1
|
Singh PK, Rybak JA, Schuck RJ, Sahoo AR, Buck M, Barrera FN, Smith AW. Phosphatidylinositol 4,5-bisphosphate drives the formation of EGFR and EphA2 complexes. SCIENCE ADVANCES 2024; 10:eadl0649. [PMID: 39630914 PMCID: PMC11616708 DOI: 10.1126/sciadv.adl0649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here, we use a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated heteromultimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol 4,5-bisphosphate (PIP2). We found that higher PIP2 levels increased homomultimerization of both EGFR and EphA2, as well as heteromultimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP2 can have a substantial effect on the spatial organization of RTKs.
Collapse
Affiliation(s)
- Pradeep Kumar Singh
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| | - Jennifer A. Rybak
- Genome Sciences and Technology Graduate Program, University of Tennessee, Knoxville, TN 37996, USA
| | - Ryan J. Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amita R. Sahoo
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Adam W. Smith
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79410, USA
| |
Collapse
|
2
|
Horai Y, Suda N, Uchihashi S, Katakuse M, Shigeno T, Hirano T, Takahara J, Fujita T, Mukoyama Y, Haga Y. A novel 7-phenoxy-benzimidazole derivative as a potent and orally available BRD4 inhibitor for the treatment of melanoma. Bioorg Med Chem 2024; 112:117882. [PMID: 39167978 DOI: 10.1016/j.bmc.2024.117882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The bromodomain-containing protein 4 (BRD4), which is a key epigenetic regulator in cancer, has emerged as an attractive target for the treatment of melanoma. In this study, we investigate 7-phenoxy-benzimidazole derivative 12, which is a novel BRD4 inhibitor for the treatment of melanoma, by performing scaffold hopping on the previously reported benzimidazole derivative 1. Despite their good oral and intravenous exposure, the compounds obtained by modifying derivate 1 exhibit mutagenicity, which was confirmed by the positive Ames test results. Based on our hypothesis that the cause of the Ames test positivity is the metabolic intermediates generated from those chemical series, we implemented a scaffold hopping strategy to avoid the N-benzyl moiety by relocating the substituent groups to preserve the essential interaction. Based on this strategy, we successfully obtained compound 12; the Ames test results of this compound were negative. Notably, compound 12 not only exhibited a favorable pharmacokinetic (PK) profile but also significant tumor growth inhibition in a mouse melanoma xenograft model, indicating its potential as a therapeutic agent for the treatment of melanoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuji Haga
- Maruho Co., Ltd., Kyoto 600-8815, Japan
| |
Collapse
|
3
|
Singh PK, Rybak JA, Schuck RJ, Barrera FN, Smith AW. Phosphatidylinositol (4,5)-bisphosphate drives the formation of EGFR and EphA2 complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592400. [PMID: 38746348 PMCID: PMC11092790 DOI: 10.1101/2024.05.03.592400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Receptor tyrosine kinases (RTKs) regulate many cellular functions and are important targets in pharmaceutical development, particularly in cancer treatment. EGFR and EphA2 are two key RTKs that are associated with oncogenic phenotypes. Several studies have reported functional interplay between these receptors, but the mechanism of interaction is still unresolved. Here we utilize a time-resolved fluorescence spectroscopy called PIE-FCCS to resolve EGFR and EphA2 interactions in live cells. We tested the role of ligands and found that EGF, but not ephrin A1 (EA1), stimulated hetero-multimerization between the receptors. To determine the effect of anionic lipids, we targeted phospholipase C (PLC) activity to alter the abundance of phosphatidylinositol (4,5)-bisphosphate (PIP 2 ). We found that higher PIP 2 levels increased homo-multimerization of both EGFR and EphA2, as well as hetero-multimerization. This study provides a direct characterization of EGFR and EphA2 interactions in live cells and shows that PIP 2 can have a substantial effect on the spatial organization of RTKs.
