1
|
Borsoi FT, da Silva GB, Manica D, Bagatini MD, Pastore GM, Arruda HS. Extract of Araçá-Boi and Its Major Phenolic Compound, Trans-Cinnamic Acid, Reduce Viability and Inhibit Migration of Human Metastatic Melanoma Cells. Nutrients 2024; 16:2929. [PMID: 39275245 PMCID: PMC11396791 DOI: 10.3390/nu16172929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Cutaneous melanoma is an aggressive type of skin cancer that is recognized for its high metastatic potential and the challenges it presents in its treatment. There has been increasing interest in plant extracts and their potential applications in melanoma. The present study aimed to investigate the content of individual phenolic compounds in araçá-boi extract, evaluate their antioxidant activity, and explore their effects on cell viability, migration properties, oxidative stress levels, and protein expression in the human metastatic melanoma cell line SK-MEL-28. HPLC-DAD analysis identified 11 phenolic compounds in the araçá-boi extract. Trans-cinnamic acid was the main phenolic compound identified; therefore, it was used alone to verify its contribution to antitumor activities. SK-MEL-28 melanoma cells were treated for 24 h with different concentrations of araçá-boi extract and trans-cinnamic acid (200, 400, 600, 800, and 1600 µg/mL). Both the araçá-boi extract and trans-cinnamic acid reduced cell viability, cell migration, and oxidative stress in melanoma cells. Additionally, they modulate proteins involved in apoptosis and inflammation. These findings suggest the therapeutic potential of araçá-boi extract and its phenolic compounds in the context of melanoma, especially in strategies focused on preventing metastasis. Additional studies, such as the analysis of specific signaling pathways, would be valuable in confirming and expanding these observations.
Collapse
Affiliation(s)
- Felipe Tecchio Borsoi
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina (UDESC), Lages 88520-000, SC, Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina (UFSC), Florianópolis 88040-900, SC, Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul (UFFS), Chapecó 89815-899, SC, Brazil
| | - Glaucia Maria Pastore
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| | - Henrique Silvano Arruda
- Department of Food Science and Nutrition (DEPAN), School of Food Engineering (FEA), University of Campinas (UNICAMP), Monteiro Lobato Street 80, Campinas 13083-862, SP, Brazil
| |
Collapse
|
2
|
Abu-Elfotuh K, Hamdan AME, Mohamed SA, Bakr RO, Ahmed AH, Atwa AM, Hamdan AM, Alanzai AG, Alnahhas RK, Gowifel AMH, Salem MA. The potential anti-Alzheimer's activity of Oxalis corniculata Linn. Methanolic extract in experimental rats: Role of APOE4/LRP1, TLR4/NF-κβ/NLRP3, Wnt 3/β-catenin/GSK-3β, autophagy and apoptotic cues. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117731. [PMID: 38218505 DOI: 10.1016/j.jep.2024.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oxalis corniculata (O. corniculata) is a member of Oxalidaceae family, widely distributed in Asia, Europe, America, and Africa, used extensively as food and its traditional folkloric uses include management of epilepsy, gastric disorders, and neurodegenerative diseases, together with its use in enhancing health. Numerous pharmacological benefits of O. corniculata are linked to its anti-inflammatory and antioxidant abilities. One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD) in which neuroinflammation and oxidative stress are its main pathogenic processes. AIM OF THE STUDY Our research aimed to study the neuroprotective effect of the methanolic extract of Oxalis corniculata Linn. (O. corniculata ME), compared to selenium (Se) against AlCl3-induced AD. MATERIALS AND METHODS Forty male albino rats were allocated into four groups (Gps). Gp I a control group, the rest of the animals received AlCl3 (Gp II-Gp IV). Rats in Gp III and IV were treated with Se and O. corniculata ME, respectively. RESULTS The chemical profile of O. corniculata ME was studied using ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry, allowing the tentative identification of sixty-six compounds, including organic acids, phenolics and others, cinnamic acid and its derivatives, fatty acids, and flavonoids. AlCl3 showed deterioration in short-term memory and brain histological pictures. Our findings showed that O. corniculata ME and selenium helped to combat oxidative stress produced by accumulation of AlCl3 in the brain and in prophylaxis against AD. Thus, Selenium (Se) and O. corniculata ME restored antioxidant defense, via enhancing Nrf2/HO-1 hub, hampered neuroinflammation, via TLR4/NF-κβ/NLRP3, along with dampening apoptosis, Aβ generation, tau hyperphosphorylation, BACE1, ApoE4 and LRP1 levels. Treatments also promoted autophagy and modulated Wnt 3/β-catenin/GSK3β cue. CONCLUSIONS It was noted that O. corniculata ME showed a notable ameliorative effect compared to Se on Nrf2/HO-1, TLR4/NF-κβ/NLRP3, APOE4/LRP1, Wnt 3/β-catenin/GSK-3β and PERK axes.
