1
|
Nian Q, Lin Y, Zeng J, Zhang Y, Liu R. Multifaceted functions of the Wilms tumor 1 protein: From its expression in various malignancies to targeted therapy. Transl Oncol 2024; 52:102237. [PMID: 39672002 DOI: 10.1016/j.tranon.2024.102237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/28/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024] Open
Abstract
Wilms tumor 1 (WT1) is a multifaceted protein with dual functions, acting both as a tumor suppressor and as a transcriptional activator of oncogenes. WT1 is highly expressed in various types of solid tumors and leukemia, and its elevated expression is associated with a poor prognosis for patients. High WT1 expression also indicates a greater risk of refractory disease or relapse. Consequently, targeting WT1 is an effective strategy for disease prevention and relapse mitigation. Substantial information is available on the pathogenesis of WT1 in various diseases, and several WT1-targeted therapies, including chemical drugs, natural products, and targeted vaccines, are available. We provide a comprehensive review of the mechanisms by which WT1 influences malignancies and summarize the resulting therapeutic approaches thoroughly. This article provides information on the roles of WT1 in the pathogenesis of different cancers and provides insights into drugs and immunotherapies targeting WT1. The goal of this work is to provide a systematic understanding of the current research landscape and of future directions for WT1-related studies.
Collapse
Affiliation(s)
- Qing Nian
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072.
| | - Yan Lin
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, 39 Shierqiaolu, Chengdu, Sichuan, China, 610072
| | - Yanna Zhang
- Department of Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, 32W. Sec. 2, 1st Ring Rd., Qingyang District, Chengdu, Sichuan, China, 610072
| | - Rongxing Liu
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, 183 Xinqiao Road, Chongqing, China, 400000.
| |
Collapse
|
2
|
Niu X, Sun W, Tang X, Chen J, Zheng H, Yang G, Yao G. Bufalin alleviates inflammatory response and oxidative stress in experimental severe acute pancreatitis through activating Keap1-Nrf2/HO-1 and inhibiting NF-κB pathways. Int Immunopharmacol 2024; 142:113113. [PMID: 39276459 DOI: 10.1016/j.intimp.2024.113113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/17/2024]
Abstract
Severe acute pancreatitis (SAP) is a prevalent acute inflammatory disease that is clinically manifested by systemic inflammation dysregulation, resulting in a significantly elevated mortality rate. Bufalin has been verified to have potent pharmacological properties, including analgesic, anti-tumor and anti-inflammatory effects. However, it remains unclear whether bufalin inhibits SAP. Thus, we aim to explore the impact of bufalin in SAP rats and to evaluate the potential mechanisms of action. In addition to analyzing serum biochemistry and pancreatic tissue pathology, we elucidated its mechanisms of action through enzyme-linked immunosorbent assay (ELISA), immunohistochemical analysis, Western blot, and quantitative real-time PCR. The results demonstrated that bufalin dose-dependently reversed the elevation of serum Amylase (Amy) and Lipase (LPS) levels in SAP rats, alleviating pancreatic tissue pathological damage. Bufalin exhibited potent antioxidant effects by reducing malondialdehyde (MDA) levels, decreasing Superoxide dismutase (SOD) and glutathione(GSH) consumption, inhibiting the interaction of Keap1-Nrf2, and increasing HO-1 expression. Furthermore, bufalin inhibited TNF-α, IL-6, IL-1β, p-NF-κB-p65, p-IκBα, and NF-κB-p65 expression, while enhancing IκBα expression, ultimately confirming its anti-inflammatory effects on SAP. In summary, our findings suggest that bufalin exerts anti-inflammatory and antioxidant actions in NaT-SAP rats by inhibiting NF-κB and activating the Keap1-Nrf2/HO-1 pathway. This study represents the inaugural application of bufalin in NaT-induced SAP rats, indicating its potential as an effective therapeutic agent for SAP patients.
Collapse
Affiliation(s)
- Xiaolong Niu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Sun
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaohang Tang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialiang Chen
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaqun Zheng
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guimei Yang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Yao
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Tang Y, Luo J, Qin L, Tang C, Qiu C, Li J, Qin L. Network Pharmacology and Molecular Docking-Based Screening of Immunotherapeutic Targets for HuaChanSu Against Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01305-4. [PMID: 39565543 DOI: 10.1007/s12033-024-01305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Breast cancer has emerged as the primary cause of mortality stemming from malignancies among women. HuaChanSu has demonstrated efficacy in suppressing the progression of various malignancies. However, the specific immune targets and pathways influenced by HuaChanSu within mammary tumors remain elusive. This study is designed to uncover potent monomers and pivotal targets associated with HuaChanSu's anti-breast cancer Immunotherapy. The genes pertinent to HuaChanSu and breast cancer were acquired individually from publicly available databases. Interaction analysis using Cytoscape was conducted on common genes to determine the most suitable targets and crucial constituents of HuaChanSu's Immunotherapy against breast cancer. Following this, molecular docking was employed to validate ligand and receptor binding interactions. Lastly, the identified core genes underwent assessment of immune infiltration. The intersection of HuaChanSu and BC targets yielded a total of 49 differentially expressed genes. Bufalin emerged as the most potent constituent in Immunotherapy. Immunoassay data demonstrated significant correlations (r > 0.03, p < 0.05) between S100B, MMP9, FOS, EGFR, KIT, MME, and immune infiltration within BC. Molecular docking further corroborated the effective binding of Bufalin with immune-related genes. Through network pharmacological validation, we propose the extraction of Bufalin, a monomeric constituent of Huachansu, to exert immunomodulatory effects aimed at inhibiting the progression of breast cancer. Most of the target genes (S100B, BIRC5, MMP9, FOS, EGFR, KIT, and MME) are common targets for immunotherapy.
Collapse
Affiliation(s)
- Yujun Tang
- Guangxi Medical University, Nanning, China
| | - Jie Luo
- Guangxi Medical University, Nanning, China
- HengyangMedicaSchool, University of South China, HengYang, China
| | | | | | - Caixin Qiu
- Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Guangxi Medical University, Nanning, China.
| | | |
Collapse
|
4
|
Li B, Tan S, Yu X, Wang Y. Bufalin: A promising therapeutic drug against the cisplatin-resistance of ovarian cancer by targeting the USP36/c-Myc axis. Biochem Biophys Res Commun 2024; 733:150440. [PMID: 39067250 DOI: 10.1016/j.bbrc.2024.150440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Cisplatin (DPP) resistance is a severe obstacle to ovarian cancer (OC) treatment. Our research aims to uncover the therapeutic effect and the underlying mechanism of Bufalin against DDP resistance. The cell viability, proliferation capacity, γH2AX expression, and apoptosis ratio were quantified via CCK8 assay, colony formation assay, immunofluorescence, and flow cytometry analysis respectively. Xenografting experiment was performed to detect the tumor growth. Molecular docking was applied to mimic the combination of Bufalin and USP36 protein, and Western blotting was conducted to measure the Bax, Bcl-2, γH2AX, USP36, and c-Myc expression. The c-Myc ubiquitination and half-life were detected via ubiquitination assay and cycloheximide chasing assay. Bufalin treatment notably suppressed the cell viability and colony numbers, and increased the apoptosis ratio and γH2AX level in the DDP treatment group. Bufalin therapy also notably inhibited tumor growth, Bax, Bcl-2, and γH2AX expression in vivo. Moreover, the Bufalin application remarkedly reduced the c-Myc expression and half-life and increased the c-Myc ubiquitination via interaction and subsequent down-regulation of USP36. Knockdown of USP36 reversed the antiproliferative effect and proapoptotic capacity of Bufalin therapy in the DDP treatment group. In conclusion, Bufalin can overcome the DDP resistance in vitro and in vivo via the USP36/c-Myc axis, which innovatively suggests the therapeutic potential of Bufalin against DDP resistance ovarian cancer.
