1
|
Chen J, Guo Y, Zheng Y, Chen Z, Xu H, Pan S, Liang X, Zhai L, Guan YQ. Oral glucose-responsive nanoparticles loaded with artemisinin induce pancreatic β-cell regeneration for the treatment of type 2 diabetes. J Colloid Interface Sci 2025; 684:769-782. [PMID: 39823951 DOI: 10.1016/j.jcis.2025.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025]
Abstract
Type 2 diabetes (T2D) is a chronic disease characterized by long-term insulin resistance (IR) and pancreatic β-cell dysfunction. Conventional T2D medication ignores pancreatic β-cell damage. In this study, we designed an oral glucose-responsive nanoparticle for pancreatic β-cell regeneration and treatment of T2D. It was formed by carboxymethyl chitosan (CMC) grafted with 3-aminophenylboronic acid (APBA) as the shell and small-molecule citrus pectin (MCP) spheres encapsulating artemisinin (Art) connected by borate ester bonds. The prepared CMC-APBA wrapped Art-loaded MCP nanoparticles (CAM@Art) had therapeutic effects for the treatment of IR, antioxidant and promotion of pancreatic α-cell differentiation in vitro experiments. In addition, in vivo experiments showed that CAM@Art could reduce blood glucose, oxidative stress and inflammation levels and reverse IR in diabetic rats. Importantly, pancreatic β-cell regeneration was found in islets in vivo. Mechanistically, CAM@Art promotes pancreatic α-cell differentiation by promoting overexpression of the transcription factor Pax4 and ectopic expression of Arx. The results suggest that the present study provides a promising therapeutic strategy for the treatment of diabetic pancreatic β-cell dysfunction.
Collapse
Affiliation(s)
- Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China
| | - Haoming Xu
- School of Life Science, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China
| | - Xuanxi Liang
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631 China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631 China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631 China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400 China.
| |
Collapse
|
2
|
Zhang X, Li M, Gao Q, Kang X, Sun J, Huang Y, Xu H, Xu J, Shu S, Zhuang J, Huang Y. Cutting-edge microneedle innovations: Transforming the landscape of cardiovascular and metabolic disease management. iScience 2024; 27:110615. [PMID: 39224520 PMCID: PMC11366906 DOI: 10.1016/j.isci.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders (MDs) have surfaced as formidable challenges to global health, significantly imperiling human well-being. Recently, microneedles (MNs) have garnered substantial interest within the realms of CVD and MD research. Offering a departure from conventional diagnostic and therapeutic methodologies, MNs present a non-invasive, safe, and user-friendly modality for both monitoring and treatment, thereby marking substantial strides and attaining pivotal achievements in this avant-garde domain, while also unfurling promising avenues for future inquiry. This thorough review encapsulates the latest developments in employing MNs for both the surveillance and management of CVDs and MDs. Initially, it succinctly outlines the foundational principles and approaches of MNs in disease surveillance and therapy. Subsequently, it delves into the pioneering utilizations of MNs in the surveillance and management of CVDs and MDs. Ultimately, this discourse synthesizes and concludes the primary findings of this investigation, additionally prognosticating on the trajectory of MN technology.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Gao
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoya Kang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingyao Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Huang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Xu
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jian Zhuang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Yang J, Huang LJ, Ren TY, Zeng J, Shi YW, Fan JG. Insight into the therapeutic effects of artesunate in relieving metabolic-associated steatohepatitis from transcriptomic and lipidomics analyses. J Dig Dis 2024; 25:490-503. [PMID: 39252399 DOI: 10.1111/1751-2980.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES Artesunate (ART) is a water-soluble derivative of artemisinin, which has shown anti-inflammatory, anti-tumor, and immunomodulating effects. We aimed to investigate the potential therapeutic effects and mechanisms of ART in metabolic dysfunction-associated steatohepatitis (MASH). METHODS The mice were randomly divided into the control group, high-fat, high-cholesterol diet-induced MASH group, and the MASH treated with ART (30 mg/kg once daily) group. Liver enzymes, lipids, and histological features were compared among groups. The molecular mechanisms were studied by transcriptomic and lipidomics analyses of liver tissues. RESULTS The mice of the MASH group had significantly increased hepatic fat deposition and inflammation in terms of biochemical indicators and pathological manifestations than the control group. The ART-treated group had improved plasma liver enzymes and hepatic cholesterol, especially at week 4 of intervention (p < 0.05). A total of 513 differentially expressed genes and 59 differentially expressed lipids were identified in the MASH group and the MASH+ART group. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment test showed that ART regulated glycerolipid metabolism pathway and enhanced fatty acid degradation. Peroxisome proliferator-activated receptor (PPAR)-α acted as a key transcription factor in the treatment of MASH with ART, which was confirmed by cell experiment. CONCLUSIONS ART significantly improved fat deposition and inflammatory manifestations in MASH mice, with potential therapeutic effects. The mechanism of artemisinin treatment for MASH may involve extensive regulation of downstream genes by upstream transcription factors, such as PPAR-α, to restore hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lei Jie Huang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Tian Yi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi Wen Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
4
|
Yang HB, Song JY, Xu C, Li J, Zhang C, Xie S, Teng CL. Interventional effects of Pueraria oral liquid on T2DM rats and metabolomics analysis. Biomed Pharmacother 2024; 175:116780. [PMID: 38781864 DOI: 10.1016/j.biopha.2024.116780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.
