrocytes and significantly decreased ecto-5'-nucleotidase activity in the medulla, and all of which, together with the increase of medullary P2X4 receptor expression and decrease of pulmonary function, were reversed by chronic BQ788 treatment. These results demonstrated that in rats, allergic airway challenge activates both microglia and astrocytes in the medulla via enhanced endothelin-1/endothelin receptor type B signaling, which subsequently causes airway vagal hypertonia via augmented adenosine 5'-triphosphate/P2X4 receptor signaling in central neurons of airway vagal reflex.
Collapse
Affiliation(s)
- Yun Lin
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Tian Liu
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Hong Chen
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Ming Zeng
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Shunwei Hu
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Xiaoning Yu
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Yonghua Chen
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Jin Wang
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China
| | - Jijiang Wang
- Department of Physiology and Pathophysiology, Fudan University School of Basic Medical Sciences, 130 Dong'an Rd., 207 Seventh Building, West Campus, Shanghai, 200032, China.
| |
Collapse
|
7
|
Liu Z, Sun M, Liu W, Feng F, Li X, Jin C, Zhang Y, Wang J. Deficiency of purinergic P2X4 receptor alleviates experimental autoimmune hepatitis in mice. Biochem Pharmacol 2024; 221:116033. [PMID: 38301964 DOI: 10.1016/j.bcp.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/29/2023] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Purinergic P2X4 receptor (P2X4R) has been shown to have immunomodulatory properties in infection, inflammation, and organ damage including liver regeneration and fibrosis. However, the mechanisms and pathophysiology associated with P2X4R during acute liver injury remain unknown. We used P2X4R-/- mice to explore the role of P2X4R in three different models of acute liver injury caused by concanavalin A (ConA), carbon tetrachloride, and acetaminophen. ConA treatment results in an increased expression of P2X4R in the liver of mice, which was positively correlated with higher levels of aspartate aminotransferase and alanine aminotransferase in the serum. However, P2X4R gene ablation significantly reduced the severity of acute hepatitis in mice caused by ConA, but not by carbon tetrachloride or acetaminophen. The protective benefits against immune-mediated acute hepatitis were achieved via modulating inflammation (Interleukin (IL)-1β, IL-6, IL-17A, interferon-γ, tumor necrosis factor-α), oxidative stress (malondialdehyde, superoxide dismutase, glutathione peroxidase, and catalase), apoptosis markers (Bax, Bcl-2, and Caspase-3), autophagy biomarkers (LC3, Beclin-1, and p62), and nucleotide oligomerization domain-likereceptorprotein 3(NLRP3) inflammasome-activated pyroptosis markers (NLRP3, Gasdermin D, Caspase-1, ASC, IL-1β). Additionally, administration of P2X4R antagonist (5-BDBD) or agonist (cytidine 5'-triphosphate) either improved or worsened ConA-induced autoimmune hepatitis, respectively. This study is the first to reveal that the absence of the P2X4 receptor may mitigate immune-mediated liver damage, potentially by restraining inflammation, oxidation, and programmed cell death mechanisms. And highlight P2X4 receptor is essential for ConA-induced acute hepatitis.
Collapse
Affiliation(s)
- Zejin Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Mengyang Sun
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Fangyu Feng
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Xinyu Li
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Yijie Zhang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, Kaifeng 475000, China.
| |
Collapse
|
8
|
Huo M, Zhang Q, Si Y, Zhang Y, Chang H, Zhou M, Zhang D, Fang Y. The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain. Purinergic Signal 2024:10.1007/s11302-024-09985-y. [PMID: 38305986 DOI: 10.1007/s11302-024-09985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.