Collapse
Affiliation(s)
- Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq.
| | - Ahmed M E Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 74191, Saudi Arabia.
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) University, Giza 11787, Egypt.
| | - Amal H Ahmed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt.
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo-Suez Road, Cairo 11829, Egypt.
| | - Amira M Hamdan
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | | | | | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt.
| |
Collapse
|
3
|
Aundhia C, Parmar G, Talele C, Sadhu P, Sen AK, Rana P. Potential of Natural Products as Therapeutic Agents for Inflammatory Diseases. Antiinflamm Antiallergy Agents Med Chem 2024; 23:149-163. [PMID: 38984571 DOI: 10.2174/0118715230307969240614102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024]
Abstract
Inflammation is a complex biological response that plays a pivotal role in various pathological conditions, including inflammatory diseases. The search for effective therapeutic agents has led researchers to explore natural products due to their diverse chemical composition and potential therapeutic benefits. This review comprehensively examines the current state of research on natural products as potential therapeutic agents for inflammatory diseases. The article discusses the antiinflammatory properties of various natural compounds, their mechanisms of action, and their potential applications in managing inflammatory disorders. Additionally, formulation and delivery systems, challenges and future prospects in this field are also highlighted.
Collapse
Affiliation(s)
- Chintan Aundhia
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ghanshyam Parmar
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Chitrali Talele
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Piyushkumar Sadhu
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Ashim Kumar Sen
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| | - Pramojeeta Rana
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara-391760, Gujarat, India
| |
Collapse
|
4
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
5
|
Wang WG, Xiong SQ, Lu J, Zhu LH, Zhang C, Cheng JG, Li Z, Xu WP, Tao LM, Zhang Y. The effects of Spinosad on zebrafish larvae and THP-1 cells: Associated with immune cell damage and NF-kappa B signaling pathway activation. CHEMOSPHERE 2023; 343:140237. [PMID: 37734501 DOI: 10.1016/j.chemosphere.2023.140237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
Spinosad is a highly effective macrolide insecticide with a wide range of applications. However, few studies have been reported on the effects of Spinosad on immune cells. The immune system is an important line of defense in the human body and plays an important role in maintaining the normal functioning of the organism. Meanwhile, macrophages, neutrophils and Thymic T cells are an important component of the immune system. We studied the immunotoxicity of Spinosad using zebrafish and THP-1 cells. In vivo, Spinosad (0-20 μM) did not cause developmental toxicity in zebrafish, but induced damage to immune cells. In vitro, Spinosad (0-20 μM) inhibited THP-1 cells viability and induced mitochondrial damage and oxidative stress production. In further studies, it impaired phagocytosis of THP-1 cells and interfered with lipid metabolism. In addition, we found that Spinosad can promote the formation of the inflammatory body NLRP3 (NLR family, pyrin domain-containing 3) and activate the NF-kappa B (NF-κB) signaling pathway. These results suggest that Spinosad has a potential risk for inducing immunotoxicity. This study has drawn attention to Spinosad-induced immunotoxicity.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shou-Qian Xiong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jin Lu
- Frog Prince (Fujian) Baby&Child Care Product Co.,Ltd, Zhangzhou, Fujian, 363000, China
| | - Lian-Hua Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Jia-Gao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
6
|
Shen Z, Huang D, Jia N, Zhao S, Pei C, Wang Y, Wu Y, Wang X, Shi S, Wang F, He Y, Wang Z. Protective effects of Eleutheroside E against high-altitude pulmonary edema by inhibiting NLRP3 inflammasome-mediated pyroptosis. Biomed Pharmacother 2023; 167:115607. [PMID: 37776644 DOI: 10.1016/j.biopha.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Eleutheroside E (EE) is a primary active component of Acanthopanax senticosus, which has been reported to inhibit the expression of inflammatory genes, but the underlying mechanisms remain elusive. High-altitude pulmonary edema (HAPE) is a severe complication of high-altitude exposure occurring after ascent above 2500 m. However, effective and safe preventative measures for HAPE still need to be improved. This study aimed to elucidate the preventative potential and underlying mechanism of EE in HAPE. Rat models of HAPE were established through hypobaric hypoxia. Mechanistically, hypobaric hypoxia aggravates oxidative stress and upregulates (pro)-inflammatory cytokines, activating NOD-like receptor protein 3 (NLRP3) inflammasome-mediated pyroptosis, eventually leading to HAPE. EE suppressed NLRP3 inflammasome-mediated pyroptosis by inhibiting the nuclear translocation of nuclear factor kappa-Β (NF-κB), thereby protecting the lung from HAPE. However, nigericin (Nig), an NLRP3 activator, partially abolished the protective effects of EE. These findings suggest EE is a promising agent for preventing HAPE induced by NLRP3 inflammasome-mediated pyroptosis.
