1
|
Chen J, Li H, Liang R, Huang Y, Tang Q. Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes. Biogerontology 2024; 26:33. [PMID: 39729246 DOI: 10.1007/s10522-024-10175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Mitochondrial DNA encodes essential components of the respiratory chain complexes, serving as the foundation of mitochondrial respiratory function. Mutations in mtDNA primarily impair energy metabolism, exerting far-reaching effects on cellular physiology, particularly in the context of aging. The intrinsic vulnerability of mtDNA is increasingly recognized as a key driver in the initiation of aging and the progression of its related diseases. In the field of aging research, it is critical to unravel the intricate mechanisms underpinning mtDNA mutations in living organisms and to elucidate the pathological consequences they trigger. Interestingly, certain effects, such as oxidative stress and apoptosis, may not universally accelerate aging as traditionally perceived. These phenomena demand deeper investigation and a more nuanced reinterpretation of current findings to address persistent scientific uncertainties. By synthesizing recent insights, this review seeks to clarify how pathogenic mtDNA mutations drive cellular senescence and systemic health deterioration, while also exploring the complex dynamics of mtDNA inheritance that may propagate these mutations. Such a comprehensive understanding could ultimately inform the development of innovative therapeutic strategies to counteract mitochondrial dysfunctions associated with aging.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongyu Li
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
2
|
Lan X, Ao WL, Li J. Preimplantation genetic testing as a preventive strategy for the transmission of mitochondrial DNA disorders. Syst Biol Reprod Med 2024; 70:38-51. [PMID: 38323618 DOI: 10.1080/19396368.2024.2306389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/07/2024] [Indexed: 02/08/2024]
Abstract
Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
Collapse
Affiliation(s)
- Xinpeng Lan
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Wu Liji Ao
- College of Mongolian Medicine and Pharmacy, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, China
| | - Ji Li
- College of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Zhou K, Wang Z, Guo W, Xie F, Yuan Q, Guo S, Zhang H, Liu Y, Gu X, Song W, Guo X, Xing J. Unraveling bidirectional evolution of unstable mitochondrial DNA mutations in hepatocellular carcinoma at single-cell resolution. Hepatology 2024:01515467-990000000-01049. [PMID: 39641629 DOI: 10.1097/hep.0000000000001113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND AIMS Somatic mutations in mitochondrial DNA (mtDNA) are abundant in HCC and directly affect metabolic homeostasis and tumor progression. The mixed population of mutant and wild-type mtDNA alleles within a cell, termed heteroplasmy, can vary from cell-to-cell and orchestrate tumorigenesis. However, the systematic evolutionary dynamics of somatic mtDNA mutations in HCC tissues remain to be delineated at single-cell resolution. APPROACH AND RESULTS We established the single-cell capture-based mtDNA sequencing approach for accurately detecting somatic mtDNA mutations at single-cell resolution. Based on single-cell capture-based mtDNA sequencing, the single-cell somatic mtDNA mutational landscape, intratumor heterogeneity (ITH), and spatiotemporal clonal evolution were systematically investigated in 1641 single cells from 11 patients with HCC and 528 single cells from 2 patient-derived xenografts mouse models. Our data revealed the presence of 2 distinct categories of mtDNA mutation at single-cell resolution, including stable mutations exhibiting similar heteroplasmy levels and unstable mutations exhibiting remarkable cell-to-cell variability of heteroplasmy levels. Furthermore, the proportion of unstable mtDNA mutations was positively associated with the ITH of patients with HCC, with high ITH reflecting the proliferative and aggressive clinicopathological features of HCC cells. In addition, reconstruction of the evolutionary history classified HCC evolution patterns as linear or branched. Notably, spatiotemporal lineage tracing in patient-derived xenograft mouse models and multifocal lesions revealed bidirectional evolution of unstable mtDNA mutations during HCC progression. CONCLUSIONS Our study unravels the landscape of single-cell somatic mtDNA mutations in HCC tissues and reveals the bidirectional evolution of unstable mtDNA mutations, with potential implications for HCC stratification and therapeutic intervention.