Collapse
Affiliation(s)
- Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Haihe Laboratory of Modern Chinese, Tianjin, 301617, People's Republic of China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
9
|
Jia S, Mai L, Yang H, Huang F, He H, Fan W. Cross-species gene expression patterns of purinergic signaling in the human and mouse trigeminal ganglion. Life Sci 2023; 332:122130. [PMID: 37769809 DOI: 10.1016/j.lfs.2023.122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Purinergic signaling system plays a pivotal role in the trigeminal ganglion (TG) which is a primary sensory tissue in vertebrate nervous systems involving orofacial nociception and peripheral sensitization. Despite previous efforts to reveal the expression patterns of purinergic components in the mouse TG, it is still unknown the interspecies differences between human and mouse. In this study, we provide a comprehensive transcriptome profile of the purinergic signaling system across diverse cell types and neuronal subpopulations within the human TG, systematically comparing it with mouse TG. In addition, the evolutionary conservation and species-specific expression patterns of the purinergic components are also discussed. We propose that the data can improve our understanding of purinergic signaling in the peripheral nervous system and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shilin Jia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hui Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
| |
Collapse
|
10
|
Yang B, Yu N. Traditional Chinese medicine alleviating neuropathic pain targeting purinergic receptor P2 in purinergic signaling: A review. Brain Res Bull 2023; 204:110800. [PMID: 37913850 DOI: 10.1016/j.brainresbull.2023.110800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Past studies have suggested that Chinese herbal may alleviate neuropathic pain, and the mechanism might target the inhibition of purinergic receptor P2. This review discusses whether traditional Chinese medicine target P2 receptors in neuropathic pain and its mechanism in order to provide references for future clinical drug development. The related literatures were searched from Pubmed, Embase, Sinomed, and CNKI databases before June 2023. The search terms included"neuropathic pain", "purinergic receptor P2", "P2", "traditional Chinese medicine", "Chinese herbal medicine", and "herb". We described the traditional Chinese medicine alleviating neuropathic pain via purinergic receptor P2 signaling pathway including P2X2/3 R, P2X3R, P2X4R, P2X7R, P2Y1R. Inhibition of activating glial cells, changing synaptic transmission, increasing painful postsynaptic potential, and activating inflammatory signaling pathways maybe the mechanism. Purine receptor P2 can mediate the occurrence of neuropathic pain. And many of traditional Chinese medicines can target P2 receptors to relieve neuropathic pain, which provides reasonable evidences for the future development of drugs. Also, the safety and efficacy and mechanism need more in-depth experimental research.
Collapse
Affiliation(s)
- Bo Yang
- Department of Center for Psychosomatic Medicine,Sichuan Provincial Center for Mental Health,Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611135, China
| | - Nengwei Yu
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
11
|
Hu JL, Luo HL, Liu JP, Zuo C, Xu YS, Feng X, Zhang WJ. Chitosan biomaterial enhances the effect of OECs on the inhibition of sciatic nerve injury-induced neuropathic pain. J Chem Neuroanat 2023; 133:102327. [PMID: 37634701 DOI: 10.1016/j.jchemneu.2023.102327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Neuropathic pain is a common symptom experienced by most clinical diseases at different levels, and its treatment has always been a clinical difficulty. Therefore, it is particularly important to explore new and effective treatment methods. The role of olfactory ensheathing cells (OECs) in nerve injury and pain is recognized by different studies. Our previous study found that transplantation of OECs alleviated hyperalgesia in rats. However, single-cell transplantation lacks medium adhesion and support, and exerts limited analgesic effect. Therefore, on the basis of the previous study, this study investigated the effect of pain relief by co-transplanting OECs with chitosan (CS) (a biological tissue engineering material, as OECs were transplanted into the host medium) to the injured sciatic nerve. The results showed that the pain threshold of sciatic nerve injury of rats was significantly reduced, and the expression level of P2×4 receptor in the spinal cord was significantly increased. While olfactory ensheathing cells combined with chitosan (OECs+CS) transplantation could significantly relieve pain, and the analgesic effect was stronger than that of OECs transplantation alone. OECs+CS transplantation promoted the formation of sciatic nerve remyelination, improved the changes of demyelination, and promoted the repair of sciatic nerve injury more significantly. In addition, the effect of OECs+CS to down-regulate the expression of P2×4 receptor was significantly stronger than that of OECs transplantation, and exerted a better analgesic effect. These data reveal that OECs+CS have a better analgesic effect in relieving neuropathic pain induced by sciatic nerve injury, and provide a new therapeutic strategy for pain treatment.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Emergency Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Hong-Liang Luo
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Ji-Peng Liu
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Cheng Zuo
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Yong-Sheng Xu
- Gastrointestinal Surgery, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the second affiliated hospital, Nanchang University, Nanchang city, Jiangxi province, China.