Collapse
Affiliation(s)
- Zherui Shen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Demei Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Nan Jia
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Sijing Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Chongqing Medical University, Chongqing 400016, China
| | - Xiaomin Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Fei Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yacong He
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China; State Key Laboratory of Southwestern Chinese Medicine Resources School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
7
|
Nani A, Tehami W. Targeting inflammasome pathway by polyphenols as a strategy for pancreatitis, gastrointestinal and liver diseases management: an updated review. Front Nutr 2023; 10:1157572. [PMID: 37743919 PMCID: PMC10513047 DOI: 10.3389/fnut.2023.1157572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Obesity, pancreatitis, cardiovascular, gastrointestinal (GI), and liver diseases have all been linked to the Western lifestyle, characterized by increased unhealthy food consumption and decreased physical activity. Besides obesity and pancreatitis, many GI and liver diseases are associated with inflammation. Inflammasomes are multi-protein complexes that mediate acute and restorative inflammatory pathways. However, many aberrations in inflammasome activity originate from shifts in dietary habits. Evidence reveals that dietary polyphenols effectively modulate inflammasome-associated dysfunctions. With a focus on pancreatitis, GI, and liver disorders, this review set out to provide the most relevant evidence for the therapeutic impact of polyphenols via the regulation of the inflammasome pathway. Overall, flavonoid and non-flavonoid polyphenols maintain intestinal eubiosis, downregulate NLRP3 inflammasome canonical pathway, and restore redox status via upregulating Nrf2/HO-1 signaling. These effects at the level of the intestine, the liver, and the pancreas are associated with decreased systemic levels of key pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6.
Collapse
Affiliation(s)
- Abdelhafid Nani
- Laboratory of Saharan Natural Resources, University of Ahmed Draia, Adrar, Algeria
| | | |
Collapse
|
8
|
Mansoor F, Jabeen A, Shah SF, Simjee SU, Bano S, Faizi S. In-vitro inhibition of NLRP3 inflammasome by 3,6-dihydroxyflavone (3,6-DHF): a therapeutic strategy for the treatment of chronic inflammatory and autoimmune diseases. Mol Cell Biochem 2023; 478:555-570. [PMID: 35951149 DOI: 10.1007/s11010-022-04527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome complex has an important role in immune system and its abnormal activation is associated with the pathogenesis of various inflammatory and auto-immune diseases. The study reveals the anti-inflammatory effects of 3,6-dihydroxyflavone (3,6-DHF). Here, we aimed to determine the inhibitory effects of 3,6-DHF on NLRP3 inflammasome and its associated components, thereby determining the signaling pathways involved in the inhibition. Reactive oxygen species (ROS) and nitric oxide (NO) were quantified by chemiluminescence and Griess methods, respectively. Inflammatory cell model was induced in human leukemic monocytes (THP-1). mRNA levels were estimated through real-time RT-PCR, protein expressions were evaluated by protein slot blot and immunocytochemistry, MTT and alamar blue assays were employed for toxicity studies. The compound 3,6-DHF was found to be the potent inhibitor of NLRP3 inflammasome by targeting the molecules involve in its activation pathway. Anti-inflammatory effects were revealed by inhibition of ROS and NO, reduction in the transcription of caspase-1, ASC, IL-1β and TLR-4 was observed along with the marked inhibition of NLRP3, IL-18, NF-κB and pNF-κB at translational level. 3,6-DHF was non-toxic on normal human fibroblast (BJ) and THP-1 cells and, could be a potential therapeutic agent in NLRP3 inflammasome driven diseases.