Collapse
Affiliation(s)
- Bing Li
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Shu Tan
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Xi Yu
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Wang
- Department of Gynaecology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
5
|
Pan S, Yin L, Liu J, Tong J, Wang Z, Zhao J, Liu X, Chen Y, Miao J, Zhou Y, Zeng S, Xu T. Metabolomics-driven approaches for identifying therapeutic targets in drug discovery. MedComm (Beijing) 2024; 5:e792. [PMID: 39534557 PMCID: PMC11555024 DOI: 10.1002/mco2.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Identification of therapeutic targets can directly elucidate the mechanism and effect of drug therapy, which is a central step in drug development. The disconnect between protein targets and phenotypes under complex mechanisms hampers comprehensive target understanding. Metabolomics, as a systems biology tool that captures phenotypic changes induced by exogenous compounds, has emerged as a valuable approach for target identification. A comprehensive overview was provided in this review to illustrate the principles and advantages of metabolomics, delving into the application of metabolomics in target identification. This review outlines various metabolomics-based methods, such as dose-response metabolomics, stable isotope-resolved metabolomics, and multiomics, which identify key enzymes and metabolic pathways affected by exogenous substances through dose-dependent metabolite-drug interactions. Emerging techniques, including single-cell metabolomics, artificial intelligence, and mass spectrometry imaging, are also explored for their potential to enhance target discovery. The review emphasizes metabolomics' critical role in advancing our understanding of disease mechanisms and accelerating targeted drug development, while acknowledging current challenges in the field.
Collapse
Affiliation(s)
- Shanshan Pan
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Luan Yin
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jie Tong
- Department of Radiology and Biomedical ImagingPET CenterYale School of MedicineNew HavenConnecticutUSA
| | - Zichuan Wang
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xuesong Liu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Yong Chen
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouZhejiangChina
| | - Jing Miao
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Su Zeng
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| | - Tengfei Xu
- Research Center for Clinical PharmacyCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
6
|
Li T, Zhang Y, Li H, Zhang H, Xie J, Li Z, Zhang K, Yu Y, Mei L. Bufalin CaCO 3 Nanoparticles Triggered Pyroptosis through Calcium Overload via Na +/Ca 2+ Exchanger Reverse for Cancer Immunotherapy. NANO LETTERS 2024; 24:12691-12700. [PMID: 39347619 DOI: 10.1021/acs.nanolett.4c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Bufalin is a promising active ingredient in traditional Chinese medicine but has shown limited anticancer applications due to its toxicity. Here, we report BCNPs@gel, a bufalin-containing CaCO3 nanoparticle hydrogel, for enhancing cancer treatment through inducing cellular pyroptosis. Under the tumor microenvironment's low pH conditions, bufalin and Ca2+ are released from the delivery system. Bufalin serves as a direct anticancer drug and a Na+/K+-ATPase inhibitor by forcing the Na+/Ca2+ exchanger to reverse its function, which transfers Ca2+ into cytoplasm and ultimately causes Ca2+ overload-triggered pyroptosis. Meanwhile, we found that bufalin can upregulate PD-L1 in tumor cells. In combination with the PD-1 antibody, the delivery system showed a greater performance during the cancer treatment. BCNPs@gel enhances antitumor efficiency, reduces systemic side effects, extends antitumor mechanism of bufalin, and provides new strategies for inducing pyroptosis and calcium overload in cancer immunotherapy via Na+/K+-ATPase inhibitor. This work provides an application model for numerous other traditional Chinese medicine ingredients.
Collapse
Affiliation(s)
- Tingxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Yitong Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Hanyue Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Hanjie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Juntao Xie
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| | - Zimu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Kai Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Yongkang Yu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
7
|
Wu J, Tang G, Cheng CS, Yeerken R, Chan YT, Fu Z, Zheng YC, Feng Y, Wang N. Traditional Chinese medicine for the treatment of cancers of hepatobiliary system: from clinical evidence to drug discovery. Mol Cancer 2024; 23:218. [PMID: 39354529 PMCID: PMC11443773 DOI: 10.1186/s12943-024-02136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Hepatic, biliary, and pancreatic cancer pose significant challenges in the field of digestive system diseases due to their highly malignant nature. Traditional Chinese medicine (TCM) has gained attention as a potential therapeutic approach with long-standing use in China and well-recognized clinical benefits. In this review, we systematically summarized the clinical applications of TCM that have shown promising results in clinical trials in treating hepatic, biliary, and pancreatic cancer. We highlighted several commonly used TCM therapeutics with validated efficacy through rigorous clinical trials, including Huaier Granule, Huachansu, and Icaritin. The active compounds and their potential targets have been thoroughly elucidated to offer valuable insights into the potential of TCM for anti-cancer drug discovery. We emphasized the importance of further research to bridge the gap between TCM and modern oncology, facilitating the development of evidence-based TCM treatment for these challenging malignancies.
Collapse
Affiliation(s)
- Junyu Wu
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Chien-Shan Cheng
- Department of Digestive Endoscopy Center & Gastroenterology, Shuguang Hospital Affiliated With Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Ranna Yeerken
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Yau-Tuen Chan
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention &, Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Yibin Feng
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| | - Ning Wang
- School of Chinese Medicine, the University of Hong Kong, 3, Sasson Road, Pokfulam, Hong Kong.
| |
Collapse
|
8
|
Fan Y, Zhang W, Iqbal Z, Li X, Lin Z, Wu Z, Li Q, Dong H, Zhang X, Gong P, Liu P. Rod-shaped mesoporous silica nanoparticles reduce bufalin cardiotoxicity and inhibit colon cancer by blocking lipophagy. Lipids Health Dis 2024; 23:318. [PMID: 39334257 PMCID: PMC11437918 DOI: 10.1186/s12944-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bufalin (BA) is a potent traditional Chinese medicine derived from toad venom. It has shown significant antitumor activity, but its use is limited by cardiotoxicity, which necessitates innovative delivery methods, such as rod-shaped mesoporous silica nanoparticles (rMSNs). rMSNs have been extensively employed for reducing drug toxicity and for controlled or targeted drug delivery in tumor therapy. However, their potential in delivering BA has not been completely elucidated. Therefore, in this study, BA-loaded rMSNs (BA-rMSNs) were developed to investigate their potential and mechanism in impairing colon cancer cells. METHODS rMSNs were developed via the sol‒gel method. Drug encapsulation efficiency and loading capacity were determined to investigate the advantages of the rMSN in loading BA. The antiproliferative activities of the BA-rMSNs were investigated via 5-ethynyl-2'-deoxyuridine and CCK-8. To evaluate cell death, Annexin V-APC/PI apoptotic and calcein-AM/PI double staining were performed. Western blotting, oil red O staining, and Nile red solution were employed to determine the ability of BA-rMSNs to regulate lipophagy. RESULTS The diameter of the BA-rMSNs was approximately 60 nm. In vitro studies demonstrated that BA-rMSNs markedly inhibited HCT 116 and HT-29 cell proliferation and induced cell death. In vivo studies revealed that BA-rMSNs reduced BA-mediated cardiotoxicity and enhanced BA tumor targeting. Mechanistic studies revealed that BA-rMSNs blocked lipophagy. CONCLUSIONS rMSNs reduced BA-mediated cardiotoxicity and impaired the growth of colon cancer cells. Mechanistically, antitumor activity depends on lipophagy.
Collapse
Affiliation(s)
- Yibao Fan
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Zoya Iqbal
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xinxin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhiyin Lin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhuolin Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qianyou Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hongxia Dong
- Department of Gastroenterology, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Peng Liu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
9
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
10
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
11
|
Gao Y, Shelling AN, Nolan E, Porter D, Leung E, Wu Z. Liposome-enabled bufalin and doxorubicin combination therapy for trastuzumab-resistant breast cancer with a focus on cancer stem cells. J Liposome Res 2024; 34:489-506. [PMID: 38269490 DOI: 10.1080/08982104.2024.2305866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Breast cancer stem cells (BCSCs) play a key role in therapeutic resistance in breast cancer treatments and disease recurrence. This study aimed to develop a combination therapy loaded with pH-sensitive liposomes to kill both BCSCs and the okbulk cancer cells using trastuzumab-sensitive and resistant human epidermal growth factor receptor 2 positive (HER2+) breast cancer cell models. The anti-BCSCs effect and cytotoxicity of all-trans retinoic acid, salinomycin, and bufalin alone or in combination with doxorubicin were compared in HER2+ cell line BT-474 and a validated trastuzumab-resistant cell line, BT-474R. The most potent anti-BCSC agent was selected and loaded into a pH-sensitive liposome system. The effects of the liposomal combination on BCSCs and bulk cancer cells were assessed. Compared with BT-474, the aldehyde dehydrogenase positive BCSC population was elevated in BT-474R (3.9 vs. 23.1%). Bufalin was the most potent agent and suppressed tumorigenesis of BCSCs by ∼50%, and showed strong synergism with doxorubicin in both BT-474 and BT-474R cell lines. The liposomal combination of bufalin and doxorubicin significantly reduced the BCSC population size by 85%, and inhibited both tumorigenesis and self-renewal, although it had little effect on the migration and invasiveness. The cytotoxicity against the bulk cancer cells was also enhanced by the liposomal combination than either formulation alone in both cell lines (p < 0.001). The liposomal bufalin and doxorubicin combination therapy may effectively target both BCSCs and bulk cancer cells for a better outcome in trastuzumab-resistant HER2+ breast cancer.