Collapse
|
4
|
Jin L, Dong L, Pei S, Chen X, Kuang Y, Chen W, Zhu W, Yin M. A BET inhibitor, NHWD-870, can downregulate dendritic cells maturation via the IRF7-mediated signaling pathway to ameliorate imiquimod-induced psoriasis-like murine skin inflammation. Eur J Pharmacol 2024; 968:176382. [PMID: 38311277 DOI: 10.1016/j.ejphar.2024.176382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Psoriasis is a chronic, recurrent, inflammatory dermatosis accompanied by excessive activation of dendritic cells (DCs), which are primarily responsible for initiating an immune response. The bromodomain and extraterminal domain (BET) family plays a pivotal role in the transcriptional regulation of inflammation and its inhibitors can downregulate DCs maturation and activation. Here we investigated the effect of NHWD-870, a potent BET inhibitor, on inflammation in an imiquimod (IMQ)-induced psoriasis-like mouse model and murine bone marrow-derived dendritic cells (BMDCs) stimulated by lipopolysaccharide (LPS) and IMQ. Application of NHWD-870 significantly ameliorated IMQ-triggered skin inflammation in mice, and markers associated with DC maturation (CD40, CD80 and CD86) were decreased in skin lesions, spleen and lymph nodes. Additionally, NHWD-870 reduced LPS or IMQ induced DCs maturation and activation in vitro, with lower expression of inflammatory cytokines [interleukin (IL)-12, IL-23, tumor necrosis factor-α, IL-6, IL-1β, chemokine (C-X-C motif) ligand (CXCL)9 and CXCL10]. In addition, we found that interferon regulatory factor 7 (IRF7) significantly increased during DCs maturation, and inhibition of IRF7 could impair BMDCs maturation and activation. What's more, IRF7 was highly expressed in both psoriatic patients and IMQ-induced psoriasis-like mice. Single-cell RNA sequencing of normal and psoriatic skin demonstrated that IRF7 expression was increased in DCs of psoriatic skin. While NHWD-870 could inhibit IRF7 and phosphorylated-IRF7 expression in vivo and in vitro. These results indicate that NHWD-870 suppresses the maturation and activation of DCs by decreasing IRF7 proteins which finally alleviates psoriasis-like skin lesions, and NHWD-870 may be a potent therapeutic drug for psoriasis.
Collapse
Affiliation(s)
- Liping Jin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Liang Dong
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Shiyao Pei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China; Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China
| | - Wangqing Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, 410008, China; Furong Laboratory, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 5Lead Contact, Changsha, Hunan, 410008, China.
| | - Mingzhu Yin
- Clinical Research Center (CRC), Medical Pathology Center (MPC), Cancer Early Detection and Treatment Center (CEDTC), Translational Medicine Research Center (TMRC), Chongqing University Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, China.
| |
Collapse
|
5
|
Liu R, Chen X, Li J, Liu X, Shu M. Discovery of novel bromodomain-containing protein 4 (BRD4-BD1) inhibitors combined with 3d-QSAR, molecular docking and molecular dynamics in silico. J Biomol Struct Dyn 2024:1-18. [PMID: 38425011 DOI: 10.1080/07391102.2024.2321249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Bromine-containing domain protein 4 (BRD4) plays a crucial role in regulating transcription and genome stability. Selective inhibitors of BRD4-BD1 can specifically target specific bromine domains to affect cell proliferation, apoptosis, and differentiation. In this work, 43 selective benzoazepinone BRD4-BD1 inhibitors were studied using molecular simulations and three-dimensional quantitative conformation relationships (3D-QSAR). A reliable 3D-QSAR model was established based on COMFA (Q2 = 0.532, R2 = 0.981) and COMSIA (S + E + H (Q2 = 0.536, R2 = 0.979) two different analysis methods. Through 3D-QSAR model prediction and quantum chemical analysis, 15 small molecules with stronger inhibitory activity than the template compounds were constructed, and 5 new compounds with higher predictive activity and binding affinity were screened by molecular docking and ADMET methods. According to the molecular dynamics simulation, the key residues that can interact with BRD4-BD1 protein and molecular docking results are consistent, including ASN140, MET132, GLN85, MET105, ASN135 and TYR97. From the MD trajectory, we calculated and analyzed RMSD, RMSF, free binding energy, FECM, DCCM and PCA, the loop region formed by amino acids VAL45∼PRO62 showed α-helix, β-folding and clustering towards the active center with the extension of simulation time. Further optimization of the structure of active candidate compounds A6, A11, A14, and A15 will provide the necessary theoretical basis for the synthesis and activity evaluation of novel BRD4-BD1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rong Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xiaodie Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jiali Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Xingyun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Mao Shu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