Collapse
Affiliation(s)
- Farheen Mansoor
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Samina Bano
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| |
Collapse
|
9
|
Li J, Sheng H, Wang Y, Lai Z, Wang Y, Cui S. Scaffold Hybrid of the Natural Product Tanshinone I with Piperidine for the Discovery of a Potent NLRP3 Inflammasome Inhibitor. J Med Chem 2023; 66:2946-2963. [PMID: 36786612 DOI: 10.1021/acs.jmedchem.2c01967] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Natural products provide inspiration and have proven to be the most valuable source for drug discovery. Herein, we report a scaffold hybrid strategy of Tanshinone I for the discovery of NLRP3 inflammasome inhibitors. 36 compounds were designed and synthesized, and the cheminformatic analyses showed that these compounds occupy a unique chemical space. The biological evaluation identified compounds 5j, 12a, and 12d as NLRP3 inflammasome inhibitors with significant potency, selectivity, and drug-likeness. Mechanistic studies revealed that these Tanshinone I derivatives could inhibit the degradation of the protein NLRP3 and block the oligomerization of NLRP3-induced apoptosis-associated speck-like proteins, thus inhibiting NLRP3 inflammasome activation. In addition, the water solubility, in vitro metabolic stability, and oral bioavailability of these compounds were also greatly improved compared to Tanshinone I. Therefore, this protocol provides a new structural evolution of Tanshinone I and a new class of potent NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Jiaming Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongda Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchao Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Brugge D, Li J, Zamore W. On the Need for Human Studies of PM Exposure Activation of the NLRP3 Inflammasome. TOXICS 2023; 11:202. [PMID: 36976967 PMCID: PMC10059209 DOI: 10.3390/toxics11030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Particulate matter air pollution is associated with blood inflammatory biomarkers, however, the biological pathways from exposure to periferal inflammation are not well understood. We propose that the NLRP3 inflammasome is likely stimulated by ambient particulate matter, as it is by some other particles and call for more research into this pathway.
Collapse
Affiliation(s)
- Doug Brugge
- Department of Public Health Sciences, School of Medicine, University of Connecticut, Farmington, CT 06030, USA
| | - Jianghong Li
- Institute for Community Research, Hartford, CT 06106, USA
| | - Wig Zamore
- Somerville Transportation Equity Partnership, Somerville, MA 02145, USA
| |
Collapse
|
11
|
Pharmacological suppression of NLRP3 inflammasome attenuated the development of autoimmune thyroiditis. Cell Immunol 2023; 384:104659. [PMID: 36608372 DOI: 10.1016/j.cellimm.2022.104659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/20/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Autoimmune thyroiditis (AIT), characterized by an endless inflammatory process of self-destruction, ultimately leads to chronic swelling of the thyroid gland and its dysfunction. Here, we investigated the involvement of the NLR pyrin domain-containing 3 (NLRP3) inflammasome in AIT development. We found that NLRP3 is significantly upregulated in the thyroid of AIT patients and mice with experimental autoimmune thyroiditis (EAT). Pharmacological suppression of NLRP3 using its inhibitor MCC950 suppressed the progression of EAT in vivo. Furthermore, MCC950 treatment significantly reduced the numbers of infiltrating CD4+ and CD8+ T cells in the thyroid. Moreover, MCC950 significantly lowered the amounts of T helper 1 cells, T helper 17 cells, interferon gamma, and interleukin-17A; however, it significantly increased regulatory-T-cell numbers and interleukin-10 levels. These results suggest that suppression of NLRP3 inflammasome activation reverses AIT by inhibiting Th1- and Th17-cell responses and promoting Treg cell responses. Hence, the NLRP3 inflammasome is a promising therapeutic and theragnostic target in AIT. inhibits Th1- and Th17-cell responses and promotes Treg cell responses.
Collapse
|
12
|
Wang X, Wu FP, Huang YR, Li HD, Cao XY, You Y, Meng ZF, Sun KY, Shen XY. Matrine suppresses NLRP3 inflammasome activation via regulating PTPN2/JNK/SREBP2 pathway in sepsis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154574. [PMID: 36610161 DOI: 10.1016/j.phymed.2022.154574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Abnormal activation of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome plays a vital role in the pathogenesis of sepsis. Matrine is proved to show good anti-inflammatory properties, whereas its effect and the underlying molecular machinery on sepsis remains unclear. PURPOSE The aim of this study is to evaluate the effect and mechanism of Matrine on sepsis. STUDY DESIGN THP-1 cells and J774A.1 cells were stimulated by lipopolysaccharide (LPS) with nigericin or adenosine triphosphate (ATP) to establish an in vitro model. Cecal ligation and puncture (CLP)-induced sepsis mouse model was used. Matrine was given by gavage. METHODS To investigate the NLRP3 inflammasome activation, phorbol myristate acetate (PMA)-induced THP-1 cells were first primed with LPS and then stimulated by matrine, followed by treatment with nigericin or ATP. The concentration of interleukin 1β (IL-1β) and interleukin 18 (IL-18) in the cell culture supernatant was detected. The mechanism was explored by cell death assay, immunoblots and immunofluorescence in vitro. C57BL/6 mice were intragastrically administered with matrine for 5 days before CLP. The therapeutic effect of matrine was evaluated by symptoms, pathological analysis, ELISA and RT-qPCR. RESULTS Our results revealed that matrine inhibited IL-1β and IL-18 secretion, suppressed caspase-1 activation, reduced cell death, and blocked ASC speck formation upon NLRP3 inflammasome activation. Furthermore, matrine restrains NLRP3 inflammasome activation as well as pyroptosis through regulating the protein tyrosine phosphatase non-receptor type 2 (PTPN2)/JNK/SREBP2 signaling. Matrine also prominently improved the symptoms and pathological changes with reduced levels of TNF-α, IL-1β, and IL-6 in the lung tissues and serum in a dose-dependent manner. CONCLUSION Matrine effectively alleviates the symptoms of CLP-induced sepsis in mice, restrains NLRP3 inflammasome activation by regulating PTPN2/JNK/SREBP2 signaling pathway, and may become a promising therapeutic agent for sepsis treatment.