Collapse
Affiliation(s)
- Yu Gao
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Faculty of Medical and Health Sciences, School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Emma Nolan
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David Porter
- Auckland Regional Cancer and Blood Service, Auckland City Hospital, Auckland, New Zealand
| | - Euphemia Leung
- Faculty of Medical and Health Sciences, Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Zimei Wu
- Faculty of Medical and Health Sciences, School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Han B, Ma Y, Bao S, Gao H, Gao Y, Guo Q, Li A, Li M, Yu R, Wang H. Inhibiting FGFR by toadflax reverses erlotinib resistance in nonsmall cell lung cancer. Anticancer Drugs 2024:00001813-990000000-00318. [PMID: 39724548 DOI: 10.1097/cad.0000000000001649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
This study aims to demonstrate the effect of toadflax (bufalin) on erlotinib resistance in nonsmall cell lung cancer (NSCLC) by inhibiting the fibroblast growth factor receptor (FGFR). The microfluidic mobility transferase and caliper mobility-shift assays were employed to detect the FGFR inhibition by bufalin and the binding reversibility. Further, the inhibitory effects of bufalin were determined in HCC827 and HCC827/ER cells in vitro, investigating relative FGFR overexpression by quantitative reverse transcriptase-PCR (RT-qPCR) and FGFR downstream proteins, that is, FGFR substrate 2 (FRS2), extracellular signal-regulated kinase (ERK), and S6 by western blot analysis. Finally, HCC827/ER-inoculated xenograft tumors were constructed to observe the effects of bufalin and bufalin + erlotinib intervention on tumor growth. Bufalin inhibited FGFR by reversibly binding to FGFR1. In addition, the western blot analysis indicated a significant reduction in the expression levels of FGFR, FRS2, ERK, and S6 proteins in HCC827 and HCC827/ER cells, increasing the expression levels of apoptotic caspase-3 and poly-(ADP-ribose) polymerase proteins. Bufalin + erlotinib combination significantly inhibited the apoptosis of HCC827/ER cells and subsequent tumor growth in vivo. In addition, FGFR overexpression significantly reversed the sensitivity of bufalin to HCC827/ER cells, promoting the value-addition of HCC827/ER cells. Further, bufalin + erlotinib significantly reduced the growth of erlotinib-resistant HCC827/ER tumors, induced apoptosis, and inhibited the expression of FGFR and p-ERK proteins. These findings indicated that bufalin could reverse the erlotinib resistance in NSCLC by inhibiting the FGFR expression.
Collapse
Affiliation(s)
- Bateer Han
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Ying Ma
- Department of Thoracic Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia Autonomous Region, China
| | - Shuguang Bao
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Hui Gao
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Yanqing Gao
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Qiang Guo
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Ao Li
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Meitao Li
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Rong Yu
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| | - Hongwei Wang
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital
| |
Collapse
|
13
|
Zorrón M, Cabrera AL, Sharma R, Radhakrishnan J, Abbaszadeh S, Shahbazi M, Tafreshi OA, Karamikamkar S, Maleki H. Emerging 2D Nanomaterials-Integrated Hydrogels: Advancements in Designing Theragenerative Materials for Bone Regeneration and Disease Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403204. [PMID: 38874422 PMCID: PMC11336986 DOI: 10.1002/advs.202403204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Indexed: 06/15/2024]
Abstract
This review highlights recent advancements in the synthesis, processing, properties, and applications of 2D-material integrated hydrogels, with a focus on their performance in bone-related applications. Various synthesis methods and types of 2D nanomaterials, including graphene, graphene oxide, transition metal dichalcogenides, black phosphorus, and MXene are discussed, along with strategies for their incorporation into hydrogel matrices. These composite hydrogels exhibit tunable mechanical properties, high surface area, strong near-infrared (NIR) photon absorption and controlled release capabilities, making them suitable for a range of regeneration and therapeutic applications. In cancer therapy, 2D-material-based hydrogels show promise for photothermal and photodynamic therapies, and drug delivery (chemotherapy). The photothermal properties of these materials enable selective tumor ablation upon NIR irradiation, while their high drug-loading capacity facilitates targeted and controlled release of chemotherapeutic agents. Additionally, 2D-materials -infused hydrogels exhibit potent antibacterial activity, making them effective against multidrug-resistant infections and disruption of biofilm generated on implant surface. Moreover, their synergistic therapy approach combines multiple treatment modalities such as photothermal, chemo, and immunotherapy to enhance therapeutic outcomes. In bio-imaging, these materials serve as versatile contrast agents and imaging probes, enabling their real-time monitoring during tumor imaging. Furthermore, in bone regeneration, most 2D-materials incorporated hydrogels promote osteogenesis and tissue regeneration, offering potential solutions for bone defects repair. Overall, the integration of 2D materials into hydrogels presents a promising platform for developing multifunctional theragenerative biomaterials.
Collapse
Affiliation(s)
- Melanie Zorrón
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Agustín López Cabrera
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Riya Sharma
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
| | - Janani Radhakrishnan
- Department of BiotechnologyNational Institute of Animal BiotechnologyHyderabad500 049India
| | - Samin Abbaszadeh
- Department of Pharmacology and ToxicologySchool of PharmacyUrmia University of Medical SciencesUrmia571478334Iran
| | - Mohammad‐Ali Shahbazi
- Department of Biomaterials and Biomedical TechnologyUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1GroningenAV, 9713The Netherlands
| | - Omid Aghababaei Tafreshi
- Microcellular Plastics Manufacturing LaboratoryDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
- Smart Polymers & Composites LabDepartment of Mechanical and Industrial EngineeringUniversity of TorontoTorontoOntarioM5S 3G8Canada
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation11570 W Olympic BoulevardLos AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryFaculty of Mathematics and Natural SciencesUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| |
Collapse
|
14
|
Mhaidly N, Barake N, Trelcat A, Journe F, Saussez S, Descamps G. Bufalin Suppresses Head and Neck Cancer Development by Modulating Immune Responses and Targeting the β-Catenin Signaling Pathway. Cancers (Basel) 2024; 16:2739. [PMID: 39123466 PMCID: PMC11311268 DOI: 10.3390/cancers16152739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Bufalin, a cardiotonic steroid derived from the Chinese toad (Bufo gargarizans), has demonstrated potent anticancer properties across various cancer types, positioning it as a promising therapeutic candidate. However, comprehensive mechanistic studies specific to head and neck cancers have been lacking. Our study aimed to bridge this gap by investigating bufalin's mechanisms of action in head and neck cancer cells. Using several methods, such as Western blotting, immunofluorescence, and flow cytometry, we observed bufalin's dose-dependent reduction in cell viability, disruption of cell membrane integrity, and inhibition of colony formation in both HPV-positive and HPV-negative cell lines. Bufalin induces apoptosis through the modulation of apoptosis-related proteins, mitochondrial function, and reactive oxygen species production. It also arrests the cell cycle at the G2/M phase and attenuates cell migration while affecting epithelial-mesenchymal transition markers and targeting pivotal signaling pathways, including Wnt/β-catenin, EGFR, and NF-κB. Additionally, bufalin exerted immunomodulatory effects by polarizing macrophages toward the M1 phenotype, bolstering antitumor immune responses. These findings underscore bufalin's potential as a multifaceted therapeutic agent against head and neck cancers, targeting essential pathways involved in proliferation, apoptosis, cell cycle regulation, metastasis, and immune modulation. Further research is warranted to validate these mechanisms and optimize bufalin's clinical application.