6
|
Gao J, Liu J, Yu T, Xu C, Sun H, Lu C, Dan W, Dai J. Synthesis of 3-formyl-eudistomin U with anti-proliferation, anti-migration and apoptosis-promoting activities on melanoma cells. BMC Chem 2023; 17:184. [PMID: 38124159 PMCID: PMC10734049 DOI: 10.1186/s13065-023-01102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
The discovery of new lead skeleton against melanoma are urgently needed due to its highly malignant and mortality. Herein, a new molecular entity (EU-5) derived from eudistomin U was synthesized with total yield of 46%, which displayed potent activity against malignant melanoma A375 cells (IC50 = 4.4 µM), no hemolytic toxicity and good physicochemical properties in silico. Colony formation and cell cycle arrest assays revealed that EU-5 suppressed cell proliferation by causing cell cycle arrest at G0/G1 phase. Wound healing and transwell assays suggested that EU-5 could effectively inhibit migration of A375 cells in a dose-dependent manner. Calcein-AM/PI staining, Annexin V-FITC/PI apoptosis detection, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), transcriptomics, quantitative real‑time polymerase chain reaction (qRT‑PCR), spectrometric titration and molecular docking assays indicated that EU-5 could activate p53 signaling pathway and trigger mitochondria-mediated cell apoptosis. Taken together, this study provided a promising lead structure for the design of a new generation of anti-melanoma drugs.
Collapse
Affiliation(s)
- Jixiang Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, 250100, China
| | - Jinyi Liu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Tao Yu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Chenggong Xu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Hao Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Chunbo Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China
| | - Wenjia Dan
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China.
| | - Jiangkun Dai
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong Province, 261053, China.
| |
Collapse
|
7
|
Janin M, Davalos V, Esteller M. Cancer metastasis under the magnifying glass of epigenetics and epitranscriptomics. Cancer Metastasis Rev 2023; 42:1071-1112. [PMID: 37369946 PMCID: PMC10713773 DOI: 10.1007/s10555-023-10120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Most of the cancer-associated mortality and morbidity can be attributed to metastasis. The role of epigenetic and epitranscriptomic alterations in cancer origin and progression has been extensively demonstrated during the last years. Both regulations share similar mechanisms driven by DNA or RNA modifiers, namely writers, readers, and erasers; enzymes responsible of respectively introducing, recognizing, or removing the epigenetic or epitranscriptomic modifications. Epigenetic regulation is achieved by DNA methylation, histone modifications, non-coding RNAs, chromatin accessibility, and enhancer reprogramming. In parallel, regulation at RNA level, named epitranscriptomic, is driven by a wide diversity of chemical modifications in mostly all RNA molecules. These two-layer regulatory mechanisms are finely controlled in normal tissue, and dysregulations are associated with every hallmark of human cancer. In this review, we provide an overview of the current state of knowledge regarding epigenetic and epitranscriptomic alterations governing tumor metastasis, and compare pathways regulated at DNA or RNA levels to shed light on a possible epi-crosstalk in cancer metastasis. A deeper understanding on these mechanisms could have important clinical implications for the prevention of advanced malignancies and the management of the disseminated diseases. Additionally, as these epi-alterations can potentially be reversed by small molecules or inhibitors against epi-modifiers, novel therapeutic alternatives could be envisioned.
Collapse
Affiliation(s)
- Maxime Janin
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
| | - Veronica Davalos
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), IJC Building, Germans Trias I Pujol, Ctra de Can Ruti, Cami de Les Escoles S/N, 08916 Badalona, Barcelona, Spain.
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain.
