1
|
Yin X, Liu Z, Huanood G, Sawatari H, Shimamori K, Kuragano M, Tokuraku K. Analyzing Amylin Aggregation Inhibition Through Quantum Dot Fluorescence Imaging. Int J Mol Sci 2024; 25:11132. [PMID: 39456914 PMCID: PMC11508876 DOI: 10.3390/ijms252011132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Protein aggregation is associated with various diseases caused by protein misfolding. Among them, amylin deposition is a prominent feature of type 2 diabetes. At present, the mechanism of amylin aggregation remains unclear, and this has hindered the treatment of type 2 diabetes. In this study, we analyzed the aggregation process of amylin using the quantum dot (QD) imaging method. QD fluorescence imaging revealed that in the presence of 100 μM amylin, aggregates appeared after 12 h of incubation, while a large number of aggregates formed after 24 h of incubation, with a standard deviation (SD) value of 5.435. In contrast, 50 μM amylin did not induce the formation of aggregates after 12 h of incubation, although a large number of aggregates were observed after 24 h of incubation, with an SD value of 2.883. Confocal laser microscopy observations revealed that these aggregates were deposited in three dimensions. Transmission electron microscopy revealed that amylin existed as misfolded fibrils in vitro and that QDs were uniformly bound to the amylin fibrils. In addition, using a microliter-scale high-throughput screening (MSHTS) system, we found that rosmarinic acid, a polyphenol, inhibited amylin aggregation at a half-maximal effective concentration of 852.8 μM. These results demonstrate that the MSHTS system is a powerful tool for evaluating the inhibitory activity of amylin aggregation. Our findings will contribute to the understanding of the pathogenesis of amylin-related diseases and the discovery of compounds that may be useful in the treatment and prevention of these diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kiyotaka Tokuraku
- Graduate School of Engineering, Muroran Institute of Technology, Muroran 050-8585, Japan; (X.Y.); (Z.L.); (G.H.); (H.S.); (K.S.); (M.K.)
| |
Collapse
|
2
|
Liu Y, Han X, Zhao M, Liu L, Deng Z, Zhao Q, Yu Y. Functional characterization of polyphenol oxidase OfPPO2 supports its involvement in parallel biosynthetic pathways of acteoside. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:927-941. [PMID: 38872484 DOI: 10.1111/tpj.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.
Collapse
Affiliation(s)
- Yating Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Xiaoyang Han
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Mengya Zhao
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University; Women and Children's Hospital Affiliated to Zhongnan Hospital of Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan, P.R. China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, 530007, China
| |
Collapse
|
3
|
Ashirbaev SS, Brás NF, Frei P, Liu K, Moser S, Zipse H. Redox-Mediated Amination of Pyrogallol-Based Polyphenols. Chemistry 2024; 30:e202303783. [PMID: 38029366 DOI: 10.1002/chem.202303783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Flavonoids are known to covalently modify amyloidogenic peptides by amination reactions. The underlying coupling process between polyphenols and N-nucleophiles is assessed by several in vitro and in silico approaches. The coupling reaction involves a sequence of oxidative dearomatization, amination, and reductive amination (ODARA) reaction steps. The C6-regioselectivity of the product is confirmed by crystallographic analysis. Under aqueous conditions, the reaction of baicalein with lysine derivatives yields C-N coupling as well as hydrolysis products of transient imine intermediates. The observed C-N coupling reactions work best for flavonoids combining a pyrogallol substructure with an electron-withdrawing group attached to the C4a-position. Thermodynamic properties such as bond dissociation energies also highlight the key role of pyrogallol units for the antioxidant ability. Combining the computed electronic properties and in vitro antioxidant assays suggests that the studied pyrogallol-containing flavonoids act by various radical-scavenging mechanisms working in synergy. Multivariate analysis indicates that a small number of descriptors for transient intermediates of the ODARA process generates a model with excellent performance (r=0.93) for the prediction of cross-coupling yields. The same model has been employed to predict novel antioxidant flavonoid-based molecules as potential covalent inhibitors, opening a new avenue to the design of therapeutically relevant anti-amyloid compounds.