Collapse
Affiliation(s)
- Xu Wang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Fu-Peng Wu
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China
| | - Yu-Ran Huang
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Hai-Dong Li
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xin-Yue Cao
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yan You
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhe-Feng Meng
- Minhang Hospital, Fudan University, Shanghai, China.
| | - Ke-Yu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, China.
| | - Xiao-Yan Shen
- Minhang Hospital and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Kim SW, Lee JH, Kim H, Lee SH, Jeong D, Kim HS, Lee CJ, Kim DY, Yook TH, Yang G. Improvement Effect of Soyeom Pharmacopuncture on Gout via NLRP3 Inflammasome Regulation. J Pharmacopuncture 2022; 25:396-403. [PMID: 36628347 PMCID: PMC9806156 DOI: 10.3831/kpi.2022.25.4.396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/24/2022] [Accepted: 12/08/2022] [Indexed: 12/30/2022] Open
Abstract
Objectives Gout is an inflammatory arthritis of the joints and soft tissues occurring due to deposition of monosodium urate (MSU) crystals, which are caused by persistent hyperuricemia. Soyeom pharmacopuncture is one treatment method that has been traditionally used for pain management in Oriental medicine. However, studies on its effect in reducing gout pain have been insufficient. Therefore, we selected Soyeom pharmacopuncture among natural products used in Korea as the new target of our study. Methods The effects of Soyeom pharmacopuncture were examined in mouse models of acute gout induced by injection of MSU crystals into footpads. IL-1β, IL-6, and TNF-α production were examined by immunoblotting and enzyme-linked immunosorbent assay as hallmarks of NLRP3 inflammasome and cytokine activation. Results Soyeom pharmacopuncture reduced foot edema in gout-induced mice, as well as IL-1β, nitrite, IL-6, and TNF-α production. Moreover, Soyeom pharmacopuncture also reduced MSU-induced gout inflammatory gene expressions, specifically those in the NF-kB pathway. Conclusion Pharmacopuncture may serve as a new solution for other inflammatory diseases as well. Through active follow-up studies, we could thoroughly understand the clinical value of Soyeom pharmacopuncture.
Collapse
Affiliation(s)
- Sung Wook Kim
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Jun Ho Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Hyeonjin Kim
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Seong Hoon Lee
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Dajeong Jeong
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Hyuk Soon Kim
- Department of Biomedical Sciences, College of Natural Science and Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Dae Yong Kim
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Tae Han Yook
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea,Corresponding Author Gabsik Yang, Department of Korean Medicine, College of Korean Medicine, Woosuk University, 61 Seonneomeo 3-gil, Wansan-gu, Jeonju 54986, Republic of Korea, Tel: +82-63-290-9030, E-mail:, Tae Han Yook, Department of Korean Medicine, College of Korean Medicine, Woosuk University, 61 Seonneomeo 3-gil, Wansan-gu, Jeonju 54986, Republic of Korea, Tel: +82-63-220-8625, E-mail:
| | - Gabsik Yang
- Department of Korean Medicine, College of Korean Medicine, Woosuk University, Jeonju, Republic of Korea,Corresponding Author Gabsik Yang, Department of Korean Medicine, College of Korean Medicine, Woosuk University, 61 Seonneomeo 3-gil, Wansan-gu, Jeonju 54986, Republic of Korea, Tel: +82-63-290-9030, E-mail:, Tae Han Yook, Department of Korean Medicine, College of Korean Medicine, Woosuk University, 61 Seonneomeo 3-gil, Wansan-gu, Jeonju 54986, Republic of Korea, Tel: +82-63-220-8625, E-mail:
| |
Collapse
|
14
|
Wang D, Wang T, Zhang Z, Li Z, Guo Y, Zhao G, Wu L. Recent advances in the effects of dietary polyphenols on inflammation in vivo: potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
β-caryophyllene and docosahexaenoic acid, isolated or associated, have potential antinociceptive and anti-inflammatory effects in vitro and in vivo. Sci Rep 2022; 12:19199. [PMID: 36357780 PMCID: PMC9649594 DOI: 10.1038/s41598-022-23842-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Inflammation is a complex biological response involving the immune, autonomic, vascular, and somatosensory systems that occurs through the synthesis of inflammatory mediators and pain induction by the activation of nociceptors. Staphylococcus aureus, the main cause of bacteremia, is one of the most common and potent causes of inflammation in public health, with worse clinical outcomes in hospitals. Antioxidant substances have been evaluated as alternative therapeutic analgesics, antioxidants, anti-inflammatory agents, antitumor agents, and