| |
Collapse
|
12
|
Zhang WJ, Liu SC, Ming LG, Yu JW, Zuo C, Hu DX, Luo HL, Zhang Q. Potential role of Schwann cells in neuropathic pain. Eur J Pharmacol 2023; 956:175955. [PMID: 37541365 DOI: 10.1016/j.ejphar.2023.175955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Neuropathic pain (NPP) is a common syndrome associated with most forms of disease, which poses a serious threat to human health. NPP may persist even after the nociceptive stimulation is eliminated, and treatment is extremely challenging in such cases. Schwann cells (SCs) form the myelin sheaths around neuronal axons and play a crucial role in neural information transmission. SCs can secrete trophic factors to nourish and protect axons, and can further secrete pain-related factors to induce pain. SCs may be activated by peripheral nerve injury, triggering the transformation of myelinated and non-myelinated SCs into cell phenotypes that specifically promote repair. These differentiated SCs provide necessary signals and spatial clues for survival, axonal regeneration, and nerve regeneration of damaged neurons. They can further change the microenvironment around the regions of nerve injury, and relieve the pain by repairing the injured nerve. Herein, we provide a comprehensive overview of the biological characteristics of SCs, discuss the relationship between SCs and nerve injury, and explore the potential mechanism of SCs and the occurrence of NPP. Moreover, we summarize the feasible strategies of SCs in the treatment of NPP, and attempt to elucidate the deficiencies and defects of SCs in the treatment of NPP.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Li-Guo Ming
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Jian-Wen Yu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China
| | - Hong-Liang Luo
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| | - Qiao Zhang
- Orthopedics Department, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, 343000, China.
| |
Collapse
|
13
|
Zhou WM, Lei ZY, Shi YQ, Gong CY, Kai Z, Wei N, Wang LN, Zhang CJ, Zhang HH. Intrathecal Injection of Botulinum Toxin Type A has an Analgesic Effect in Male Rats CCI Model by Inhibiting the Activation of Spinal P2X4R. Neurochem Res 2023; 48:3099-3112. [PMID: 37336823 DOI: 10.1007/s11064-023-03969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Purinergic receptor P2X4 (P2X4R) plays an essential role in neuropathic pain. However, the specific mechanism needs to be clarified. Botulinum toxin type A is a neurotoxin produced by Clostridium botulinum type A. This study found that intrathecal injection of botulinum toxin type A produced an excellent analgesic effect in a rat model of chronic constriction sciatic nerve injury and inhibited the activation of P2X4R, microglia, and astrocytes. The administration of a P2X4R activator can up-regulate the expression of P2X4R and eliminate the analgesic effect of intrathecal injection of botulinum toxin type A. In addition, we found that microglia and astrocytes in the spinal cord of rats injected with botulinum toxin type A were reactivated after administration of the P2X4R activator. Our results suggest that intrathecal injection of botulinum toxin type A has an analgesic effect in a rat model of chronic constriction sciatic nerve injury by inhibiting the activation of P2X4R in the spinal cord.
Collapse
Affiliation(s)
- Wen-Ming Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Ze-Yuan Lei
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Chao-Yang Gong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Zhang Kai
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Nan Wei
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000, People's Republic of China
| | - Lin-Na Wang
- Lanzhou Biotechnique Development Co., LTD, Lanzhou, 730000, People's Republic of China
| | - Cheng-Jun Zhang
- Lanzhou Biotechnique Development Co., LTD, Lanzhou, 730000, People's Republic of China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
14
|
Liu JP, Liu SC, Hu SQ, Lu JF, Wu CL, Hu DX, Zhang WJ. ATP ion channel P2X purinergic receptors in inflammation response. Biomed Pharmacother 2023; 158:114205. [PMID: 36916431 DOI: 10.1016/j.biopha.2022.114205] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Different studies have confirmed that P2X purinergic receptors play a key role in inflammation. Activation of P2X purinergic receptors can release inflammatory cytokines and participate in the progression of inflammatory diseases. In an inflammatory microenvironment, cells can release a large amount of ATP to activate P2X receptors, open non-selective cation channels, activate multiple intracellular signaling, release multiple inflammatory cytokines, amplify inflammatory response. While P2X4 and P2X7 receptors play an important role in the process of inflammation. P2X4 receptor can mediate the activation of microglia involved in neuroinflammation, and P2X7 receptor can mediate different inflammatory cells to mediate the progression of tissue-wide inflammation. At present, the role of P2X receptors in inflammatory response has been widely recognized and affirmed. Therefore, in this paper, we discussed the role of P2X receptors-mediated inflammation. Moreover, we also described the effects of some antagonists (such as A-438079, 5-BDBD, A-804598, A-839977, and A-740003) on inflammation relief by antagonizing the activities of P2X receptors.