- Institucio Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain.
| |
Collapse
|
8
|
Wang ZQ, Zhang ZC, Wu YY, Pi YN, Lou SH, Liu TB, Lou G, Yang C. Bromodomain and extraterminal (BET) proteins: biological functions, diseases, and targeted therapy. Signal Transduct Target Ther 2023; 8:420. [PMID: 37926722 PMCID: PMC10625992 DOI: 10.1038/s41392-023-01647-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023] Open
Abstract
BET proteins, which influence gene expression and contribute to the development of cancer, are epigenetic interpreters. Thus, BET inhibitors represent a novel form of epigenetic anticancer treatment. Although preliminary clinical trials have shown the anticancer potential of BET inhibitors, it appears that these drugs have limited effectiveness when used alone. Therefore, given the limited monotherapeutic activity of BET inhibitors, their use in combination with other drugs warrants attention, including the meaningful variations in pharmacodynamic activity among chosen drug combinations. In this paper, we review the function of BET proteins, the preclinical justification for BET protein targeting in cancer, recent advances in small-molecule BET inhibitors, and preliminary clinical trial findings. We elucidate BET inhibitor resistance mechanisms, shed light on the associated adverse events, investigate the potential of combining these inhibitors with diverse therapeutic agents, present a comprehensive compilation of synergistic treatments involving BET inhibitors, and provide an outlook on their future prospects as potent antitumor agents. We conclude by suggesting that combining BET inhibitors with other anticancer drugs and innovative next-generation agents holds great potential for advancing the effective targeting of BET proteins as a promising anticancer strategy.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Zhao-Cong Zhang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Yu-Yang Wu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ya-Nan Pi
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Sheng-Han Lou
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tian-Bo Liu
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China
| | - Ge Lou
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| | - Chang Yang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin, 150086, China.
| |
Collapse
|
9
|
Vallini G, Calabrese L, Canino C, Trovato E, Gentileschi S, Rubegni P, Tognetti L. Signaling Pathways and Therapeutic Strategies in Advanced Basal Cell Carcinoma. Cells 2023; 12:2534. [PMID: 37947611 PMCID: PMC10647618 DOI: 10.3390/cells12212534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Non-melanoma skin cancers (NMSCs) are the most common human neoplasms world-wide. In detail, basal cell carcinoma (BCC) is the most frequent malignancy in the fair-skinned population. The incidence of BCC remains difficult to assess due to the poor registration practice; however, it has been increasing in the last few years. Approximately, 85% of sporadic BCCs carry mutations in Hedgehog pathway genes, especially in PTCH, SUFU and SMO genes, which lead to the aberrant activation of GLI transcriptional factors, typically silent in cells of adult individuals. The management of advanced BCC (aBCC), both metastatic (mBCC) and locally advanced BCC (laBCC), not candidates for surgical excision or radiotherapy, remains challenging. The discovery of mutations in the Hh signaling pathway has paved the way for the development of Hh pathway inhibiting agents, such as vismodegib and sonidegib, which have represented a breakthrough in the aBCC management. However, the use of these agents is limited by the frequent occurrence of adverse events or the development of drug resistance. In this review, we thoroughly describe the current knowledge regarding the available options for the pharmacological management of aBCCs and provide a forward-looking update on novel therapeutic strategies that could enrich the therapeutic armamentarium of BCC in the near future.
Collapse
Affiliation(s)
- Giulia Vallini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Laura Calabrese
- Department of Medical, Surgical and Neurological Sciences, Division of Dermatology, University of Siena, 53100 Siena, Italy; (L.C.); (E.T.); (P.R.); (L.T.)
- Institute of Dermatology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Costanza Canino
- Department of Haematology, Oncology and Cell and Gene Therapy, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Emanuele Trovato
- Department of Medical, Surgical and Neurological Sciences, Division of Dermatology, University of Siena, 53100 Siena, Italy; (L.C.); (E.T.); (P.R.); (L.T.)
| | - Stefano Gentileschi
- Department of Medical, Surgical and Neurological Sciences, Division of Rheumatology, University of Siena, 53100 Siena, Italy;
| | - Pietro Rubegni
- Department of Medical, Surgical and Neurological Sciences, Division of Dermatology, University of Siena, 53100 Siena, Italy; (L.C.); (E.T.); (P.R.); (L.T.)
| | - Linda Tognetti
- Department of Medical, Surgical and Neurological Sciences, Division of Dermatology, University of Siena, 53100 Siena, Italy; (L.C.); (E.T.); (P.R.); (L.T.)
| |
Collapse
|