bactericides. Among these, we highlight the essential oils of aromatic plants, such as β-caryophyllene (BCP), and polyunsaturated fatty acids, such as docosahexaenoic acid (DHA). The objective of this study was to evaluate the biological activities of BCP-DHA association in in vitro and in vivo experimental models of antinociception and inflammation. To determine the anti-inflammatory effects, monocytes isolated from the peripheral blood of adult male volunteers were infected with methicillin-resistant S. aureus and incubated with treatment for cytokine dosage and gene expression analysis. Antinociceptive effects were observed in the three models when comparing the control (saline) and the BCP-DHA treatment groups. For this purpose, the antinociceptive effects were evaluated in animal models using the following tests: acetic acid-induced abdominal writhing, paw edema induced by formalin intraplantar injection, and von Frey hypernociception. There was a significant reduction in the GM-CSF, TNFα, IL-1, IL-6, and IL-12 levels and an increase in IL-10 levels in the BCP-DHA treatment groups, in addition to negative regulation of the expression of the genes involved in the intracellular inflammatory signaling cascade (IL-2, IL-6, IRF7, NLRP3, and TYK2) in all groups receiving treatment, regardless of the presence of infection. Statistically significant results (p < 0.05) were obtained in the acetic acid-induced abdominal writhing test, evaluation of paw edema, evaluation of paw flinching and licking in the formalin intraplantar injection model, and the von Frey hypernociception test. Therefore, BCP and DHA, either administered individually or combined, demonstrate potent anti-inflammatory and antinociceptive effects.
Collapse
|
16
|
El-Sayed S, Freeman S, Bryce RA. A Selective Review and Virtual Screening Analysis of Natural Product Inhibitors of the NLRP3 Inflammasome. Molecules 2022; 27:molecules27196213. [PMID: 36234744 PMCID: PMC9573361 DOI: 10.3390/molecules27196213] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The NLRP3 inflammasome is currently an exciting target for drug discovery due to its role in various inflammatory diseases; however, to date, no NLRP3 inhibitors have reached the clinic. Several studies have used natural products as hit compounds to facilitate the design of novel selective NLRP3 inhibitors. Here, we review selected natural products reported in the literature as NLRP3 inhibitors, with a particular focus on those targeting gout. To complement this survey, we also report a virtual screen of the ZINC20 natural product database, predicting favored chemical features that can aid in the design of novel small molecule NLRP3 inhibitors.
Collapse
Affiliation(s)
- Sherihan El-Sayed
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sally Freeman
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: ; Tel.: +44-7950403456
| | - Richard A. Bryce
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
17
|
Apigenin and apigenin-7, 4'-O-dioctanoate protect against acrolein-aggravated inflammation via inhibiting the activation of NLRP3 inflammasome and HMGB1/MYD88/NF-κB signaling pathway in Human umbilical vein endothelial cells (HUVEC). Food Chem Toxicol 2022; 168:113400. [PMID: 36055550 DOI: 10.1016/j.fct.2022.113400] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/05/2022] [Accepted: 08/26/2022] [Indexed: 12/29/2022]
Abstract
Exposure to acrolein, one environmental and dietary pollutant, has been shown to cause inflammation. Here, we reported for the first time that acrolein aggravated lipopolysaccharide (LPS)-induced inflammation in Human umbilical vein endothelial cells (HUVEC) as evidenced by the further increased mRNA expression of three pro-inflammatory cytokines, including interleukin 1β (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Acrolein also further increased the generation of reactive oxygen species (ROS) and decreased the activity of glutathione peroxidase (GSH-Px) in LPS-pretreated HUVEC. Moreover, acrolein treatment further increased the nucleotide oligomerization domain-like receptor protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) expression, caspase-1 cleavage, and downstream matures interleukin 18 (IL-18) and IL-1β level in LPS-pretreated HUVEC. Acrolein treatment also further increased the expressions of high-mobility group box 1 (HMGB1), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and phospho-NF-κB P65 (P-P65) in the LPS pre-treated HUVEC. Thus, acrolein aggravated LPS-induced HUVEC inflammation through induction of oxidative stress, and activation of NLRP3 inflammasome and HMGB1/MYD88/NF-κB signaling pathway. In addition, apigenin and apigenin-7, 4'-O-dioctanoate attenuated acrolein-aggravated inflammation by targeting the above signaling pathways. Our findings could help to develop potential therapeutic strategies against acrolein-enhanced inflammation.
