1
|
Dong R, Meng X, Chang H, Lei Y, Hu Y, Yan Y, Song G. Titanium Dioxide Nanoparticles Induce Cell Cycle Arrest and Apoptosis through Inhibiting PI3K/AKT/mTOR Pathway in Spermatogonia. Biol Trace Elem Res 2024; 202:4065-4077. [PMID: 38079059 DOI: 10.1007/s12011-023-03984-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/27/2023] [Indexed: 07/18/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) can result in the reduction of sperm numbers, but the mechanisms have not been well elucidated. The purpose of this study was to investigate the effects of TiO2 NPs on cell cycle and apoptosis in spermatogonia and to explore the role of PI3K/AKT/mTOR signaling pathway in this process. The mouse spermatogonia cell line (GC-1) was treated with TiO2 NPs at different concentrations (0, 25, 50, 75 and 100 μg/mL) for 24 h to detect cell viability, cell cycle, apoptosis, and key proteins related to cell cycle and PI3K/AKT/mTOR signaling pathway. The agonist (IGF-1) and inhibitor (LY294002) of PI3K were used to verify the role of PI3K/AKT/mTOR signaling pathway in cell cycle and apoptosis. TiO2 NPs significantly inhibited cell proliferation, induced cell cycle arrest at G0/G1 phase and resulted in apoptosis. TiO2 NPs downregulated the levels of cyclin-dependent kinases (CDKs) and cyclins, including CDK4, CDK2, Cyclin D1 and Cyclin E1, while upregulated the levels of p21 and p53 proteins. Furthermore, TiO2 NPs inhibited the PI3K/AKT/mTOR signaling pathway by decreasing the levels of p-PI3K, p-AKT and p-mTOR. IGF-1 reversed the G0/G1 phase arrest and apoptosis caused by TiO2 NPs. However, LY294002 aggravated the G0/G1 phase arrest and apoptosis resulting from TiO2 NPs. Collectively, TiO2 NPs induced cell cycle arrest at G0/G1 phase and apoptosis through inhibiting the activation of PI3K/AKT/mTOR pathway, which could be the main reason for the reduction in sperm numbers caused by TiO2 NPs.
Collapse
Affiliation(s)
- Ruoyun Dong
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xiaojia Meng
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmei Chang
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yuzhu Lei
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Yizhong Yan
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine / the Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
2
|
Lyu L, Li H, Lu K, Jiang S, Li H. PAK inhibitor FRAX486 decreases the metastatic potential of triple-negative breast cancer cells by blocking autophagy. Br J Cancer 2024; 130:394-405. [PMID: 38110664 PMCID: PMC10844298 DOI: 10.1038/s41416-023-02523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a unique breast cancer subtype with a high risk of metastasis and recurrence and a poor prognosis. Epithelial-mesenchymal transition (EMT) endows epithelial cells with the ability to move to distant sites, which is essential for the metastasis of TNBC to organs, including the lung. Autophagy, an intracellular degradation process that involves formation of double-layered lipid autophagosomes that transport cytosolic cargoes into lysosomes via autophagosome-lysosome fusion, is involved in various diseases, including cancer and neurodegenerative, metabolic, cardiovascular, and infectious diseases. The relationship between autophagy and cancer has become relatively clear. However, research on pharmacological drugs that block cancer EMT by targeting autophagy is still in the initial stages. Therefore, the re-evaluation of old drugs for their potential in blocking both autophagy and EMT was conducted. METHODS More than 2000 small molecule chemicals were screened for dual autophagy/EMT inhibitors, and FRAX486 was identified as the best candidate inhibitor of autophagy/EMT. The functions of FRAX486 in TNBC metastasis were detected by CCK-8, migration and wound healing assays. The effects of FRAX486 on autophagy and its target PAK2 were determined by immunoblotting, immunofluorescence, immunoprecipitation analysis and transmission electron microscopy. The findings were validated in mouse models. RESULTS Here, we report that FRAX486, a potent P21-activated kinase 2 (PAK2) inhibitor, facilitates TNBC suppression both in vitro and in vivo by blocking autophagy. Mechanistically, FRAX486 inhibits autophagy in TNBC cells by targeting PAK2, leading to the ubiquitination and proteasomal degradation of STX17, which mediates autophagosome-lysosome fusion. The inhibition of autophagy by FRAX486 causes upregulation of the epithelial marker protein E-cadherin and thus suppresses the migration and metastasis of TNBC cells. CONCLUSIONS The effects of FRAX486 on TNBC metastasis suppression were verified to be dependent on PAK2 and autophagy inhibition. Together, our results provide a molecular basis for the application of FRAX486 as a potential treatment for inhibiting the metastasis of TNBC.