Collapse
Affiliation(s)
- Kaixiang Zhou
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Zhenni Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Wenjie Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Fanfan Xie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Qing Yuan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Shanshan Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Huanqin Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Yang Liu
- Department of Clinical Diagnosis, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiwen Gu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
4
|
Gitschlag BL, Pereira CV, Held JP, McCandlish DM, Patel MR. Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans. Nat Commun 2024; 15:8237. [PMID: 39300074 DOI: 10.1038/s41467-024-52596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA.
| |
Collapse
|
5
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Płoszaj T, Skoczylas S, Gadzalska K, Jakiel P, Juścińska E, Gorządek M, Robaszkiewicz A, Borowiec M, Zmysłowska A. Screening for Rare Mitochondrial Genome Variants Reveals a Potentially Novel Association between MT-CO1 and MT-TL2 Genes and Diabetes Phenotype. Int J Mol Sci 2024; 25:2438. [PMID: 38397113 PMCID: PMC10889583 DOI: 10.3390/ijms25042438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Variations in several nuclear genes predisposing humans to the development of MODY diabetes have been very well characterized by modern genetic diagnostics. However, recent reports indicate that variants in the mtDNA genome may also be associated with the diabetic phenotype. As relatively little research has addressed the entire mitochondrial genome in this regard, the aim of the present study is to evaluate the genetic variations present in mtDNA among individuals susceptible to MODY diabetes. In total, 193 patients with a MODY phenotype were tested with a custom panel with mtDNA enrichment. Heteroplasmic variants were selected for further analysis via further sequencing based on long-range PCR to evaluate the potential contribution of frequent NUMTs (acronym for nuclear mitochondrial DNA) insertions. Twelve extremely rare variants with a potential damaging character were selected, three of which were likely to be the result of NUMTs from the nuclear genome. The variant m.3243A>G in MT-TL1 was responsible for 3.5% of MODY cases in our study group. In addition, a novel, rare, and possibly pathogenic leucine variant m.12278T>C was found in MT-TL2. Our findings also found the MT-CO1 gene to be over-represented in the study group, with a clear phenotype-genotype correlation observed in one family. Our data suggest that heteroplasmic variants in MT-COI and MT-TL2 genes may play a role in the pathophysiology of glucose metabolism in humans.
Collapse
Affiliation(s)
- Tomasz Płoszaj
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Sebastian Skoczylas
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Karolina Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Paulina Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Ewa Juścińska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Monika Gorządek
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Agnieszka Robaszkiewicz
- Department of General Biophysics, Institute of Biophysics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Maciej Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| | - Agnieszka Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; (S.S.); (K.G.); (P.J.); (E.J.); (M.G.); (M.B.); (A.Z.)
| |
Collapse
|
7
|
Gropman AL, Uittenbogaard MN, Chiaramello AE. Challenges and opportunities to bridge translational to clinical research for personalized mitochondrial medicine. Neurotherapeutics 2024; 21:e00311. [PMID: 38266483 PMCID: PMC10903101 DOI: 10.1016/j.neurot.2023.e00311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Mitochondrial disorders are a group of rare and heterogeneous genetic diseases characterized by dysfunctional mitochondria leading to deficient adenosine triphosphate synthesis and chronic energy deficit in patients. The majority of these patients exhibit a wide range of phenotypic manifestations targeting several organ systems, making their clinical diagnosis and management challenging. Bridging translational to clinical research is crucial for improving the early diagnosis and prognosis of these intractable mitochondrial disorders and for discovering novel therapeutic drug candidates and modalities. This review provides the current state of clinical testing in mitochondrial disorders, discusses the challenges and opportunities for converting basic discoveries into clinical settings, explores the most suited patient-centric approaches to harness the extraordinary heterogeneity among patients affected by the same primary mitochondrial disorder, and describes the current outlook of clinical trials.
