1
|
Liu H, Zhang H, IJzerman AP, Guo D. The translational value of ligand-receptor binding kinetics in drug discovery. Br J Pharmacol 2024; 181:4117-4129. [PMID: 37705429 DOI: 10.1111/bph.16241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The translation of in vitro potency of a candidate drug, as determined by traditional pharmacology metrics (such as EC50/IC50 and KD/Ki values), to in vivo efficacy and safety is challenging. Residence time, which represents the duration of drug-target interaction, can be part of a more comprehensive understanding of the dynamic nature of drug-target interactions in vivo, thereby enabling better prediction of drug efficacy and safety. As a consequence, a prolonged residence time may help in achieving sustained pharmacological activity, while transient interactions with shorter residence times may be favourable for targets associated with side effects. Therefore, integration of residence time into the early stages of drug discovery and development has yielded a number of clinical candidates with promising in vivo efficacy and safety profiles. Insights from residence time research thus contribute to the translation of in vitro potency to in vivo efficacy and safety. Further research and advances in measuring and optimizing residence time will bring a much-needed addition to the drug discovery process and the development of safer and more effective drugs. In this review, we summarize recent research progress on residence time, highlighting its importance from a translational perspective.
Collapse
Affiliation(s)
- Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Haoran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Bonifer C, Hanke W, Mühle J, Löhr F, Becker-Baldus J, Nagel J, Schertler GFX, Müller CE, König GM, Hilger D, Glaubitz C. Structural response of G protein binding to the cyclodepsipeptide inhibitor FR900359 probed by NMR spectroscopy. Chem Sci 2024; 15:12939-12956. [PMID: 39148790 PMCID: PMC11323312 DOI: 10.1039/d4sc01950d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The cyclodepsipeptide FR900359 (FR) and its analogs are able to selectively inhibit the class of Gq proteins by blocking GDP/GTP exchange. The inhibitor binding site of Gq has been characterized by X-ray crystallography, and various binding and functional studies have determined binding kinetics and mode of inhibition. Here we investigate isotope-labeled FR bound to the membrane-anchored G protein heterotrimer by solid-state nuclear magnetic resonance (ssNMR) and in solution by liquid-state NMR. The resulting data allowed us to identify regions of the inhibitor which show especially pronounced effects upon binding and revealed a generally rigid binding mode in the cis conformation under native-like conditions. The inclusion of the membrane environment allowed us to show a deep penetration of FR into the lipid bilayer illustrating a possible access mode of FR into the cell. Dynamic nuclear polarization (DNP)-enhanced ssNMR was used to observe the structural response of specific segments of the Gα subunit to inhibitor binding. This revealed rigidification of the switch I binding site and an allosteric response in the α5 helix as well as suppression of structural changes induced by nucleotide exchange due to inhibition by FR. Our NMR studies of the FR-G protein complex conducted directly within a native membrane environment provide important insights into the inhibitors access via the lipid membrane, binding mode, and structural allosteric effects.
Collapse
Affiliation(s)
- Christian Bonifer
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Jonas Mühle
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Jessica Nagel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gebhard F X Schertler
- Division of Biology and Chemistry, Laboratory of Biomolecular Research, Paul Scherrer Institute Forschungsstr. 111, 5232 Villigen PSI Switzerland
| | - Christa E Müller
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn Nussallee 6 53115 Bonn Germany
| | - Daniel Hilger
- Department of Pharmaceutical Chemistry, University of Marburg 35037 Marburg Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
3
|
Seidinger A, Roberts R, Bai Y, Müller M, Pfeil E, Matthey M, Rieck S, Alenfelder J, König GM, Pfeifer A, Kostenis E, Klinke A, Fleischmann BK, Wenzel D. Pharmacological Gq inhibition induces strong pulmonary vasorelaxation and reverses pulmonary hypertension. EMBO Mol Med 2024; 16:1930-1956. [PMID: 38977926 PMCID: PMC11319782 DOI: 10.1038/s44321-024-00096-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease with limited survival. Herein, we propose the pharmacological inhibition of Gq proteins as a novel concept to counteract pulmonary vasoconstriction and proliferation/migration of pulmonary artery smooth muscle cells (PASMCs) in PAH. We demonstrate that the specific pan-Gq inhibitor FR900359 (FR) induced a strong vasorelaxation in large and small pulmonary arteries in mouse, pig, and human subjects ex vivo. Vasorelaxation by FR proved at least as potent as the currently used triple therapy. We also provide in vivo evidence that local pulmonary application of FR prevented right ventricular systolic pressure increase in healthy mice as well as in mice suffering from hypoxia (Hx)-induced pulmonary hypertension (PH). In addition, we demonstrate that chronic application of FR prevented and also reversed Sugen (Su)Hx-induced PH in mice. We also demonstrate that Gq inhibition reduces proliferation and migration of PASMCs in vitro. Thus, our work illustrates a dominant role of Gq proteins for pulmonary vasoconstriction as well as remodeling and proposes direct Gq inhibition as a powerful pharmacological strategy in PH.
