1
|
Wang Y, Huang Z, Sun M, Huang W, Xia L. ETS transcription factors: Multifaceted players from cancer progression to tumor immunity. Biochim Biophys Acta Rev Cancer 2023; 1878:188872. [PMID: 36841365 DOI: 10.1016/j.bbcan.2023.188872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/26/2023]
Abstract
The E26 transformation specific (ETS) family comprises 28 transcription factors, the majority of which are involved in tumor initiation and development. Serving as a group of functionally heterogeneous gene regulators, ETS factors possess a structurally conserved DNA-binding domain. As one of the most prominent families of transcription factors that control diverse cellular functions, ETS activation is modulated by multiple intracellular signaling pathways and post-translational modifications. Disturbances in ETS activity often lead to abnormal changes in oncogenicity, including cancer cell survival, growth, proliferation, metastasis, genetic instability, cell metabolism, and tumor immunity. This review systematically addresses the basics and advances in studying ETS factors, from their tumor relevance to clinical translational utility, with a particular focus on elucidating the role of ETS family in tumor immunity, aiming to decipher the vital role and clinical potential of regulation of ETS factors in the cancer field.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhao Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China.
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
| |
Collapse
|
2
|
Glucose Homeostasis and Pancreatic Islet Size Are Regulated by the Transcription Factors Elk-1 and Egr-1 and the Protein Phosphatase Calcineurin. Int J Mol Sci 2023; 24:ijms24010815. [PMID: 36614256 PMCID: PMC9821712 DOI: 10.3390/ijms24010815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatic β-cells synthesize and secrete insulin. A key feature of diabetes mellitus is the loss of these cells. A decrease in the number of β-cells results in decreased biosynthesis of insulin. Increasing the number of β-cells should restore adequate insulin biosynthesis leading to adequate insulin secretion. Therefore, identifying proteins that regulate the number of β-cells is a high priority in diabetes research. In this review article, we summerize the results of three sophisticated transgenic mouse models showing that the transcription factors Elk-1 and Egr-1 and the Ca2+/calmodulin-regulated protein phosphatase calcineurin control the formation of sufficiently large pancreatic islets. Impairment of the biological activity of Egr-1 and Elk-1 in pancreatic β-cells leads to glucose intolerance and dysregulation of glucose homeostasis, the process that maintains glucose concentration in the blood within a narrow range. Transgenic mice expressing an activated calcineurin mutant also had smaller islets and showed hyperglycemia. Calcineurin induces dephosphorylation of Elk-1 which subsequently impairs Egr-1 biosynthesis and the biological functions of Elk-1 and Egr-1 to regulate islet size and glucose homeostasis.
Collapse
|
3
|
Dalhäusser AK, Rössler OG, Thiel G. Regulation of c-Fos gene transcription by stimulus-responsive protein kinases. Gene 2022; 821:146284. [PMID: 35143939 DOI: 10.1016/j.gene.2022.146284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/20/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The basic region leucin zipper (bZIP) protein c-Fos constitutes together with other bZIP proteins the AP-1 transcription factor complex. Expression of the c-Fos gene is regulated by numerous extracellular signaling molecules including mitogens, metabolites, and ligands for receptor tyrosine kinases, G protein-coupled receptors, and cytokine receptors. Here, we analyzed the effects of the stimulus-responsive MAP kinases ERK1/2 (extracellular signal-regulated protein kinase), JNK (c-Jun N-terminal protein kinase) and p38 protein kinase on transcription of the c-Fos gene. We used chromatin-integrated c-Fos promoter-luciferase reporter genes containing inactivating point mutations of DNA binding sites for distinct transcription factors. ERK1/2, JNK, and p38 protein kinases were specifically activated following expression of either a mutant of B-Raf, a truncated version of mitogen-activated/extracellular signal responsive kinase kinase kinase-1 (MEKK1), or a mutant of MAP kinase kinase-6 (MKK6), respectively. The results show that the DNA binding sites for serum response factor (SRF) and for the ternary complex factor (TCF) are of major importance for stimulating c-Fos promoter activity by MAP kinases. ERK1/2 and p38-induced stimulation of the c-Fos promoter additionally required the DNA binding site for the transcription factor AP-1. Mutation of the DNA binding site for STAT had no or only a small effect on c-Fos promoter activity. We conclude that MAP kinases do not activate distinct transcription factors involving distinct genetic elements. Rather, these kinases mainly target SRF and TCF proteins, leading to an activation of transcription of the c-Fos gene via the serum response element.