Collapse
Affiliation(s)
- Liang Lyu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haiyan Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shu Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Huihui Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Chen C, Yang L, Peng Y, Zhang WJ, Yang XX, Zhou W. Autophagic blockage by metformin-loaded PLGA nanoparticles causes cell cycle arrest of HepG2 cells. Nanomedicine (Lond) 2024; 19:43-58. [PMID: 38197371 DOI: 10.2217/nnm-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aim: To fabricate and characterize metformin-loaded PLGA nanoparticles and investigate their inhibitory effect on HepG2 cells. Materials & methods: The nanoparticles were prepared using a double emulsification method, then characterized and subjected to a series of in vitro assays on HepG2 cells. Results: The nanoparticles were ~277.9 nm in size, and the entrapment efficiency and drug loading of metformin were 31.3 and 14.4%, respectively. In vitro studies suggested that the nanoparticles showed a higher inhibitory effect on HepG2 cells compared with metformin alone, mainly attributed to its blockage of autophagy, and ultimately result in cell cycle inhibition. Conclusion: The metformin-loaded PLGA nanoparticles could inhibit mTOR activity, increase p53 levels and decrease HIF1A levels, which ultimately caused HepG2 cell cycle arrest.
Collapse
Affiliation(s)
- Chen Chen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Li Yang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Ying Peng
- Key Laboratory of Metabolism & Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wen Jie Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Xiao Xiao Yang
- Key Laboratory of Metabolism & Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei Zhou
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| |
Collapse
|
4
|
Hao M, Huang B, Wu R, Peng Z, Luo KQ. The Interaction between Macrophages and Triple-negative Breast Cancer Cells Induces ROS-Mediated Interleukin 1α Expression to Enhance Tumorigenesis and Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302857. [PMID: 37551997 PMCID: PMC10582438 DOI: 10.1002/advs.202302857] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Triple-negative breast cancer (TNBC) has higher mortality than non-TNBC because of its stronger metastatic capacity. Increasing studies reported that TNBC tumors had more macrophage infiltration than non-TNBC tumors, which promoted the metastasis of TNBC cells. However, how TNBC cells become more malignant after interacting with macrophages is less reported. In this study, it is observed that when TNBC cells are co-cultured with macrophages, they display higher viability and stronger metastatic ability than non-TNBC cells. Mechanistic studies reveal that TNBC cells acquired these abilities via interactions with macrophages in three phases. First, within 12 h of co-culture with macrophages, some TNBC cells have significantly elevated levels of reactive oxygen species (ROS), which upregulate interleukin 1α (IL1α) expression in ERK1/2-c-Jun- and NF-κB-dependent manners at 24-48 h. Second, the secreted IL1α bound to IL1R1 activates the ERK1/2-ZEB1-VIM pathway which increases metastasis. Third, IL1α/IL1R1 facilitates its own synthesis and induces the expression of IL1β and IL8 at 72-96 h through the MKK4-JNK-c-Jun and NF-κB signaling pathways. Moreover, a higher level of IL1α is positively correlated with more macrophage infiltration and shorter overall survival in breast cancer patients. Thus, reducing ROS elevation or downregulating IL1α expression can serve as new strategies to decrease metastasis of TNBC.