Collapse
Affiliation(s)
- Alexander Seidinger
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Richard Roberts
- Pharmacology Research Group, University Hospital of Nottingham, Nottingham, UK
| | - Yan Bai
- Division of Neonatology and Newborn Medicine, Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Marion Müller
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Eva Pfeil
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Michaela Matthey
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany
| | - Sarah Rieck
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular-, Cellular-, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Anna Klinke
- Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr University of Bochum, Bad Oeynhausen, Germany
| | - Bernd K Fleischmann
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniela Wenzel
- Institute of Physiology, Department of Systems Physiology, Medical Faculty, Ruhr University of Bochum, Bochum, Germany.
- Institute of Physiology I, Life&Brain Center, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Voss JH. Recommended Tool Compounds: Application of YM-254890 and FR900359 to Interrogate Gα q/11-Mediated Signaling Pathways. ACS Pharmacol Transl Sci 2023; 6:1790-1800. [PMID: 38093837 PMCID: PMC10714435 DOI: 10.1021/acsptsci.3c00214] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2024]
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are natural products, which inhibit heterotrimeric Gαq/11 proteins with high potency and outstanding selectivity. Historically, pharmacological modulation of Gα proteins was only achieved by treatment with pertussis toxin and cholera toxin, whose application can be tedious and is restricted to the inhibition of Gαi/o proteins and activation of Gαs proteins, respectively. The breakthrough discovery and characterization of YM and FR rendered the closely related Gαq, Gα11, and Gα14 proteins amenable to pharmacological inhibition, and since then, both compounds have become widely used in molecular pharmacology and were also proven to be efficacious in animal models of disease. In the past years, both YM and FR were thoroughly characterized and have substantially contributed to an improved understanding of Gαq/11 signaling on a molecular and cellular level. Yet, the possibilities to interrogate Gαq/11 signaling in complex systems have only been exploited in a very limited number of studies, whose promising initial results warrant further application of YM and FR in basic and translational research. As both compounds have become commercially available as of late, this review focuses on their application in cell-based assays and in vivo systems, highlighting their qualities as tool compounds and providing instructions for their use.
Collapse
Affiliation(s)
- Jan Hendrik Voss
- Department of Physiology and Pharmacology,
Section of Receptor Biology and Signaling, Karolinska Institutet, S-171 65 Stockholm, Sweden
| |
Collapse
|
5
|
Hanke W, Alenfelder J, Liu J, Gutbrod P, Kehraus S, Crüsemann M, Dörmann P, Kostenis E, Scholz M, König GM. The Bacterial G q Signal Transduction Inhibitor FR900359 Impairs Soil-Associated Nematodes. J Chem Ecol 2023; 49:549-569. [PMID: 37453001 PMCID: PMC10725363 DOI: 10.1007/s10886-023-01442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
The cyclic depsipeptide FR900359 (FR) is derived from the soil bacterium Chromobacterium vaccinii and known to bind Gq proteins of mammals and insects, thereby abolishing the signal transduction of their Gq protein-coupled receptors, a process that leads to severe physiological consequences. Due to their highly conserved structure, Gq family of proteins are a superior ecological target for FR producing organisms, resulting in a defense towards a broad range of harmful organisms. Here, we focus on the question whether bacteria like C. vaccinii are important factors in soil in that their secondary metabolites impair, e.g., plant harming organisms like nematodes. We prove that the Gq inhibitor FR is produced under soil-like conditions. Furthermore, FR inhibits heterologously expressed Gαq proteins of the nematodes Caenorhabditis elegans and Heterodera schachtii in the micromolar range. Additionally, in vivo experiments with C. elegans and the plant parasitic cyst nematode H. schachtii demonstrated that FR reduces locomotion of C. elegans and H. schachtii. Finally, egg-laying of C. elegans and hatching of juvenile stage 2 of H. schachtii from its cysts is inhibited by FR, suggesting that FR might reduce nematode dispersion and proliferation. This study supports the idea that C. vaccinii and its excreted metabolome in the soil might contribute to an ecological equilibrium, maintaining and establishing the successful growth of plants.