Collapse
|
18
|
Huang D, Shi S, Wang Y, Wang X, Shen Z, Wang M, Pei C, Wu Y, He Y, Wang Z. Astragaloside IV alleviates PM2.5-caused lung toxicity by inhibiting inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition in mice. Biomed Pharmacother 2022; 150:112978. [PMID: 35462332 DOI: 10.1016/j.biopha.2022.112978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to particulate matter (PM)2.5 in air pollution is a serious health issue worldwide. At present, effective prevention measures and modalities of treatment for PM2.5-caused lung toxicity are lacking. This study elucidated the protective effect of astragaloside IV (Ast), a natural product from Astragalus membranaceous Bunge, against PM2.5-caused lung toxicity and its possible molecular mechanisms. The mice model of lung toxicity was performed by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with Ast or in combination with nigericin, which is a NOD-like receptor protein 3 (NLRP3) activator. The results revealed that PM2.5 lead significant lung inflammation and promoted the pyroptosis pattern of cell death by upregulating pro-inflammatory cytokines and causing oxidative stress related to the NLRP3 inflammasome-mediated pyroptosis pathway. Ast protected against PM2.5 resulted lung toxicity via suppressing NLRP3 inflammasome-mediated pyroptosis via NLRP3/caspase-1 axis inhibition, thereby protecting the lung against PM2.5-induced lung inflammation and oxidative damage, eventually resulting in prolonged survival in mice. Nigericin partially reversed the protective effects of Ast. The present research provides new insights into the therapeutic potential of Ast, demonstrating that it might be a possible candidate for the prevention of PM2.5-caused respiratory diseases. Targeting the NLRP3 inflammasome might be a novel therapeutic tactic for PM2.5-caused respiratory diseases.
Collapse
Affiliation(s)
- Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
19
|
MCC950 in the treatment of NLRP3-mediated inflammatory diseases: Latest evidence and therapeutic outcomes. Int Immunopharmacol 2022; 106:108595. [DOI: 10.1016/j.intimp.2022.108595] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/22/2022] [Accepted: 01/27/2022] [Indexed: 12/13/2022]
|
20
|
Wang JY, Xing Y, Li MY, Zhang ZH, Jin HL, Ma J, Lee JJ, Zhong Y, Zuo HX, Jin X. Panaxadiol inhibits IL-1β secretion by suppressing zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114715. [PMID: 34648898 DOI: 10.1016/j.jep.2021.114715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of Panax ginseng C.A.Mey. in traditional Chinese medicine dates back to about 5000 years ago thanks to its several beneficial and healing properties. Panaxadiol is a triterpenoid sapogenin monomer found in the roots of Panax ginseng C.A.Mey. and has been proven to have various bio-activities such as anti-inflammatory, anti-tumour and neuroprotective effects. AIM OF THE STUDY The present study focuses on investigating the inflammation inhibitory effect and mechanism of panaxadiol by regulating zinc finger protein 91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs in macrophages. MATERIALS AND METHODS In vitro, the underlying mechanisms by which panaxadiol inhibits ZFP91-regulated IL-1β expression were investigated using molecular docking, western blotting, RT-PCR, ELISA, immunofluorescence, and immunoprecipitation assays. In vivo, colitis was induced by oral administration of DSS in drinking water, and peritonitis was induced by an intraperitoneal injection of alum. Recombinant adeno-associated virus (AAV serotype 9) vector was used to establish ZFP91 knockdown mouse. RESULTS We confirmed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91 in macrophages. Further analysis revealed that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome. Meanwhile, panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of MAPKs. In vivo, prominent anti-inflammatory effects of panaxadiol were demonstrated in a DSS induced acute colitis mouse model and in an alum-induced peritonitis model by suppressing ZFP91-regulated secretion of inflammatory mediators, consistent with the results of the AAV-ZFP91 knockdown in mice. CONCLUSIONS We report for the first time that panaxadiol inhibited IL-1β secretion by suppressing ZFP91-regulated activation of non-canonical caspase-8 inflammasome and MAPKs, providing evidence for anti-inflammation mechanism of panaxadiol treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Jing Ying Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Zhi Hong Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Jung Joon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Yi Zhong
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin Province, China.