Collapse
Affiliation(s)
- Hong-Bo Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Jie-Yu Song
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Xu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Jin Li
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Academy of Testing and Analysis, Guiyang 550014, China.
| | - Chan Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China; Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| | - Sun Xie
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| | - Chun-Li Teng
- Guizhou Jiandee Technology Co., Ltd., Guiyang 550025, China.
| |
Collapse
|
5
|
Bian XB, Yu PC, Yang XH, Han L, Wang QY, Zhang L, Zhang LX, Sun X. The effect of ginsenosides on liver injury in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1184774. [PMID: 37251340 PMCID: PMC10213882 DOI: 10.3389/fphar.2023.1184774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Liver injury is a severe liver lesion caused by various etiologies and is one of the main areas of medical research. Panax ginseng C.A. Meyer has traditionally been used as medicine to treat diseases and regulate body functions. Ginsenosides are the main active components of ginseng, and their effects on liver injury have been extensively reported. Methods: Preclinical studies meeting the inclusion criteria were retrieved from PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Wan Fang Data Knowledge Service Platforms. The Stata 17.0 was used to perform the meta-analysis, meta-regression, and subgroup analysis. Results: This meta-analysis included ginsenosides Rb1, Rg1, Rg3, and compound K (CK), in 43 articles. The overall results showed that multiple ginsenosides significantly reduced alanine aminotransferase (ALT) and aspartate aminotransferase (AST), affected oxidative stress-related indicators, such as superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GSH-Px), and catalase (CAT), and reduced levels of inflammatory factor, such as factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6). Additionally, there was a large amount of heterogeneity in the meta-analysis results. Our predefined subgroup analysis shows that the animal species, the type of liver injury model, the duration of treatment, and the administration route may be the sources of some of the heterogeneity. Conclusion: In a word, ginsenosides have good efficacy against liver injury, and their potential mechanisms of action target antioxidant, anti-inflammatory and apoptotic-related pathways. However, the overall methodological quality of our current included studies was low, and more high-quality studies are needed to confirm their effects and mechanisms further.
Collapse
Affiliation(s)
- Xing-Bo Bian
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Peng-Cheng Yu
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xiao-Hang Yang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Liu Han
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Qi-Yao Wang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Li Zhang
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| | - Lian-Xue Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, Jilin, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, Jilin, Jilin, China
| |
Collapse
|
6
|
Feng H, Wu T, Zhou Q, Li H, Liu T, Ma X, Yue R. Protective Effect and Possible Mechanisms of Artemisinin and Its Derivatives for Diabetic Nephropathy: A Systematic Review and Meta-Analysis in Animal Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5401760. [PMID: 35528521 PMCID: PMC9073547 DOI: 10.1155/2022/5401760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Background Artemisinin and its derivatives have potential antidiabetic effects. There is no evaluation of reported studies in the literature on the treatment of diabetic nephropathy (DN), one of the commonest diabetic microangiopathies, with artemisinins. Here, we aimed to evaluate preclinical evidence for the efficacy and possible mechanisms of artemisinins in reducing diabetic renal injury. Methods We conducted an electronic literature search in fourteen databases from their inception to November 2021. All animal studies assessing the efficacy and safety of artemisinins in DN were included, regardless of publication or language. Overall, 178 articles were screened according to predefined inclusion and exclusion criteria. Finally, 18 eligible articles were included in this systematic review. The SYstematic Review Center for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool was used to assess the risk of bias in the included studies. The primary outcomes were kidney function, proteinuria, and renal pathology. Secondary endpoints included changes in fasting plasma glucose (FPG) levels, body weight, and relevant mechanisms. Results Of the 18 included articles involving 418 animal models of DN, 1, 2, 6, and 9 used dihydroartemisinin, artemether, artesunate, and artemisinin, respectively. Overall, artemisinins reduced indicators of renal function, including blood urea nitrogen (P < 0.00001), serum creatinine (P < 0.00001), and kidney index (P = 0.0001) compared with control group treatment. Measurements of proteinuria (P < 0.00001), microalbuminuria (P < 0.05), and protein excretion (P = 0.0002) suggested that treatment with artemisinins reduced protein loss in animals with DN. Artemisinins may lower blood glucose levels (P = 0.01), but there is a risk of weight gain (P < 0.00001). Possible mechanisms of action of artemisinins include delaying renal fibrosis, reducing oxidative stress, and exerting antiapoptotic and anti-inflammatory effects. Conclusion Available evidence suggests that artemisinins may be protective against renal injury secondary to diabetes in preclinical studies; however, high-quality and long-term trials are needed to reliably determine the balance of benefits and harms.
Collapse
Affiliation(s)
- Haoyue Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingchao Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Second People's Hospital, Chengdu, China
| | - Qi Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Li
- School of Acupuncture and Moxibustion, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianyi Liu
- Chongqing Fuling People's Hospital, Chongqing, China
| | - Xitao Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|