Collapse
Affiliation(s)
- Salavat S Ashirbaev
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Natércia F Brás
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Patricia Frei
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Kuangjie Liu
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| | - Simone Moser
- Institute of Pharmacy, University of Innsbruck, Innrain 80-13, 6020, Innsbruck, Austria
| | - Hendrik Zipse
- Department of Chemistry, Ludwig Maximilian University of Munich, Butenandtstraße 5-13, 81377, Munich, Germany
| |
Collapse
|
4
|
Kurano M, Saito Y, Yatomi Y. Comprehensive Analysis of Metabolites in Postmortem Brains of Patients with Alzheimer's Disease. J Alzheimers Dis 2024; 97:1139-1159. [PMID: 38250775 DOI: 10.3233/jad-230942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
BACKGROUND Disturbed metabolism has been proposed as being involved in the pathogenesis of Alzheimer's disease (AD), and more evidence from human AD brains is required. OBJECTIVE In this study, we attempted to identify or confirm modulations in the levels of metabolites associated with AD in postmortem AD brains. METHODS We performed metabolomics analyses using a gas chromatography mass spectrometry system in postmortem brains of patients with confirmed AD, patients with CERAD score B, and control subjects. RESULTS Impaired phosphorylation of glucose and elevation of several tricarboxylic acid (TCA) metabolites, except citrate, were observed and the degree of impaired phosphorylation and elevation in the levels of the TCA cycle metabolites were negatively and positively correlated, respectively, with the clinical phenotypes of AD. The levels of uronic acid pathway metabolites were modulated in AD and correlated positively with the amyloid-β content. The associations of nucleic acid synthesis and amino acid metabolites with AD depended on the kinds of metabolites; in particular, the contents of ribose 5-phosphate, serine and glycine were negatively correlated, while those of ureidosuccinic acid and indole-3-acetic acid were positively modulated in AD. Comprehensive statistical analyses suggested that alterations in the inositol pathway were most closely associated with AD. CONCLUSIONS The present study revealed many novel associations between metabolites and AD, suggesting that some of these might serve as novel potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Makoto Kurano
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
de Matos AM, Menezes R. The (Poly)phenol-Carbohydrate Combination for Diabetes: Where Do We Stand? Nutrients 2023; 15:nu15040996. [PMID: 36839354 PMCID: PMC9965656 DOI: 10.3390/nu15040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
The type 2 diabetes epidemic is real and hardly coming to an end in the upcoming years. The efforts of the scientific community to develop safer and more effective compounds for type 2 diabetes based on the structure of natural (poly)phenols are remarkable and have indeed proven worthwhile after the introduction of gliflozins in clinical practice. However, low-quality reports on the antidiabetic potential of plant-derived lipophilic (poly)phenols continue to pile up in the literature. Many of these compounds continue to be published as promising functional nutrients and antidiabetic pharmaceutical leads without consideration of their Pan-Assay Interference Compounds (PAINS) profile. This evidence-based opinion article conveys the authors' perspectives on the natural (poly)phenol artillery as a valuable and reliable source of bioactive compounds for diabetes. Ultimately, in light of the already established membrane-perturbing behavior of lipophilic (poly)phenols, together with the multiple benefits that may come with the introduction of a C-glucosyl moiety in bioactive compounds, we aim to raise awareness of the importance of contemplating the shift to (poly)phenol-carbohydrate combinations in the development of functional nutrients, as well as in the early stages of antidiabetic drug discovery.
Collapse
Affiliation(s)
- Ana Marta de Matos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence:
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| |
Collapse
|
6
|
Wu L, Madhavan SS, Tan C, Xu B. Hexameric Aggregation Nucleation Core Sequences and Diversity of Pathogenic Tau Strains. Pathogens 2022; 11:pathogens11121559. [PMID: 36558893 PMCID: PMC9784471 DOI: 10.3390/pathogens11121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Tau aggregation associates with multiple neurodegenerative diseases including Alzheimer's disease and rare tauopathies such as Pick's disease, progressive supranuclear palsy, and corticobasal degeneration. The molecular and structural basis of tau aggregation and related diverse misfolded tau strains are not fully understood. To further understand tau-protein aggregation mechanisms, we performed systematic truncation mutagenesis and mapped key segments of tau proteins that contribute to tau aggregation, where it was determined that microtubule binding domains R2 and R3 play critical roles. We validated that R2- or R3-related hexameric PHF6 and PHF6* peptide sequences are necessary sequences that render tau amyloidogenicity. We also determined that the consensus VQI peptide sequence is not sufficient for amyloidogenicity. We further proposed single- and dual-nucleation core-based strain classifications based on recent cryo-EM structures. We analyzed the structural environment of the hexameric peptide sequences in diverse tau strains in tauopathies that, in part, explains why the VQI consensus core sequence is not sufficient to induce tau aggregation. Our experimental work and complementary structural analysis highlighted the indispensible roles of the hexameric core sequences, and shed light on how the interaction environment of these core sequences contributes to diverse pathogenic tau-strains formation in various tauopathy brains.
Collapse
Affiliation(s)
- Ling Wu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Duke/UNC Alzheimer’s Disease Research Center, Durham, NC 27710, USA
| | - Sidharth S. Madhavan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Christopher Tan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bin Xu
- Biomanufacturing Research Institute and Technology Enterprise (BRITE), Department of Pharmaceutical Sciences, North Carolina Central University, Durham, NC 27707, USA
- Duke/UNC Alzheimer’s Disease Research Center, Durham, NC 27710, USA
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence:
| |
Collapse
|