Collapse
Affiliation(s)
- Ji-Peng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Si-Cheng Liu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Shi-Qi Hu
- Queen Mary College, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Jia-Feng Lu
- Basic medical school, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Chang-Lei Wu
- Department of Gastrointestinal surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
15
|
Zhang WJ, Hu DX, Lin SJ, Fang XQ, Ye ZF. Contribution of P2X purinergic receptor in cerebral ischemia injury. Brain Res Bull 2022; 190:42-49. [PMID: 36113681 DOI: 10.1016/j.brainresbull.2022.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/02/2022]
Abstract
The development of cerebral ischemia involves brain damage and abnormal changes in brain function, which can cause neurosensory and motor dysfunction, and bring serious consequences to patients. P2X purinergic receptors are expressed in nerve cells and immune cells, and are mainly expressed in microglia. The P2X4 and P2X7 receptors in the P2X purinergic receptors play a significant role in regulating the activity of microglia. Moreover, ATP-P2X purine information transmission is involved in the progression of neurological diseases, including the release of pro-inflammatory factors, driving factors and cytokines after cerebral ischemia injury, inducing inflammation, and aggravating cerebral ischemia injury. P2X receptors activation can mediate the information exchange between microglia and neurons, induce neuronal apoptosis, and aggravate neurological dysfunction after cerebral ischemia. However, inhibiting the activation of P2X receptors, reducing their expression, inhibiting the activation of microglia, and has the effect of protecting nerve function. In this paper, we discussed the relationship between P2X receptors and nervous system function and the role of microglia activation inducing cerebral ischemia injury. Additionally, we explored the potential role of P2X receptors in the progression of cerebral ischemic injury and their potential pharmacological targets for the treatment of cerebral ischemic injury.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Si-Jian Lin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Xiao-Qun Fang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Zhen-Feng Ye
- Department of Urology, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
16
|
Zhu C, Tian M, Liu N, Ma L, Lan X, Yang J, Du J, Ma H, Li Y, Zheng P, Yu J, Peng X. Analgesic effect of nobiletin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Phytother Res 2022; 36:3644-3661. [PMID: 35976195 DOI: 10.1002/ptr.7532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022]
Abstract
Neuropathic pain is chronic pain resulting from central or peripheral nerve damage that remains difficult to treat. Current evidence suggests that nobiletin, isolated from Citrus reticulata Blanco, possesses analgesic and neuroprotective effects. However, its effect on neuropathic pain has not been reported. This study evaluated the analgesic effect of nobiletin on neuropathic pain induced by chronic constriction injury (CCI) in mice. In vivo, mice were intragastrically administered with nobiletin (30, 60, 120 mg/kg) for eight consecutive days, respectively. Our study indicated that nobiletin ameliorated mechanical allodynia, cold allodynia and thermal hyperalgesia on CCI mice at doses that do not induce significant sedation. Moreover, nobiletin could ameliorate axonal and myelin injury of the sciatic nerve and further restore abnormal sciatic nerve electrical activity on CCI mice. In vitro studies indicated that nobiletin could suppress the proteins and mRNA expression of the IRF5/P2X4R/BDNF signalling pathway in fibronectin-induced BV2 cells. Overall, our results indicated that nobiletin might exert an analgesic effect on CCI-induced neuropathic pain in mice by inhibiting the IRF5/P2X4R/BDNF signalling pathway in spinal microglia. This study provided a novel potential therapeutic drug for neuropathic pain and new insights into the pharmacological action of nobiletin.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, China
| | - Miaomiao Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaobing Lan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jiamei Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Juan Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Hanxiang Ma