Collapse
Affiliation(s)
- Nour Mhaidly
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Noura Barake
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Anne Trelcat
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Fabrice Journe
- Laboratory of Clinical and Experimental Oncology (LOCE), Institute Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium;
| | - Sven Saussez
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| | - Géraldine Descamps
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars, 8, 7000 Mons, Belgium; (N.M.); (N.B.); (A.T.); (S.S.)
| |
Collapse
|
15
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
16
|
Kaur G, Devi S, Sharma A, Sood P. Pharmacological insights and role of bufalin (bufadienolides) in inflammation modulation: a narrative review. Inflammopharmacology 2024:10.1007/s10787-024-01517-9. [PMID: 39012431 DOI: 10.1007/s10787-024-01517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Bufadienolides, specifically bufalin, have garnered attention for their potential therapeutic application in modulating inflammatory pathways. Bufalin is derived from toad venom and exhibits promising anti-inflammatory properties. Its anti-inflammatory effects have been demonstrated by influencing crucial signaling pathways like NF-B, MAPK, and JAK-STAT, resulting in the inhibition of pro-inflammatory substances like cytokines, chemokines, and adhesion molecules. Bufalin blocks inflammasome activation and reduces oxidative stress, hence increasing its anti-inflammatory properties. Bufalin has shown effectiveness in reducing inflammation-related diseases such as cancer, cardiovascular problems, and autoimmune ailments in preclinical investigations. Furthermore, producing new approaches of medication delivery and combining therapies with bufalin shows potential for improving its effectiveness and reducing adverse effects. This review explores the pharmacological effects and mechanistic approaches of bufalin as an anti-inflammatory agent, which further highlights its potential for therapy and offers the basis for further study on its therapeutic application in inflammation-related disorders.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Akhil Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Parul Sood
- Chitkara University School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, India
| |
Collapse
|
17
|
Wang H, Bo W, Feng X, Zhang J, Li G, Chen Y. Strategies and Recent Advances on Improving Efficient Antitumor of Lenvatinib Based on Nanoparticle Delivery System. Int J Nanomedicine 2024; 19:5581-5603. [PMID: 38882543 PMCID: PMC11177867 DOI: 10.2147/ijn.s460844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
Lenvatinib (LVN) is a potentially effective multiple-targeted receptor tyrosine kinase inhibitor approved for treating hepatocellular carcinoma, metastatic renal cell carcinoma and thyroid cancer. Nonetheless, poor pharmacokinetic properties including poor water solubility and rapid metabolic, complex tumor microenvironment, and drug resistance have impeded its satisfactory therapeutic efficacy. This article comprehensively reviews the uses of nanotechnology in LVN to improve antitumor effects. With the characteristic of high modifiability and loading capacity of the nano-drug delivery system, an active targeting approach, controllable drug release, and biomimetic strategies have been devised to deliver LVN to target tumors in sequence, compensating for the lack of passive targeting. The existing applications and advances of LVN in improving therapeutic efficacy include improving longer-term efficiency, achieving higher efficiency, combination therapy, tracking and diagnosing application and reducing toxicity. Therefore, using multiple strategies combined with photothermal, photodynamic, and immunoregulatory therapies potentially overcomes multi-drug resistance, regulates unfavorable tumor microenvironment, and yields higher synergistic antitumor effects. In brief, the nano-LVN delivery system has brought light to the war against cancer while at the same time improving the antitumor effect. More intelligent and multifunctional nanoparticles should be investigated and further converted into clinical applications in the future.
Collapse
Affiliation(s)
- Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Jinliang Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Ge Li
- Department of Emergency, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yan Chen
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
18
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
19
|
Zhang H, Wei S, Hu Y, Zhang Y, Yao H, Qi G, Adu-Frimpong M, Sun C. Influence of Different Ratios of DSPE-PEG2k on Ester Prodrug Self-Assembly Nanoparticles for Cell Migration and Proliferation Suppression. Int J Nanomedicine 2024; 19:2807-2821. [PMID: 38525014 PMCID: PMC10959298 DOI: 10.2147/ijn.s446741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
Background Bufalin (BFL, an active anti-tumor compound derived from toad venom) is limited in its application due to high toxicity and rapid metabolism of the cardiotonic steroid. Ester prodrug self-assembly nanoparticles have shown significant improved effects in addressing the above-mentioned issues. Methods An ester bond was formed between linoleic acid and bufalin to synthesize linoleic acid-bufalin prodrug (LeB). The self-assembly nanoparticles (LeB-PSNs) containing different mass ratios of DSPE-PEG2k and prodrug (6:4, 7:3, 8:2, 9:1 and 10:0) were prepared via co-precipitation method and defined as 6:4-PSNs, 7:3-PSNs, 8:2-PSNs, 9:1-PSNs and LeB-PSNs, respectively. Further, the characterization (particle size, zeta potential, surface morphology and stability) of the nanoparticles was carried out. Finally, we evaluated the impact of different ratios of DSPE-PEG2k on the hydrolysis rate, cytotoxicity, cellular uptake, cell migration and proliferation suppression potential of the prodrug nanoparticles. Results The linoleic acid-bufalin prodrug (LeB) was successfully synthesized. Upon the addition of DSPE-PEG2k at different weight ratios, both particle size and polydispersity index (PDI) significantly decreased, while the zeta potential increased remarkably. No significant differences in particle size, PDI and Zeta potential were observed among the 9:1, 8:2 and 7:3 PSNs. Notably, the 8:2 (w/w) DSPE-PEG2k nanoparticles exhibited superior stability, hydrolysis and cellular uptake rates, along with efficient cell cytotoxicity, cell migration and proliferation suppression. Conclusion These findings indicate that DSPE-PEG2k could improve the performance of BFL prodrug nanoparticles, namely enhancing stability and achieving adaptive drug release by modulating the hydrolysis rate of esterase. This study therefore provides more opportunities for the development of BFL application.
Collapse
Affiliation(s)
- Huiyun Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Shunru Wei
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yunfei Hu
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Yu Zhang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Hao Yao
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Gang Qi
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, 224003, People’s Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, UK-0215-5321, Ghana
| | - Congyong Sun
- Department of Central Laboratory, The Affiliated Huaian No.1 People’s Hospital, Nanjing Medical University, Huai’an, Jiangsu, 223300, People’s Republic of China
| |
Collapse
|
20
|
Tang D, Feng Y, Lu J, Jia L, Shen D, Shang J, Chen T, Yin P, Chen J, Wang J. Global trends in bufalin application research for cancer from 2003 to 2022: A bibliometric and visualised analysis. Heliyon 2024; 10:e24395. [PMID: 38268819 PMCID: PMC10803919 DOI: 10.1016/j.heliyon.2024.e24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Background Bufalin, the main active ingredient of the traditional Chinese medicine huachansu, is used in the clinical treatment of colorectal cancer and has multiple effects, including the inhibition of migratory invasion, reversal of multi-drug resistance, induction of apoptosis and differentiation, and inhibition of angiogenesis. Methods We collected relevant articles on bufalin from 2003 to 2022 using the Web Science platform, and analysed the information using VOSviewer, CiteSpace, and Microsoft Excel to categorise and summarise the publications over the past 20 years. Results We collected 371 papers, with a steady increase in the number of articles published globally. China has the highest number of published articles, whereas Japan has the highest number of citations. Currently, there is considerable enthusiasm for investigating the anti-tumour mechanism of bufalin and optimising drug delivery systems for its administration. Conclusion For the first time, we present a comprehensive overview of papers published worldwide on bufalin over the past two decades and the progress of its application in tumour therapy. We summarised the key authors, institutions, and countries that have contributed to the field and the potential of bufalin for the treatment of cancer. This will help other researchers obtain an overview of progress in the field, enhance collaboration and knowledge sharing, and promote future research on bufalin.