Collapse
Affiliation(s)
- Andrea L Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, USA
| | - Martine N Uittenbogaard
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Anne E Chiaramello
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA.
| |
Collapse
|
8
|
Chen C, Guan MX. Induced pluripotent stem cells: ex vivo models for human diseases due to mitochondrial DNA mutations. J Biomed Sci 2023; 30:82. [PMID: 37737178 PMCID: PMC10515435 DOI: 10.1186/s12929-023-00967-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/16/2023] [Indexed: 09/23/2023] Open
Abstract
Mitochondria are essential organelles for cellular metabolism and physiology in eukaryotic cells. Human mitochondria have their own genome (mtDNA), which is maternally inherited with 37 genes, encoding 13 polypeptides for oxidative phosphorylation, and 22 tRNAs and 2 rRNAs for translation. mtDNA mutations are associated with a wide spectrum of degenerative and neuromuscular diseases. However, the pathophysiology of mitochondrial diseases, especially for threshold effect and tissue specificity, is not well understood and there is no effective treatment for these disorders. Especially, the lack of appropriate cell and animal disease models has been significant obstacles for deep elucidating the pathophysiology of maternally transmitted diseases and developing the effective therapy approach. The use of human induced pluripotent stem cells (iPSCs) derived from patients to obtain terminally differentiated specific lineages such as inner ear hair cells is a revolutionary approach to deeply understand pathogenic mechanisms and develop the therapeutic interventions of mitochondrial disorders. Here, we review the recent advances in patients-derived iPSCs as ex vivo models for mitochondrial diseases. Those patients-derived iPSCs have been differentiated into specific targeting cells such as retinal ganglion cells and eventually organoid for the disease modeling. These disease models have advanced our understanding of the pathophysiology of maternally inherited diseases and stepped toward therapeutic interventions for these diseases.
Collapse
Affiliation(s)
- Chao Chen
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.
- Institute of Genetics, Zhejiang University International School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.
- Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Zhong Y, Zeng K, Adnan A, Li YZ, Hou XK, Pan Y, Li A, Zhu XM, Lv P, Du Z, Yang Y, Yao J. Discrimination of monozygotic twins using mtDNA heteroplasmy through probe capture enrichment and massively parallel sequencing. Int J Legal Med 2023; 137:1337-1345. [PMID: 37270462 DOI: 10.1007/s00414-023-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Differentiating between monozygotic (MZ) twins remains difficult because they have the same genetic makeup. Applying the traditional STR genotyping approach cannot differentiate one from the other. Heteroplasmy refers to the presence of two or more different mtDNA copies within a single cell and this phenomenon is common in humans. The levels of heteroplasmy cannot change dramatically during transmission in the female germ line but increase or decrease during germ-line transmission and in somatic tissues during life. As massively parallel sequencing (MPS) technology has advanced, it has shown the extraordinary quantity of mtDNA heteroplasmy in humans. In this study, a probe hybridization technique was used to obtain mtDNA and then MPS was performed with an average sequencing depth of above 4000. The results showed us that all ten pairs of MZ twins were clearly differentiated with the minor heteroplasmy threshold at 1.0%, 0.5%, and 0.1%, respectively. Finally, we used a probe that targeted mtDNA to boost sequencing depth without interfering with nuclear DNA and this technique can be used in forensic genetics to differentiate the MZ twins.
Collapse
Affiliation(s)
- Yang Zhong
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Kuo Zeng
- Institute of Evidence Law and Forensic Science, China University of Political Science and Law, Beijing, China
| | - Atif Adnan
- Department of Forensic Sciences, College of Criminal Justice, Naif University of Security Sciences, Riyadh, 11452, Kingdom of Saudi Arabia
| | - Yu-Zhang Li
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Xi-Kai Hou
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ying Pan
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ang Li
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Xiu-Mei Zhu
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Peng Lv
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Zhe Du
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China
- China Medical University Center of Forensic Investigation, Chengdu, China
| | - Ying Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenbei New District, Shenyang, 110122, People's Republic of China.
- Key Laboratory of Forensic Bio-evidence Sciences, Shenyang, Liaoning Province, China.