- Department of Anesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuxiang Li
- School of Nursing, Ningxia Medical University, Yinchuan, China
| | - Ping Zheng
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianqiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xiaodong Peng
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, China.,College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
17
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
18
|
Sabnis RW. Substituted N-Heteroaryl- N-Pyridinylacetamides as P2X4 Modulators for Treating Pain. ACS Med Chem Lett 2022; 13:765-766. [PMID: 35586428 PMCID: PMC9109476 DOI: 10.1021/acsmedchemlett.2c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell LLP, 1105 West Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|
19
|
The Role of ATP Receptors in Pain Signaling. Neurochem Res 2022; 47:2454-2468. [DOI: 10.1007/s11064-021-03516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
|
20
|
MicroRNA-133b-3p targets purinergic P2X4 receptor to regulate central poststroke pain in rats. Neuroscience 2021; 481:60-72. [PMID: 34688806 DOI: 10.1016/j.neuroscience.2021.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Central poststroke pain (CPSP) is a neuropathic pain syndrome that usually occurs after cerebrovascular accidents. Currently, the pathogenesis of CPSP is not fully understood. Purinergic P2X4 receptor (P2X4R) is implicated in neuropathic pain including CPSP. Herein, we demonstrated that the levels of microRNA-133b-3p (miR-133b-3p), which targets P2X4R transcripts, were significantly downregulated in the ventral posterolateral nucleus of the thalamus (VPL), cerebrospinal fluid (CSF), and plasma of CPSP rats. The expression levels of miR-133b-3p negatively correlated with the severity of allodynia. Genetic knockdown of P2X4R in the VPL protected CPSP rats against allodynia. Similarly, genetic overexpression of miR-133b-3p in the VPL reversed the allodynia established in CPSP rats via downregulation of P2X4R expression. Treatment using gabapentin in CPSP rats significantly restored the decreased miR-133b-3p expression in the VPL, CSF, and plasma and blocked allodynia in CPSP rats. The administration of an miR-133b-3p inhibitor into the VPL abolished the antiallodynic activity of gabapentin. This mechanism was associated with P2X4R expression and involved the endogenous opioid system. Human patients with CPSP showed decreased plasma levels of miR-133b-3p compared with those of control participants. Logistic regression analysis of our patient cohort showed that determining plasma levels of miR-133b-3p may be useful for CPSP diagnosis and treatment.
Collapse
|
21
|
Lu J, Guo X, Yan M, Yuan X, Chen S, Wang Y, Zhu J, Huang S, Shen H, Li H, Xue Q, Fang Q, Ni J, Gan L, Zhao H, Lu H, Chen G. P2X4R Contributes to Central Disinhibition Via TNF-α/TNFR1/GABAaR Pathway in Post-stroke Pain Rats. THE JOURNAL OF PAIN 2021; 22:968-980. [PMID: 33677111 DOI: 10.1016/j.jpain.2021.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 12/20/2022]
Abstract
Central post-stroke pain (CPSP) is a disabling condition in stroke patients. It is a type of neuropathic pain for which the mechanism and relevant drug pathways remain unknown. Inflammatory response and central disinhibition have been suggested recently. Our previous research has shown targeting P2X4 receptors (P2X4R) may be effective in the treatment of CPSP, but the downstream pathway of the P2X4R has not been studied. In this study, we found the increase in tumor necrosis factor alpha (TNF-α) level and endocytosis of surface gamma-aminobutyric acid a receptors (GABAaR) in CPSP, and these effects were inhibited by blocking P2X4R. Furthermore, antagonizing TNF-α can increase surface GABAaR expression and mechanical pain threshold. Meanwhile, knocking down TNFR1 but not TNFR2 reversed the endocytosis of surface GABAaR and alleviated mechanical allodynia. Thus, the neuropathic pain was mediated, in part, through P2X4R/TNF-α/TNFR1/GABAaR signaling, which was induced after stroke. PERSPECTIVE: P2X4R regulates the pathophysiological mechanism of CPSP through central disinhibition mediated by TNF-α/TNFR1. Our results suggest that modulation of P2X4R-TNF-α/TNFR1-GABAaR signaling could provide a new therapeutic strategy to treat CPSP.