Collapse
Affiliation(s)
- Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Linlin Jia
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Dongxiao Shen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing Shang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Peihao Yin
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinbao Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
21
|
Huang E, Wang X, Chen L. Regulated Cell Death in Endometriosis. Biomolecules 2024; 14:142. [PMID: 38397379 PMCID: PMC10886833 DOI: 10.3390/biom14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Regulated cell death (RCD) represents a distinct mode of cell demise, differing from accidental cell death (ACD), characterized by specific signaling cascades orchestrated by diverse biomolecules. The regular process of cell death plays a crucial role in upholding internal homeostasis, acting as a safeguard against biological or chemical damage. Nonetheless, specific programmed cell deaths have the potential to activate an immune-inflammatory response, potentially contributing to diseases by enlisting immune cells and releasing pro-inflammatory factors. Endometriosis, a prevalent gynecological ailment, remains incompletely understood despite substantial progress in unraveling associated signaling pathways. Its complexity is intricately tied to the dysregulation of inflammatory immune responses, with various RCD processes such as apoptosis, autophagic cell death, pyroptosis, and ferroptosis implicated in its development. Notably, limited research explores the association between endometriosis and specific RCD pathways like pyroptosis and cuproptosis. The exploration of regulated cell death in the context of endometriosis holds tremendous potential for further advancements. This article thoroughly reviews the molecular mechanisms governed by regulated cell death and their implications for endometriosis. A comprehensive understanding of the regulated cell death mechanism in endometriosis has the potential to catalyze the development of promising therapeutic strategies and chart the course for future research directions in the field.
Collapse
Affiliation(s)
| | | | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.H.)
| |
Collapse
|
22
|
Yao M, Oduro PK, Akintibu AM, Yan H. Modulation of the vitamin D receptor by traditional Chinese medicines and bioactive compounds: potential therapeutic applications in VDR-dependent diseases. Front Pharmacol 2024; 15:1298181. [PMID: 38318147 PMCID: PMC10839104 DOI: 10.3389/fphar.2024.1298181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The Vitamin D receptor (VDR) is a crucial nuclear receptor that plays a vital role in various physiological functions. To a larger extent, the genomic effects of VDR maintain general wellbeing, and its modulation holds implications for multiple diseases. Current evidence regarding using vitamin D or its synthetic analogs to treat non-communicable diseases is insufficient, though observational studies suggest potential benefits. Traditional Chinese medicines (TCMs) and bioactive compounds derived from natural sources have garnered increasing attention. Interestingly, TCM formulae and TCM-derived bioactive compounds have shown promise in modulating VDR activities. This review explores the intriguing potential of TCM and bioactive compounds in modulating VDR activity. We first emphasize the latest information on the genetic expression, function, and structure of VDR, providing a comprehensive understanding of this crucial receptor. Following this, we review several TCM formulae and herbs known to influence VDR alongside the mechanisms underpinning their action. Similarly, we also discuss TCM-based bioactive compounds that target VDR, offering insights into their roles and modes of action.
Collapse
Affiliation(s)
- Minghe Yao
- Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Zhengzhou, China
| | - Patrick Kwabena Oduro
- Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, NY, United States
| | - Ayomide M. Akintibu
- School of Community Health and Policy, Morgan State University, Baltimore, MD, United States
| | - Haifeng Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
23
|
Soumoy L, Genbauffe A, Mouchart L, Sperone A, Trelcat A, Mukeba-Harchies L, Wells M, Blankert B, Najem A, Ghanem G, Saussez S, Journe F. ATP1A1 is a promising new target for melanoma treatment and can be inhibited by its physiological ligand bufalin to restore targeted therapy efficacy. Cancer Cell Int 2024; 24:8. [PMID: 38178183 PMCID: PMC10765859 DOI: 10.1186/s12935-023-03196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
Despite advancements in treating metastatic melanoma, many patients exhibit resistance to targeted therapies. Our study focuses on ATP1A1, a sodium pump subunit associated with cancer development. We aimed to assess ATP1A1 prognostic value in melanoma patients and examine the impact of its ligand, bufalin, on melanoma cell lines in vitro and in vivo. High ATP1A1 expression (IHC) correlated with reduced overall survival in melanoma patients. Resistance to BRAF inhibitor was linked to elevated ATP1A1 levels in patient biopsies (IHC, qPCR) and cell lines (Western blot, qPCR). Additionally, high ATP1A1 mRNA expression positively correlated with differentiation/pigmentation markers based on data from The Cancer Genome Atlas (TCGA) databases and Verfaillie proliferative gene signature analysis. Bufalin specifically targeted ATP1A1 in caveolae, (proximity ligation assay) and influenced Src phosphorylation (Western blot), thereby disrupting multiple signaling pathways (phosphokinase array). In vitro, bufalin induced apoptosis in melanoma cell lines by acting on ATP1A1 (siRNA experiments) and, in vivo, significantly impeded melanoma growth using a nude mouse xenograft model with continuous bufalin delivery via an osmotic pump. In conclusion, our study demonstrates that ATP1A1 could serve as a prognostic marker for patient survival and a predictive marker for response to BRAF inhibitor therapy. By targeting ATP1A1, bufalin inhibited cell proliferation, induced apoptosis in vitro, and effectively suppressed tumor development in mice. Thus, our findings strongly support ATP1A1 as a promising therapeutic target, with bufalin as a potential agent to disrupt its tumor-promoting activity.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium.
- Institut National de la Santé et de la Recherche Médicale (INSERM) U981, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Aline Genbauffe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Lena Mouchart
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Alexandra Sperone
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Anne Trelcat
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Léa Mukeba-Harchies
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Mathilde Wells
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Bertrand Blankert
- Laboratory of Pharmaceutical Analysis, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
| | - Ahmad Najem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - Ghanem Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium
- Department of Otolaryngology and Head and Neck Surgery, CHU Saint-Pierre, 1000, Brussels, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000, Mons, Belgium.
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium.
| |
Collapse
|
24
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
25
|
Meng X, Liu J, Zheng Q, Li S, Xiao H, Huang J, Ma L, Liu Y, Tang J. Gold-Crowned Bismuth-Based Nanocomposites for Sonodynamic, Photothermal, and Chemotherapeutic Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58041-58053. [PMID: 38038271 DOI: 10.1021/acsami.3c08071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Conventional inorganic semiconductor nanoparticles have emerged as photothermal agents in photothermal therapy and as sonosensitizers in sonodynamic therapy. However, their weak drug-loading capabilities and the deficient techniques for multifunctional inorganic nanoparticles limit their applications. A bismuth-based gold-crowned nanocomposite (BACN) was rationally designed and successfully synthesized and could then be used to prepare nanoplatforms with excellent biocompatibilities for synergistic therapy and real-time imaging. Because of the constituent gold nanoparticles and pyridine, the nanoplatforms functioned as drug delivery vehicles, ultrasonically activated sonosensitizers, and photothermal agents. The BACNs exhibited excellent photothermal conversion efficiency (79.1%) in the second near-infrared biowindow (1064 nm). Cellular and mouse experiments demonstrated that under laser and ultrasound irradiation bufalin-loaded BACNs significantly reduced cancer cell counts and completely eradicated tumors, along with great therapeutic biosafety and no discernible recurrence. Additionally, BACNs were also used as contrast agents in computed tomography-photoacoustic imaging. The versatile BACN nanoplatform with multitreatment effects and trimodal imaging properties shows immense potential as an antitumor nanotherapeutic system.