| |
Collapse
|
21
|
Zhou GQ, Chen G, Yang J, Qin WY, Ping J. Guizhi-Shaoyao-Zhimu decoction attenuates monosodium urate crystal-induced inflammation through inactivation of NF-κB and NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114707. [PMID: 34619319 DOI: 10.1016/j.jep.2021.114707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/18/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Guizhi-Shaoyao-Zhimu decoction (GSZD), a classical traditional Chinese medicine (TCM) prescription, is used empirically to treat various types of arthritis in TCM clinical practice. However, the underlying mechanisms of GSZD on gouty inflammation are not totally elucidated. AIM OF STUDY The purpose of this study is to investigate the effects of GSZD on peritoneal recruitment of neutrophils, production of proinflammatory mediators, activations of nuclear factor (NF)-κB and nucleotide oligomerization domain-like receptor protein-3 (NLRP3) inflammasome in mice with monosodium urate crystal (MSU)-induced peritonitis (MIP). MATERIALS AND METHODS Mice were intragastrically administered with GSZD for 7 days. After the last administration, mice were intraperitoneally injected with MSU. Peritoneal exudates of mice were harvested, and total peritoneal cells were calculated. Levels of interleukin (IL)-1β, IL-6 and monocyte chemotactic protein (MCP)-1 in peritoneal exudates were tested by enzyme-linked immunosorbent assay. Expressions of IL-1β, NLRP3, cysteinyl aspartate specific proteinase (caspase)-1, apoptosis-associated speck-like protein containing the caspase activation and recruitment domain (ASC), phosphorylated (p)-p65, inhibitor of NF-κB (IκB)α, p-IκB kinase (IKK)β, nuclear p65, p-mitogen-activated protein kinases (MAPKs) in peritoneal cells were analyzed by Western blot. Binding activity of NF-κB to DNA was measured by a Trans AM™ kit for p65. Interaction between ASC and pro-caspase-1 was assessed by co-immunoprecipitation assay. RESULTS Total peritoneal cells, levels of IL-1β, IL-6 and MCP-1 were significantly reduced by GSZD treatment in peritoneal exudates of MIP mice. As for the activation of NF-κB, GSZD treatment significantly reduced the levels of p-p65, p-IKKβ, nuclear p65 and p-MAPKs, enhanced the level of IκBα and abated the binding ability of NF-κB to DNA in peritoneal cells of MIP mice. As for the activation of NLRP3 inflammasome, GSZD treatment significantly reduced the levels of IL-1β, NLRP3 and caspase-1, and alleviated the interaction between ASC and pro-caspase-1 in peritoneal cells of MIP mice. Nevertheless, GSZD didn't remarkably change the level of ASC. CONCLUSIONS These results suggest that GSZD attenuates the MSU-induced inflammation through inhibiting the activations of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Guo-Qing Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Gang Chen
- Key Laboratory of Natural Medicine Research of Chongqing Education Commission, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China.
| | - Juan Yang
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wen-Yi Qin
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Jia Ping
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Inflammasome Inhibitors. Molecules 2021; 26:molecules26226912. [PMID: 34834004 PMCID: PMC8625935 DOI: 10.3390/molecules26226912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
|
23
|
Chen X, Zhang D, Li Y, Wang W, Bei W, Guo J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol Res 2021; 173:105885. [PMID: 34536551 DOI: 10.1016/j.phrs.2021.105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and atherosclerosis have gradually garnered great attention as inflammatory diseases. Previously, the fact that Interleukin-1β (IL-1β) accelerates the development of type 2 diabetes and atherosclerosis has been proved in animal experiments and clinical trials. However, the continued studies found that the effect of IL-1β on type 2 diabetes and atherosclerosis is much more complicated than the negative impact. Nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome, whose activation and assembly significantly affect the release of IL-1β, is a crucial effector activated by a variety of metabolites. The diversity of NLRP3 activation mode is one of the fundamental reasons for the intricate effects on the progression of type 2 diabetes and atherosclerosis, providing many new insights for us to intervene in metabolic diseases. This review focuses on how NLRP3 inflammasome affects the progression of type 2 diabetes and atherosclerosis and what opportunities and challenges it can bring us.
Collapse
Affiliation(s)
- Xu Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Dongxing Zhang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yuping Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weixuan Wang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weijian Bei
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|