Collapse
Affiliation(s)
- Wiebke Hanke
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Jun Liu
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Philipp Gutbrod
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
- Bonn International Graduate School - Land and Food, University of Bonn, Katzenburgweg 9, D-53115, Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany
| | - Monika Scholz
- Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - CAESAR, Ludwig-Erhard-Allee 2, D-53175, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| |
Collapse
|
6
|
Voss JH, Crüsemann M, Bartling CR, Kehraus S, Inoue A, König GM, Strømgaard K, Müller CE. Structure-affinity and structure-residence time relationships of macrocyclic Gα q protein inhibitors. iScience 2023; 26:106492. [PMID: 37091255 PMCID: PMC10119753 DOI: 10.1016/j.isci.2023.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/02/2023] [Accepted: 03/21/2023] [Indexed: 04/25/2023] Open
Abstract
The macrocyclic depsipeptides YM-254890 (YM) and FR900359 (FR) are potent inhibitors of Gαq/11 proteins. They are important pharmacological tools and have potential as therapeutic drugs. The hydrogenated, tritium-labeled YM and FR derivatives display largely different residence times despite similar structures. In the present study we established a competition-association binding assay to determine the dissociation kinetics of unlabeled Gq protein inhibitors. Structure-affinity and structure-residence time relationships were analyzed. Small structural modifications had a large impact on residence time. YM and FR exhibited 4- to 10-fold higher residence times than their hydrogenated derivatives. While FR showed pseudo-irreversible binding, YM displayed much faster dissociation from its target. The isopropyl anchor present in FR and some derivatives was essential for slow dissociation. These data provide a basis for future drug design toward modulating residence times of macrocyclic Gq protein inhibitors, which has been recognized as a crucial determinant for therapeutic outcome.
Collapse
Affiliation(s)
- Jan H. Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Christian R.O. Bartling
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Asuka Inoue
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai, Miyagi 980-8578, Japan
| | - Gabriele M. König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Corresponding author
| |
Collapse
|
7
|
Imaging of Gα q Proteins in Mouse and Human Organs and Tissues. Pharmaceutics 2022; 15:pharmaceutics15010057. [PMID: 36678686 PMCID: PMC9865079 DOI: 10.3390/pharmaceutics15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) transfer extracellular signals across cell membranes by activating intracellular heterotrimeric G proteins. Several studies suggested G proteins as novel drug targets for the treatment of complex diseases, e.g., asthma and cancer. Recently, we developed specific radiotracers, [³H]PSB-15900-FR and [³H]PSB-16254-YM, for the Gαq family of G proteins by tritiation of the macrocyclic natural products FR900359 (FR) and YM-254890 (YM). In the present study, we utilized these potent radioligands to perform autoradiography studies in tissues of healthy mice, mouse models of disease, and human tissues. Specific binding was high, while non-specific binding was extraordinarily low, giving nearly identical results for both radioligands. High expression levels of Gαq proteins were detected in healthy mouse organs showing the following rank order of potency: kidney > liver > brain > pancreas > lung > spleen, while expression in the heart was low. Organ sub-structures, e.g., of mouse brain and lung, were clearly distinguishable. Whereas an acute asthma model in mice did not result in altered Gαq protein expressions as compared to control animals, a cutaneous melanoma model displayed significantly increased expression in comparison to healthy skin. These results suggest the future development of Gαq-protein-binding radio-tracers as novel diagnostics.
Collapse
|
8
|
Neumann A, Attah I, Al-Hroub H, Namasivayam V, Müller CE. Discovery of P2Y 2 Receptor Antagonist Scaffolds through Virtual High-Throughput Screening. J Chem Inf Model 2022; 62:1538-1549. [DOI: 10.1021/acs.jcim.1c01235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Isaac Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
9
|
Pistorius D, Buntin K, Weber E, Richard E, Bouquet C, Wollbrett S, Regenass H, Peón V, Böhm M, Kessler R, Gempeler T, Haberkorn A, Wimmer L, Lanshoeft C, Davis J, Hainzl D, D'Alessio JA, Manchado E, Petersen F. Promoter-Driven Overexpression in Chromobacterium vaccinii Facilitates Access to FR900359 and Yields Novel Low Abundance Analogs. Chemistry 2021; 28:e202103888. [PMID: 34878202 DOI: 10.1002/chem.202103888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 11/11/2022]
Abstract
Access to the cyclic depsipeptide FR900359 (FR), a selective Gq/11 protein inhibitor of high pharmacological interest and a potential lead molecule for targeted therapy of cancers with oncogenic GNAQ or GNA11 mutations (encoding Gq and G11 respectively), has been challenging ever since its initial discovery more than three decades ago. The recent discovery of Chromobacterium vaccinii as a cultivable FR producer enables the development of approaches leading to a high-yielding, scalable and sustainable biotechnological process for production of FR, thereby removing this bottleneck. Here we characterize different promoters in exchange of the native promoter of the FR assembly line, resulting in an overexpression mutant with significantly increased production of FR. Thereby, the isolation and structure elucidation of novel FR analogs of low abundance is enabled. Further, we explore the antiproliferative activities of fifteen chromodepsins against uveal melanoma cell lines harboring Gq/11 mutations and characterize the major metabolite of FR formed in plasma.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Caroline Bouquet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Hugo Regenass
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Victor Peón
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Marcel Böhm
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Régis Kessler
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Thomas Gempeler
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Anne Haberkorn
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Laurin Wimmer
- Chemical & Analytical Development, Technical Research & Development, Global Drug Development, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Christian Lanshoeft
- Pharmakokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - John Davis
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Dominik Hainzl
- Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Joseph Anthony D'Alessio
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, 250 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Eusebio Manchado
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056, Basel, Switzerland
| |
Collapse
|