Collapse
Affiliation(s)
- Alisia K Dalhäusser
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| |
Collapse
|
4
|
Insulin-Responsive Transcription Factors. Biomolecules 2021; 11:biom11121886. [PMID: 34944530 PMCID: PMC8699568 DOI: 10.3390/biom11121886] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
The hormone insulin executes its function via binding and activating of the insulin receptor, a receptor tyrosine kinase that is mainly expressed in skeletal muscle, adipocytes, liver, pancreatic β-cells, and in some areas of the central nervous system. Stimulation of the insulin receptor activates intracellular signaling cascades involving the enzymes extracellular signal-regulated protein kinase-1/2 (ERK1/2), phosphatidylinositol 3-kinase, protein kinase B/Akt, and phospholipase Cγ as signal transducers. Insulin receptor stimulation is correlated with multiple physiological and biochemical functions, including glucose transport, glucose homeostasis, food intake, proliferation, glycolysis, and lipogenesis. This review article focuses on the activation of gene transcription as a result of insulin receptor stimulation. Signal transducers such as protein kinases or the GLUT4-induced influx of glucose connect insulin receptor stimulation with transcription. We discuss insulin-responsive transcription factors that respond to insulin receptor activation and generate a transcriptional network executing the metabolic functions of insulin. Importantly, insulin receptor stimulation induces transcription of genes encoding essential enzymes of glycolysis and lipogenesis and inhibits genes encoding essential enzymes of gluconeogenesis. Overall, the activation or inhibition of insulin-responsive transcription factors is an essential aspect of orchestrating a wide range of insulin-induced changes in the biochemistry and physiology of insulin-responsive tissues.
Collapse
|
5
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Critical Protein-Protein Interactions Determine the Biological Activity of Elk-1, a Master Regulator of Stimulus-Induced Gene Transcription. Molecules 2021; 26:molecules26206125. [PMID: 34684708 PMCID: PMC8541449 DOI: 10.3390/molecules26206125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022] Open
Abstract
Elk-1 is a transcription factor that binds together with a dimer of the serum response factor (SRF) to the serum-response element (SRE), a genetic element that connects cellular stimulation with gene transcription. Elk-1 plays an important role in the regulation of cellular proliferation and apoptosis, thymocyte development, glucose homeostasis and brain function. The biological function of Elk-1 relies essentially on the interaction with other proteins. Elk-1 binds to SRF and generates a functional ternary complex that is required to activate SRE-mediated gene transcription. Elk-1 is kept in an inactive state under basal conditions via binding of a SUMO-histone deacetylase complex. Phosphorylation by extracellular signal-regulated protein kinase, c-Jun N-terminal protein kinase or p38 upregulates the transcriptional activity of Elk-1, mediated by binding to the mediator of RNA polymerase II transcription (Mediator) and the transcriptional coactivator p300. Strong and extended phosphorylation of Elk-1 attenuates Mediator and p300 recruitment and allows the binding of the mSin3A-histone deacetylase corepressor complex. The subsequent dephosphorylation of Elk-1, catalyzed by the protein phosphatase calcineurin, facilitates the re-SUMOylation of Elk-1, transforming Elk-1 back to a transcriptionally inactive state. Thus, numerous protein–protein interactions control the activation cycle of Elk-1 and are essential for its biological function.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
- Correspondence: ; Tel.: +49-6841-1626506; Fax: +49-6841-1626500
| | - Tobias M. Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
| | - Lisbeth A. Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Oliver G. Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany; (T.M.B.); (O.G.R.)
| |
Collapse
|
6
|
Backes TM, Langfermann DS, Lesch A, Rössler OG, Laschke MW, Vinson C, Thiel G. Regulation and function of AP-1 in insulinoma cells and pancreatic β-cells. Biochem Pharmacol 2021; 193:114748. [PMID: 34461116 DOI: 10.1016/j.bcp.2021.114748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic β-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic β-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic β-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic β-cells in vivo, the regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Tobias M Backes
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Andrea Lesch
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany
| | - Matthias W Laschke
- Saarland University Medical Faculty, Institute for Clinical and Experimental Surgery, D-66421 Homburg, Germany
| | | | - Gerald Thiel
- Saarland University Medical Faculty, Department of Medical Biochemistry and Molecular Biology, D-66421 Homburg, Germany.