Collapse
Affiliation(s)
- Xiangrui Meng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingwen Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiao Zheng
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Songtao Li
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hang Xiao
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ju Huang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Ma
- College of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yiyao Liu
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianyuan Tang
- Traditional Chinese Medicine (TCM) Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Clinical School of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
26
|
Zhang H, Dong X, Ding X, Liu G, Yang F, Song Q, Sun H, Chen G, Li S, Li Y, Wang M, Guo T, Zhang Z, Li B, Yang L. Bufalin targeting CAMKK2 inhibits the occurrence and development of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. J Transl Med 2023; 21:900. [PMID: 38082327 PMCID: PMC10714474 DOI: 10.1186/s12967-023-04613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) accounts for about 15% of primary liver cancer, and the incidence rate has been rising in recent years. Surgical resection is the best treatment for ICC, but the 5-year survival rate is less than 30%. ICC signature genes are crucial for the early diagnosis of ICC, so it is especially important to find its signature genes and therapeutic drug. Here, we studied that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the occurrence and metastasis of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. METHODS IC50 of bufalin in ICC cells was determined by CCK8 and invasive and migratory abilities were verified by wound healing, cell cloning, transwell and Western blot. IF and IHC verified the expression of CAMKK2 between ICC patients and normal subjects. BLI and pull-down demonstrated the binding ability of bufalin and CAMKK2. Bioinformatics predicted whether CAMKK2 was related to the Wnt/β-catenin pathway. SKL2001, an activator of β-catenin, verified whether bufalin acted through this pathway. In vitro and in vivo experiments verified whether overexpression of CAMKK2 affects the proliferative and migratory effects of ICC. Transmission electron microscopy verified mitochondrial integrity. Associated Ca2+ levels verified the biological effects of ANXA2 on ICC. RESULTS It was found that bufalin inhibited the proliferation and migration of ICC, and CAMKK2 was highly expressed in ICC, and its high expression was positively correlated with poor prognosis.CAMKK2 is a direct target of bufalin, and is associated with the Wnt/β-catenin signaling pathway, which was dose-dependently decreased after bufalin treatment. In vitro and in vivo experiments verified that CAMKK2 overexpression promoted ICC proliferation and migration, and bufalin reversed this effect. CAMKK2 was associated with Ca2+, and changes in Ca2+ content induced changes in the protein content of ANXA2, which was dose-dependently decreasing in cytoplasmic ANXA2 and dose-dependently increasing in mitochondrial ANXA2 after bufalin treatment. In CAMKK2 overexpressing cells, ANXA2 was knocked down, and we found that reversal of CAMKK2 overexpression-induced enhancement of ICC proliferation and migration after siANXA2. CONCLUSIONS Our results suggest that bufalin targeting CAMKK2 promotes mitochondrial dysfunction and inhibits the proliferation and migration of intrahepatic cholangiocarcinoma through Wnt/β-catenin signal pathway. Thus, bufalin, as a drug, may also be used for cancer therapy in ICC in the future.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Xiaoyan Ding
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Street, Weifang, 261041, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Hongxiao Sun
- Heart Center, Women and Children's Hospital, Qingdao University, 6, Tongfu Road, Qingdao, 266034, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
27
|
Miao K, Liu W, Xu J, Qian Z, Zhang Q. Harnessing the power of traditional Chinese medicine monomers and compound prescriptions to boost cancer immunotherapy. Front Immunol 2023; 14:1277243. [PMID: 38035069 PMCID: PMC10684919 DOI: 10.3389/fimmu.2023.1277243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
At present, cancer is the largest culprit that endangers human health. The current treatment options for cancer mainly include surgical resection, adjuvant radiotherapy and chemotherapy, but their therapeutic effects and long-term prognosis are unsatisfactory. Immunotherapy is an emerging therapy that has completely transformed the therapeutic landscape of advanced cancers, and has tried to occupy a place in the neoadjuvant therapy of resectable tumors. However, not all patients respond to immunotherapy due to the immunological and molecular features of the tumors. Traditional Chinese Medicine (TCM) provides a new perspective for cancer treatment and is considered to have the potential as promising anti-tumor drugs considering its immunoregulatory properties. This review concludes commonly used TCM monomers and compounds from the perspective of immune regulatory pathways, aiming to clearly introduce the basic mechanisms of TCM in boosting cancer immunotherapy and mechanisms of several common TCM. In addition, we also summarized closed and ongoing trials and presented prospects for future development. Due to the significant role of immunotherapy in the treatment of non-small cell lung cancer (NSCLC), TCM combined with immunotherapy should be emphasized in NSCLC.
Collapse
Affiliation(s)
- Keyan Miao
- Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingtong Xu
- The First School of Clinical Medicine, Nanjing Medical University. Nanjing, Jiangsu, China
| | - Zhengtao Qian
- Department of Clinical Laboratory, Changshu Medicine Examination Institute, Changshu, Jiangsu, China
| | - Qinglin Zhang
- Department of Gastroenterology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
28
|
Zhang W, Fan Y, Zhang J, Shi D, Yuan J, Ashrafizadeh M, Li W, Hu M, Abd El-Aty AM, Hacimuftuoglu A, Linnebacher M, Cheng Y, Li W, Fang S, Gong P, Zhang X. Cell membrane-camouflaged bufalin targets NOD2 and overcomes multidrug resistance in pancreatic cancer. Drug Resist Updat 2023; 71:101005. [PMID: 37647746 DOI: 10.1016/j.drup.2023.101005] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/01/2023]
Abstract
AIMS Multidrug resistance in pancreatic cancer poses a significant challenge in clinical treatment. Bufalin (BA), a compound found in secretions from the glands of toads, may help overcome this problem. However, severe cardiotoxicity thus far has hindered its clinical application. Hence, the present study aimed to develop a cell membrane-camouflaged and BA-loaded polylactic-co-glycolic acid nanoparticle (CBAP) and assess its potential to counter chemoresistance in pancreatic cancer. METHODS The toxicity of CBAP was evaluated by electrocardiogram, body weight, distress score, and nesting behavior of mice. In addition, the anticarcinoma activity and underlying mechanism were investigated both in vitro and in vivo. RESULTS CBAP significantly mitigated BA-mediated acute cardiotoxicity and enhanced the sensitivity of pancreatic cancer to several clinical drugs, such as gemcitabine, 5-fluorouracil, and FOLFIRINOX. Mechanistically, CBAP directly bound to nucleotide-binding and oligomerization domain containing protein 2 (NOD2) and inhibited the expression of nuclear factor kappa-light-chain-enhancer of activated B cells. This inhibits the expression of ATP-binding cassette transporters, which are responsible for chemoresistance in cancer cells. CONCLUSIONS Our findings indicate that CBAP directly inhibits NOD2. Combining CBAP with standard-of-care chemotherapeutics represents a safe and efficient strategy for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China
| | - Yibao Fan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jinze Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Dan Shi
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiahui Yuan
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wei Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Man Hu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25070, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25070, Turkey
| | - Michael Linnebacher
- Clinic of General Surgery, Molecular Oncology and Immunotherapy, Rostock University Medical Center, Rostock 18059, Germany
| | - Yongxian Cheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Weiguang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China.
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Peng Gong
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
29
|
Liu C, Li D, Wang J, Wang Z. Arenobufagin increases the sensitivity of gastric cancer to cisplatin via alkaliptosis. Heliyon 2023; 9:e21110. [PMID: 37920505 PMCID: PMC10618551 DOI: 10.1016/j.heliyon.2023.e21110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Background Gastric cancer is the third leading cause of cancer-related death worldwide, for which several novel therapeutic strategies have been developed. Cisplatin (CDDP) mainly exerts its anti-gastric cancer effects; however, drug resistance limits its use. Thus, the development of drugs that can augment their antitumor effects is necessary. Arenobufagin (ArBu) is a novel anticancer drug, and the effects of ArBu in combination with CDDP on gastric cancer have not yet been studied. Aims To identify a possible synergistic effect between ArBu and CDDP in gastric cancer and investigate the underlying mechanism. Methods Cell viability, colony formation, migration, apoptosis, cell cycle, western blotting, immunofluorescence, and reverse-transcription polymerase chain reaction (RT-PCR) were analyzed in vitro. Western blotting, RT-PCR, hematoxylin and eosin (H&E) staining and blood biochemistry were carried out to examine in vivo. Results We found that ArBu, in combination with CDDP, effectively inhibited the proliferation and migration of gastric cancer cells, promoted apoptosis, and downregulated the expression of carbonic anhydrase 9 (CA9), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). In addition, treatment with ArBu in combination with CDDP increased the level of inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB), E-cadherin, and nuclear factor kappa-B/p65 (NF-κB/p65). Furthermore, the combination of ArBu and CDDP inhibited tumor growth in xenograft nude mice with no obvious side effects. Conclusions ArBu synergizes with CDDP to inhibit tumor growth both in vivo and in vitro by inducing alkaliptosis. This indicated that ArBu combined with CDDP may serve as a potential agent for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Dongchang Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Jian Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| |
Collapse
|
30
|
Aleksandrova Y, Munkuev A, Mozhaitsev E, Suslov E, Volcho K, Salakhutdinov N, Neganova M. Hydroxamic Acids Containing a Bicyclic Pinane Backbone as Epigenetic and Metabolic Regulators: Synergizing Agents to Overcome Cisplatin Resistance. Cancers (Basel) 2023; 15:4985. [PMID: 37894352 PMCID: PMC10605847 DOI: 10.3390/cancers15204985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Multidrug resistance is the dominant obstacle to effective chemotherapy for malignant neoplasms. It is well known that neoplastic cells use a wide range of adaptive mechanisms to form and maintain resistance against antitumor agents, which makes it urgent to identify promising therapies to solve this problem. Hydroxamic acids are biologically active compounds and in recent years have been actively considered to be potentially promising drugs of various pharmacological applications. In this paper, we synthesized a number of hydroxamic acids containing a p-substituted cinnamic acid core and bearing bicyclic pinane fragments, including derivatives of (-)-myrtenol, (+)-myrtenol and (-)-nopol, as a Cap-group. Among the synthesized compounds, the most promising hydroxamic acid was identified, containing a fragment of (-)-nopol in the Cap group 18c. This compound synergizes with cisplatin to increase its anticancer effect and overcomes cisplatin resistance, which may be associated with the inhibition of histone deacetylase 1 and glycolytic function. Taken together, our results demonstrate that the use of hydroxamic acids with a bicyclic pinane backbone can be considered to be an effective approach to the eradication of tumor cells and overcoming drug resistance in the treatment of malignant neoplasms.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, 142432 Chernogolovka, Russia;
| | - Aldar Munkuev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (A.M.); (E.M.); (E.S.); (K.V.); (N.S.)