Collapse
Affiliation(s)
- Meng Hao
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Bin Huang
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Renfei Wu
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Zheng Peng
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
| | - Kathy Qian Luo
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of MacauTaipaMacao SAR99078China
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SAR99078China
| |
Collapse
|
5
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
6
|
Cao Y, Li Y, Liu R, Zhou J, Wang K. Preclinical and Basic Research Strategies for Overcoming Resistance to Targeted Therapies in HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15092568. [PMID: 37174034 PMCID: PMC10177527 DOI: 10.3390/cancers15092568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The amplification of epidermal growth factor receptor 2 (HER2) is associated with a poor prognosis and HER2 gene is overexpressed in approximately 15-30% of breast cancers. In HER2-positive breast cancer patients, HER2-targeted therapies improved clinical outcomes and survival rates. However, drug resistance to anti-HER2 drugs is almost unavoidable, leaving some patients with an unmet need for better prognoses. Therefore, exploring strategies to delay or revert drug resistance is urgent. In recent years, new targets and regimens have emerged continuously. This review discusses the fundamental mechanisms of drug resistance in the targeted therapies of HER2-positive breast cancer and summarizes recent research progress in this field, including preclinical and basic research studies.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Yunjin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Pathology, School of Basic Medical science, Central South University, Changsha 410008, China
| |
Collapse
|
7
|
Zhang Q, Guo Y, Kang M, Lin WH, Wu JC, Yu Y, Li LC, Sang A. p21CIP/WAF1 saRNA inhibits proliferative vitreoretinopathy in a rabbit model. PLoS One 2023; 18:e0282063. [PMID: 36821623 PMCID: PMC9949646 DOI: 10.1371/journal.pone.0282063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
PURPOSE Proliferative vitreoretinopathy (PVR) is a disease process resulting from proliferation of retinal pigment epithelial (RPE) cells in the vitreous and periretinal area, leading to periretinal membrane formation and traction and eventually to postoperative failure after vitreo-retinal surgery for primary rhegmatogenous retinal detachment (RRD). The present study was designed to test the therapeutic potential of a p21CIP/WAF1 (p21) inducing saRNA for PVR. METHODS A chemically modified p21 saRNA (RAG1-40-53) was tested in cultured human RPE cells for p21 induction and for the inhibition of cell proliferation, migration and cell cycle progression. RAG1-40-53 was further conjugated to a cholesterol moiety and tested for pharmacokinetics and pharmacodynamics in rabbit eyes and for therapeutic effects after intravitreal administration in a rabbit PVR model established by injecting human RPE cells. RESULTS RAG1-40-53 (0.3 mg, 1 mg) significantly induced p21 expression in RPE cells and inhibited cell proliferation, the progression of cell cycle at the G0/G1 phase and TGF-β1 induced migration. After a single intravitreal injection into rabbit eyes, cholesterol-conjugated RAG1-40-53 exhibited sustained concentration in the vitreal humor beyond at least 8 days and prevented the progression of established PVR. CONCLUSION p21 saRNA could represent a novel therapeutics for PVR by exerting a antiproliferation and antimigration effect on RPE cells.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- Dalian Medical University, Lvshunkou District, Dalian City, Liaoning Province, China
| | - Yangchen Guo
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- Nantong University, Nantong City, Jiangsu Province, China
| | - Moorim Kang
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Wei-Hsiang Lin
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Jian-Cheng Wu
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
| | - Ying Yu
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| | - Long-Cheng Li
- Ractigen Therapeutics, Nantong City, Jiangsu Province, China
- Institute of Reproductive Medicine, Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital and Medical School of Nantong University, Nantong City, Jiangsu Province, China
- * E-mail: (LCL); (YY); (AS)
| |
Collapse
|