Collapse
Affiliation(s)
- Jiajie Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoning Guo
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Manyun Yan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaqing Yuan
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shujun Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yiqing Wang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Juehua Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shicun Huang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lei Gan
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
22
|
Khir NAM, Noh ASM, Shafin N, Ismail CAN. Contribution of P2X4 receptor in pain associated with rheumatoid arthritis: a review. Purinergic Signal 2021; 17:201-213. [PMID: 33594635 PMCID: PMC8155137 DOI: 10.1007/s11302-021-09764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Pain is the most common symptom reported by patients with rheumatoid arthritis (RA) even after the resolution of chronic joint inflammation. It is believed that RA-associated pain is not solely due to inflammation, but could also be attributed to aberrant modifications to the central nervous system. The P2X4 receptor (P2X4R) is an ATP-activated purinergic receptor that plays a significant role in the transmission of information in the nervous system and pain. The involvement of P2X4R during the pathogenesis of chronic inflammatory pain and neuropathic pain is well-established. The attenuation of this receptor alleviates disease pathogenesis and related symptoms, including hyperalgesia and allodynia. Although some studies have revealed the contribution of P2X4R in promoting joint inflammation in RA, how it implicates pain associated with RA at peripheral and central nervous systems is still lacking. In this review, the possible contributions of P2X4R in the nervous system and how it implicates pain transmission and responses were examined.
Collapse
Affiliation(s)
- Nurul Ajilah Mohamed Khir
- International Medical School, Management and Science University, 40100 Shah Alam, Selangor Malaysia
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Ain’ Sabreena Mohd Noh
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nazlahshaniza Shafin
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Che Aishah Nazariah Ismail
- Department of Physiology, School of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
23
|
Role of microglia and P2X4 receptors in chronic pain. Pain Rep 2021; 6:e864. [PMID: 33981920 PMCID: PMC8108579 DOI: 10.1097/pr9.0000000000000864] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
This study summarizes current understanding of the role of microglia and P2X4 receptor in chronic pain including neuropathic pain and of their therapeutic potential. Pain plays an indispensable role as an alarm system to protect us from dangers or injuries. However, neuropathic pain, a debilitating pain condition caused by damage to the nervous system, persists for a long period even in the absence of dangerous stimuli or after injuries have healed. In this condition, pain becomes a disease itself rather than the alarm system and is often resistant to currently available medications. A growing body of evidence indicates that microglia, a type of macrophages residing in the central nervous system, play a crucial role in the pathogenesis of neuropathic pain. Whenever microglia in the spinal cord detect a damaging signal within the nervous system, they become activated and cause diverse alterations that change neural excitability, leading to the development of neuropathic pain. For over a decade, several lines of molecular and cellular mechanisms that define microglial activation and subsequently altered pain transmission have been proposed. In particular, P2X4 receptors (a subtype of purinergic receptors) expressed by microglia have been investigated as an essential molecule for neuropathic pain. In this review article, we describe our understanding of the mechanisms by which activated microglia cause neuropathic pain through P2X4 receptors, their involvement in several pathological contexts, and recent efforts to develop new drugs targeting microglia and P2X4 receptors.
Collapse
|
24
|
Zhang WJ. Effect of P2X purinergic receptors in tumor progression and as a potential target for anti-tumor therapy. Purinergic Signal 2021; 17:151-162. [PMID: 33420658 PMCID: PMC7954979 DOI: 10.1007/s11302-020-09761-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
The development of tumors is a complex pathological process involving multiple factors, multiple steps, and multiple genes. Their prevention and treatment have always been a difficult problem at present. A large number of studies have proved that the tumor microenvironment plays an important role in the progression of tumors. The tumor microenvironment is the place where tumor cells depend for survival, and it plays an important role in regulating the growth, proliferation, apoptosis, migration, and invasion of tumor cells. P2X purinergic receptors, which depend on the ATP ion channel, can be activated by ATP in the tumor microenvironment, and by mediating tumor cells and related cells (such as immune cells) in the tumor microenvironment. They play an important regulatory role on the effects of the skeleton, membrane fluidity, and intracellular molecular metabolism of tumor cells. Therefore, here, we outlined the biological characteristics of P2X purinergic receptors, described the effect of tumor microenvironment on tumor progression, and discussed the effect of ATP on tumor. Moreover, we explored the role of P2X purinergic receptors in the development of tumors and anti-tumor therapy. These data indicate that P2X purinergic receptors may be used as another potential pharmacological target for tumor prevention and treatment.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang, 343000, Jiangxi, China.