| | - Evgenii Mozhaitsev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (A.M.); (E.M.); (E.S.); (K.V.); (N.S.)
| | - Evgeniy Suslov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (A.M.); (E.M.); (E.S.); (K.V.); (N.S.)
| | - Konstantin Volcho
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (A.M.); (E.M.); (E.S.); (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave., 9, 630090 Novosibirsk, Russia; (A.M.); (E.M.); (E.S.); (K.V.); (N.S.)
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severnij Pr. 1, 142432 Chernogolovka, Russia;
| |
Collapse
|
31
|
Ainembabazi D, Zhang Y, Turchi JJ. The mechanistic role of cardiac glycosides in DNA damage response and repair signaling. Cell Mol Life Sci 2023; 80:250. [PMID: 37584722 PMCID: PMC10432338 DOI: 10.1007/s00018-023-04910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
Cardiac glycosides (CGs) are a class of bioactive organic compounds well-known for their application in treating heart disease despite a narrow therapeutic window. Considerable evidence has demonstrated the potential to repurpose CGs for cancer treatment. Chemical modification of these CGs has been utilized in attempts to increase their anti-cancer properties; however, this has met limited success as their mechanism of action is still speculative. Recent studies have identified the DNA damage response (DDR) pathway as a target of CGs. DDR serves to coordinate numerous cellular pathways to initiate cell cycle arrest, promote DNA repair, regulate replication fork firing and protection, or induce apoptosis to avoid the survival of cells with DNA damage or cells carrying mutations. Understanding the modus operandi of cardiac glycosides will provide critical information to better address improvements in potency, reduced toxicity, and the potential to overcome drug resistance. This review summarizes recent scientific findings of the molecular mechanisms of cardiac glycosides affecting the DDR signaling pathway in cancer therapeutics from 2010 to 2022. We focus on the structural and functional differences of CGs toward identifying the critical features for DDR targeting of these agents.
Collapse
Affiliation(s)
- Diana Ainembabazi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| | - Youwei Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA
| | - John J. Turchi
- Department of Medicine, School of Medicine, Joseph E Walther Hall, Indiana University, 980 W. Walnut St, C560, R3-C560, Indianapolis, IN 46202 USA
| |
Collapse
|
32
|
Zhou Q, Tao X, Guo F, Zhu Y, Wu Y, Xiang H, Shang D. The crosstalk between microbiota and metabolites in AP mice: an analysis based on metagenomics and untargeted metabolomics. Front Cell Infect Microbiol 2023; 13:1134321. [PMID: 37621874 PMCID: PMC10446838 DOI: 10.3389/fcimb.2023.1134321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/07/2023] [Indexed: 08/26/2023] Open
Abstract
Background and purpose Microbiome dysfunction is known to aggravate acute pancreatitis (AP); however, the relationship between this dysfunction and metabolite alterations is not fully understood. This study explored the crosstalk between the microbiome and metabolites in AP mice. Methods Experimental AP models were established by injecting C57/BL mice with seven doses of cerulein and one dose of lipopolysaccharide (LPS). Metagenomics and untargeted metabolomics were used to identify systemic disturbances in the microbiome and metabolites, respectively, during the progression of AP. Results The gut microbiome of AP mice primarily included Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria, and "core microbiota" characterized by an increase in Proteobacteria and a decrease in Actinobacteria. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that significantly different microbes were involved in several signaling networks. Untargeted metabolomics identified 872 metabolites, of which lipids and lipid-like molecules were the most impacted. An integrated analysis of metagenomics and metabolomics indicated that acetate kinase (ackA) gene expression was associated with various gut microbiota, including Alistipes, Butyricimonas, and Lactobacillus, and was strongly correlated with the metabolite daphnoretin. The functional gene, O-acetyl-L-serine sulfhydrylase (cysK), was associated with Alistipes, Jeotgalicoccus, and Lactobacillus, and linked to bufalin and phlorobenzophenone metabolite production. Conclusion This study identified the relationship between the gut microbiome and metabolite levels during AP, especially the Lactobacillus-, Alistipes-, and Butyricimonas-associated functional genes, ackA and cysK. Expression of these genes was significantly correlated to the production of the anti-inflammatory and antitumor metabolites daphnoretin and bufalin.
Collapse
Affiliation(s)
- Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yutong Zhu
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Yu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
- Department of General Surgery, Pancreatic-Biliary Center, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Qian Z, Tian X, Miao Y, Xu X, Cheng X, Wu M, Yu Y. Bufalin inhibits the proliferation of lung cancer cells by suppressing Hippo-YAP pathway. Cell Signal 2023:110746. [PMID: 37286119 DOI: 10.1016/j.cellsig.2023.110746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Lung cancer has high morbidity and mortality. This study demonstrated that Bufalin inhibits the proliferation of lung cancer cells in vivo / in vitro by suppressing Hippo-YAP pathway. Here, we found that Bufalin promoted the binding of LATS and YAP to elevate the level of YAP phosphorylation. Phosphorylated YAP could not successfully enter the nucleus to activate the expression of downstream proliferation-related target genes Cyr61 and CTGF, whereas the YAP retained in the cytoplasm further bound to β-TrCP and underwent ubiquitination and degradation. This study verified the key role of YAP in stimulating the proliferation of lung cancer and revealed the anticancer target of Bufalin. Therefore, this study provides a theoretical basis for the anticancer effect of Bufalin, and suggests that Bufalin can be a potential anticancer drug.
Collapse
Affiliation(s)
- Zijun Qian
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuehua Cheng
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Mengyi Wu
- Shanghai University of Traditional Chinese Medicine, 201203, China
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
34
|
Miao L, Liu Y, Ali NM, Dong Y, Zhang B, Cui X. Bufalin serves as a pharmaceutic that mitigates drug resistance. Drug Metab Rev 2023:1-10. [PMID: 37114332 DOI: 10.1080/03602532.2023.2206065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Intrinsic or acquired drug resistance of tumor cells is the main cause of tumor chemotherapy failure and tumor-related death. Bufalin (BF) is the main active monomer component extracted from the Traditional Chinese Medicine Toad venom (secretions of glands behind the ears and epidermis of bufo gargarizans and Bufo Melanostictus Schneider). It is a cardiotonic steroid with broad-spectrum anti-cancer effects and has been widely used against various malignant tumors in clinical practice. Pharmacological studies also found that BF has the effect of reversing drug resistance, which provides a new perspective for the application of Traditional Chinese Medicine as a chemosensitizer in cancer therapy. This article provides an extensive search and summary of published research on mitigating drug resistance to BF and reviews its potential mechanisms.