- China Medical University Center of Forensic Investigation, Chengdu, China.
| |
Collapse
|
10
|
Munasinghe M, Ågren JA. When and why are mitochondria paternally inherited? Curr Opin Genet Dev 2023; 80:102053. [PMID: 37245242 DOI: 10.1016/j.gde.2023.102053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
In contrast with nuclear genes that are passed on through both parents, mitochondrial genes are maternally inherited in most species, most of the time. The genetic conflict stemming from this transmission asymmetry is well-documented, and there is an abundance of population-genetic theory associated with it. While occasional or aberrant paternal inheritance occurs, there are only a few cases where exclusive paternal inheritance of mitochondrial genomes is the evolved state. Why this is remains poorly understood. By examining commonalities between species with exclusive paternal inheritance, we discuss what they may tell us about the evolutionary forces influencing mitochondrial inheritance patterns. We end by discussing recent technological advances that make exploring the causes and consequences of paternal inheritance feasible.
Collapse
Affiliation(s)
- Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA. https://twitter.com/@ManishaMuna
| | - J Arvid Ågren
- Department of Evolutionary Biology, Uppsala University, Uppsala, Sweden; Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
11
|
Tsyba N, Feng G, Grub LK, Held JP, Strozak AM, Burkewitz K, Patel MR. Tissue-specific heteroplasmy segregation is accompanied by a sharp mtDNA decline in Caenorhabditis elegans soma. iScience 2023; 26:106349. [PMID: 36968071 PMCID: PMC10031119 DOI: 10.1016/j.isci.2023.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/08/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Mutations in the mitochondrial genome (mtDNA) can be pathogenic. Owing to the multi-copy nature of mtDNA, wild-type copies can compensate for the effects of mutant mtDNA. Wild-type copies available for compensation vary depending on the mutant load and the total copy number. Here, we examine both mutant load and copy number in the tissues of Caenorhabditis elegans. We found that neurons, but not muscles, have modestly higher mutant load than rest of the soma. We also uncovered different effect of aak-2 knockout on the mutant load in the two tissues. The most surprising result was a sharp decline in somatic mtDNA content over time. The scale of the copy number decline surpasses the modest shifts in mutant load, suggesting that it may exert a substantial effect on mitochondrial function. In summary, measuring both the copy number and the mutant load provides a more comprehensive view of the mutant mtDNA dynamics.
Collapse
Affiliation(s)
- Nikita Tsyba
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Gaomin Feng
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
| | - Lantana K. Grub
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - James P. Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Adrianna M. Strozak
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
| | - Maulik R. Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN37232, USA
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN37232, USA
- Evolutionary Studies, Vanderbilt University, Nashville, TN37235, USA
| |
Collapse
|
12
|
Bottoni P, Gionta G, Scatena R. Remarks on Mitochondrial Myopathies. Int J Mol Sci 2022; 24:ijms24010124. [PMID: 36613565 PMCID: PMC9820309 DOI: 10.3390/ijms24010124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial myopathies represent a heterogeneous group of diseases caused mainly by genetic mutations to proteins that are related to mitochondrial oxidative metabolism. Meanwhile, a similar etiopathogenetic mechanism (i.e., a deranged oxidative phosphorylation and a dramatic reduction of ATP synthesis) reveals that the evolution of these myopathies show significant differences. However, some physiological and pathophysiological aspects of mitochondria often reveal other potential molecular mechanisms that could have a significant pathogenetic role in the clinical evolution of these disorders, such as: i. a deranged ROS production both in term of signaling and in terms of damaging molecules; ii. the severe modifications of nicotinamide adenine dinucleotide (NAD)+/NADH, pyruvate/lactate, and α-ketoglutarate (α-KG)/2- hydroxyglutarate (2-HG) ratios. A better definition of the molecular mechanisms at the basis of their pathogenesis could improve not only the clinical approach in terms of diagnosis, prognosis, and therapy of these myopathies but also deepen the knowledge of mitochondrial medicine in general.
Collapse
Affiliation(s)
- Patrizia Bottoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Giulia Gionta
- Dipartimento Scienze Anatomiche Istologiche Medico Legali e dell’Apparato Locomotore—Sezione di Anatomia Umana, Università La Sapienza di Roma, Via Alfonso Borelli 50, 00161 Rome, Italy
| | - Roberto Scatena
- Dipartimento di Medicina di Laboratorio, Madre Giuseppina Vannini Hospital, Via di Acqua Bullicante 4, 00177 Rome, Italy
- Correspondence:
| |
Collapse
|