| |
Collapse
|
7
|
Thiel G, Wagner L, Ulrich M, Rössler OG. Immediate-early transcriptional response to insulin receptor stimulation. Biochem Pharmacol 2021; 192:114696. [PMID: 34302794 DOI: 10.1016/j.bcp.2021.114696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/06/2023]
Abstract
Insulin binding to the insulin receptor triggers intracellular signaling cascades involving the activation of protein and lipid kinases. As a result, multiple biological functions of the cells are changed. Here, we analyzed the regulation and signaling cascades leading to insulin-induced activation of the stimulus-responsive transcription factors. For the analyses, we used chromatin-embedded reporter genes having a cellular nucleosomal organisation, and fibroblasts expressing human insulin receptors (HIRcB cells). The results show that stimulation of the insulin receptor induced the expression of the transcription factor Egr-1. Attenuation of Egr-1 promoter activation was observed following expression of a dominant-negative mutant of the ternary complex factor Elk-1. These data were corroborated by experiments showing that insulin receptor stimulation increased the transcriptional activation potential of Elk-1. In addition, the transcriptional activity of AP-1 was significantly elevated in insulin-stimulated HIRcB cells. Expression of the dominant-negative mutant of Elk-1 reduced insulin-induced activation of AP-1, indicating that Elk-1 controls both serum response element and AP-1-regulated transcription. Moreover, we show that stimulation of the insulin receptor activates cyclic AMP response element (CRE)-controlled transcription, involving the transcription factor CREB. Insulin-induced transcription of Elk-1 and CREB-controlled reporter genes was attenuated by overexpression of MAP kinase phosphatase-1 or a constitutively active mutant of calcineurin A, indicating that both phosphatases are part of a negative feedback loop for reducing insulin-mediated gene transcription. Finally, we show that expression of the adenoviral protein E1A selectively reduced CRE-mediated transcription following stimulation of the insulin receptor. These data indicate that insulin-regulated transcription of CRE-containing genes is under epigenetic control.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Lara Wagner
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Myriam Ulrich
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
8
|
Thiel G, Backes TM, Guethlein LA, Rössler OG. Chromatin-embedded reporter genes: Quantification of stimulus-induced gene transcription. Gene 2021; 787:145645. [PMID: 33848575 DOI: 10.1016/j.gene.2021.145645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
Receptors and ion channels expressed on the cell surface ensure proper communication between the cells and the environment. In multicellular organism, stimulus-regulated gene transcription is the basis for communication with the environment allowing individual cells to respond to stimuli such as nutrients, chemical stressors and signaling molecules released by other cells of the organism. Hormones, cytokines, and mitogens bind to receptors and ion channels and induce intracellular signaling cascades involving second messengers, kinases, phosphatases, and changes in the concentration of particular ions. Ultimately, the signaling cascades reach the nucleus. Transcription factors are activated that respond to cellular stimulation and induce changes in gene transcription. Investigating stimulus-transcription coupling combines cell biology with genetics. In this review, we discuss the molecular biology of stimulus-induced transcriptional activators and their responsiveness to extracellular and intracellular signaling molecules and to epigenetic regulators. Stimulus-induced gene expression is measured by several methods, including detection of nuclear translocation of transcription factors, phosphorylation or DNA binding. In this article, we emphasize that the most reliable method to directly measure transcriptional activation involves the use of chromatin-embedded reporter genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany.
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| | - Lisbeth A Guethlein
- Department of Structural Biology and Department of Microbiology & Immunology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University Medical Faculty, D-66421 Homburg, Germany
| |
Collapse
|
9
|
Thiel G, Schmidt T, Rössler OG. Ca 2+ Microdomains, Calcineurin and the Regulation of Gene Transcription. Cells 2021; 10:cells10040875. [PMID: 33921430 PMCID: PMC8068893 DOI: 10.3390/cells10040875] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Ca2+ ions function as second messengers regulating many intracellular events, including neurotransmitter release, exocytosis, muscle contraction, metabolism and gene transcription. Cells of a multicellular organism express a variety of cell-surface receptors and channels that trigger an increase of the intracellular Ca2+ concentration upon stimulation. The elevated Ca2+ concentration is not uniformly distributed within the cytoplasm but is organized in subcellular microdomains with high and low concentrations of Ca2+ at different locations in the cell. Ca2+ ions are stored and released by intracellular organelles that change the concentration and distribution of Ca2+ ions. A major function of the rise in intracellular Ca2+ is the change of the genetic expression pattern of the cell via the activation of Ca2+-responsive transcription factors. It has been proposed that Ca2+-responsive transcription factors are differently affected by a rise in cytoplasmic versus nuclear Ca2+. Moreover, it has been suggested that the mode of entry determines whether an influx of Ca2+ leads to the stimulation of gene transcription. A rise in cytoplasmic Ca2+ induces an intracellular signaling cascade, involving the activation of the Ca2+/calmodulin-dependent protein phosphatase calcineurin and various protein kinases (protein kinase C, extracellular signal-regulated protein kinase, Ca2+/calmodulin-dependent protein kinases). In this review article, we discuss the concept of gene regulation via elevated Ca2+ concentration in the cytoplasm and the nucleus, the role of Ca2+ entry and the role of enzymes as signal transducers. We give particular emphasis to the regulation of gene transcription by calcineurin, linking protein dephosphorylation with Ca2+ signaling and gene expression.
Collapse
|