Collapse
Affiliation(s)
- Linxuan Miao
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Ying Liu
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian, P.R. China
| | - Nasra Mohamoud Ali
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Yan Dong
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Xiaonan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
35
|
Chen Y, Wang Y, Zhai Y, Yuan Y, Wang J, Jin Y, Dang L, Song L, Chen C, Wang Y. Cinobufacini injection suppresses the proliferation of human osteosarcoma cells by inhibiting PIN1-YAP/TAZ signaling pathway. Front Pharmacol 2023; 14:1081363. [PMID: 37006999 PMCID: PMC10063998 DOI: 10.3389/fphar.2023.1081363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Cinobufacini injection (CI), an aqueous extract of Cutis Bufonis, is clinically used for cancer therapy in China, but its molecular mechanism for the treatment of osteosarcoma (OS) remains unclear. We constructed U2OS ectopic subcutaneous tumor model to verify the anti-OS effect of CI in vivo. Meanwhile, cell proliferation of U2OS and MG63 cells was monitored in vitro using the CCK-8 assay, colony formation and morphological changes. Cell cycle arrest and apoptosis were detected by flow cytometry and western blot, which showed that CI significantly inhibited proliferation, induced cell cycle arrest and apoptosis in human OS cells. The further RNA-seq results identified that the Hippo signaling pathway was involved in the anti-OS effect of CI. YAP/TAZ are two major components of the Hippo pathway in breast cancer and are positively regulated by prolyl isomerase PIN1, we assessed their role in OS using both clinicopathological sections and western blots. CI also inhibited PIN1 enzyme activity in a dose-dependent manner, which resulted in impaired PIN1, YAP, and TAZ expression in vitro and in vivo. Additionally, 15 potential compounds of CI were found to occupy the PIN1 kinase domain and inhibit its activity. In summary, CI plays an anti-OS role by down-regulating the PIN1-YAP/TAZ pathway.
Collapse
Affiliation(s)
- Yuru Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Yanyan Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yu Zhai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ye Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Junhong Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Lingling Dang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| | - Liming Song
- Department of Joint Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin, China
| |
Collapse
|
36
|
Ye Q, Zhou X, Han F, Zheng C. Toad venom-derived bufadienolides and their therapeutic application in prostate cancers: Current status and future directions. Front Chem 2023; 11:1137547. [PMID: 37007051 PMCID: PMC10060886 DOI: 10.3389/fchem.2023.1137547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Specially, the high incidence rate and prevalence of drug resistance have rendered prostate cancer (PCa) a great threat to men’s health. Novel modalities with different structures or mechanisms are in urgent need to overcome these two challenges. Traditional Chinese medicine toad venom-derived agents (TVAs) have shown to possess versatile bioactivities in treating certain diseases including PCa. In this work, we attempted to have an overview of bufadienolides, the major bioactive components in TVAs, in the treatment of PCa in the past decade, including their derivatives developed by medicinal chemists to antagonize certain drawbacks of bufadienolides such as innate toxic effect to normal cells. Generally, bufadienolides can effectively induce apoptosis and suppress PCa cells in-vitro and in-vivo, majorly mediated by regulating certain microRNAs/long non-coding RNAs, or by modulating key pro-survival and pro-metastasis players in PCa. Importantly, critical obstacles and challenges using TVAs will be discussed and possible solutions and future perspectives will also be presented in this review. Further in-depth studies are clearly needed to decipher the mechanisms, e.g., targets and pathways, toxic effects and fully reveal their application. The information collected in this work may help evoke more effects in developing bufadienolides as therapeutic agents in PCa.
Collapse
Affiliation(s)
- Qingmei Ye
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Xin Zhou
- The Fifth People’s Hospital of Hainan Province & Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Fangxuan Han
- Hainan General Hospital & Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, Hainan, China
- *Correspondence: Caijuan Zheng,
| |
Collapse
|
37
|
Shi S, Zhao S, Tian X, Liu F, Lu X, Zang H, Li F, Xiang L, Li L, Jiang S. Molecular and metabolic mechanisms of bufalin against lung adenocarcinoma: New and comprehensive evidences from network pharmacology, metabolomics and molecular biology experiment. Comput Biol Med 2023; 157:106777. [PMID: 36924737 DOI: 10.1016/j.compbiomed.2023.106777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND This study aims to evaluate the efficacy and therapeutic mechanism of bufalin on lung adenocarcinoma (LUAD) through a comprehensive strategy integrating network pharmacology, metabolomics and molecular biology verification. METHODS The putative targets of bufalin were discerned from PharmMapper and Swiss Target Prediction database. LUAD-related targets were obtained by target filtering of GeneCard database and data mining of GEO database. PPI network was constructed to screen the core targets, and their clinical significance was assessed through several public databases. GO and KEGG pathway analyses were performed to identify possible enrichment of genes with specific biological themes. Molecular docking and molecular dynamics (MD) simulation were employed to determine the correlation and binding pattern between bufalin and core targets. The potential mechanisms of bufalin acting on LUAD, as predicted by network pharmacology analyses, were experimentally validated using in-vitro and in-vivo models. Finally, the effects of bufalin intervention on metabolite profile and metabolic pathway in LUAD nude mice were investigated by non-targeted metabolomics. RESULTS 209 bufalin targets and 1082 LUAD-associated targets were harvested, of which 51 intersection targets were identified. 10 core targets including Akt1, STAT3, EGFR, CASP3 and SRC were picked out through network topology analysis, and they had a potent binding activity with bufalin as indicated by molecular docking and MD simulation. Hub module of PPI network was closely related to cell proliferation and apoptosis. GO and KEGG enrichment analyses suggested that bufalin exerted therapeutic effects on LUAD possibly by inhibiting proliferation and promoting apoptosis via PI3K/Akt, FoxO1 and MAPK/ERK pathways, which were confirmed by a series of in-vitro studies as well as HE, TUNEL and Ki-67 staining of tumor tissues. Further metabolomics analysis revealed that bufalin mainly regulated ABC transporter and remodeled AA metabolism, thereby contributing to the treatment of LUAD. CONCLUSION From molecular and metabolic perspective, the present study not only provided a unique insight into the possible mechanisms of bufalin against LUAD after successfully filtering out associated key target genes, differential endogenous metabolites, and signaling pathways, but also proposed a novel promising therapeutic strategy for LUAD.
Collapse
Affiliation(s)
- Shulong Shi
- Department of Endocrinology, Jining First People's Hospital, Jining, 272000, China; Cisen Pharmaceutical Co., Ltd, Jining, 272000, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Sihao Zhao
- Department of Oncology, Jiading District Central Hospital Affiliated Shanghai University of Medicine &Health Sciences, Shanghai, 201800, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China
| | - Xiulian Lu
- Cisen Pharmaceutical Co., Ltd, Jining, 272000, China
| | - Hengchang Zang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Feng Li
- Department of Endocrinology, Jining First People's Hospital, Jining, 272000, China
| | - Longquan Xiang
- Department of Pathology, Jining First People's Hospital, Jining, 272000, China
| | - Luning Li
- Cisen Pharmaceutical Co., Ltd, Jining, 272000, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China.
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, 272000, China.
| |
Collapse
|
38
|
Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules 2023; 28:molecules28052231. [PMID: 36903477 PMCID: PMC10004807 DOI: 10.3390/molecules28052231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
The renaissance of research into natural products has unequivocally and paradigmatically shifted our knowledge about the significant role of natural products in cancer chemoprevention. Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular targets and can be used to harness multi-targeted therapeutic regimes against different cancers. There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum. Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an area of exciting research and we have only started to scratch the surface of the complicated nature of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical studies are insufficient and interdisciplinary researchers require detailed analysis of the existing knowledge gaps.
Collapse
|
39
|
Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010195. [PMID: 36615387 PMCID: PMC9822070 DOI: 10.3390/molecules28010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC), the most prevalent subtype of liver cancer, is the second main reason for cancer-related deaths worldwide. In recent decades, sufficient evidence supported that immunotherapy was a safe and effective treatment option for HCC. However, tolerance and frequent recurrence and metastasis occurred in patients after immunotherapy due to the complicated crosstalk in the tumor immunosuppressive microenvironment (TIME) in HCC. Therefore, elucidating the TIME in HCC and finding novel modulators to target TIME for attenuating immune suppression is critical to optimize immunotherapy. Recently, studies have shown the potentially immunoregulatory activities of natural compounds, characterized by multiple targets and pathways and low toxicity. In this review, we concluded the unique role of TIME in HCC. Moreover, we summarized evidence that supports the hypothesis of natural compounds to target TIME to improve immunotherapy. Furthermore, we discussed the comprehensive mechanisms of these natural compounds in the immunotherapy of HCC. Accordingly, we present a well-grounded review of the naturally occurring compounds in cancer immunotherapy, expecting to shed new light on discovering novel anti-HCC immunomodulatory drugs from natural sources.
Collapse
|