| |
Collapse
|
25
|
Trapero C, Martín-Satué M. Purinergic Signaling in Endometriosis-Associated Pain. Int J Mol Sci 2020; 21:E8512. [PMID: 33198179 PMCID: PMC7697899 DOI: 10.3390/ijms21228512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Endometriosis is an estrogen-dependent gynecological disease, with an associated chronic inflammatory component, characterized by the presence of endometrial tissue outside the uterine cavity. Its predominant symptom is pain, a condition notably altering the quality of life of women with the disease. This review is intended to exhaustively gather current knowledge on purinergic signaling in endometriosis-associated pain. Altered extracellular ATP hydrolysis, due to changes in ectonucleotidase activity, has been reported in endometriosis; the resulting accumulation of ATP in the endometriotic microenvironment points to sustained activation of nucleotide receptors (P2 receptors) capable of generating a persistent pain message. P2X3 receptor, expressed in sensory neurons, mediates nociceptive, neuropathic, and inflammatory pain, and is enrolled in endometriosis-related pain. Pharmacological inhibition of P2X3 receptor is under evaluation as a pain relief treatment for women with endometriosis. The role of other ATP receptors is also discussed here, e.g., P2X4 and P2X7 receptors, which are involved in inflammatory cell-nerve and microglia-nerve crosstalk, and therefore in inflammatory and neuropathic pain. Adenosine receptors (P1 receptors), by contrast, mainly play antinociceptive and anti-inflammatory roles. Purinome-targeted drugs, including nucleotide receptors and metabolizing enzymes, are potential non-hormonal therapeutic tools for the pharmacological management of endometriosis-related pain.
Collapse
Affiliation(s)
- Carla Trapero
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| | - Mireia Martín-Satué
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, Campus Bellvitge, Universitat de Barcelona, 08907 Barcelona, Spain;
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), Oncobell Program, CIBERONC, 08908 Barcelona, Spain
| |
Collapse
|
26
|
D’Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R. ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21155330. [PMID: 32727084 PMCID: PMC7432736 DOI: 10.3390/ijms21155330] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain results from lesions or diseases of the somatosensory nervous system and it remains largely difficult to treat. Peripheral neuropathic pain originates from injury to the peripheral nervous system (PNS) and manifests as a series of symptoms and complications, including allodynia and hyperalgesia. The aim of this review is to discuss a novel approach on neuropathic pain management, which is based on the knowledge of processes that underlie the development of peripheral neuropathic pain; in particular highlights the role of glia and mast cells in pain and neuroinflammation. ALIAmides (autacoid local injury antagonist amides) represent a group of endogenous bioactive lipids, including palmitoylethanolamide (PEA), which play a central role in numerous biological processes, including pain, inflammation, and lipid metabolism. These compounds are emerging thanks to their anti-inflammatory and anti-hyperalgesic effects, due to the down-regulation of activation of mast cells. Collectively, preclinical and clinical studies support the idea that ALIAmides merit further consideration as therapeutic approach for controlling inflammatory responses, pain, and related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| |
Collapse
|
27
|
Resolving the Ionotropic P2X4 Receptor Mystery Points Towards a New Therapeutic Target for Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21145005. [PMID: 32679900 PMCID: PMC7404342 DOI: 10.3390/ijms21145005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Adenosine triphosphate (ATP) is a primordial versatile autacoid that changes its role from an intracellular energy saver to a signaling molecule once released to the extracellular milieu. Extracellular ATP and its adenosine metabolite are the main activators of the P2 and P1 purinoceptor families, respectively. Mounting evidence suggests that the ionotropic P2X4 receptor (P2X4R) plays pivotal roles in the regulation of the cardiovascular system, yet further therapeutic advances have been hampered by the lack of selective P2X4R agonists. In this review, we provide the state of the art of the P2X4R activity in the cardiovascular system. We also discuss the role of P2X4R activation in kidney and lungs vis a vis their interplay to control cardiovascular functions and dysfunctions, including putative adverse effects emerging from P2X4R activation. Gathering this information may prompt further development of selective P2X4R agonists and its translation to the clinical practice.
Collapse
|