1
|
Ngamratanapaiboon S, Srikornvit N, Hongthawonsiri P, Pornchokchai K, Wongpitoonmanachai S, Mo J, Pholkla P, Yambangyang P, Duchda P, Lohwacharin J, Ayutthaya WDN. Elucidating of the metabolic impact of risperidone on brain microvascular endothelial cells using untargeted metabolomics-based LC-MS. Toxicol Rep 2024; 13:101691. [PMID: 39104367 PMCID: PMC11299597 DOI: 10.1016/j.toxrep.2024.101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
Risperidone is useful for the treatment of schizophrenia symptoms; however, it also has side effects, and an overdose can be harmful. The metabolic effects of risperidone at high therapeutic doses and its metabolites have not been elucidated. Endogenous cellular metabolites may be comprehensively analyzed using untargeted metabolomics-based liquid chromatography-mass spectrometry (LC-MS), which can reveal changes in cell regulation and metabolic pathways. By identifying the metabolites and pathway changes using a nontargeted metabolomics-based LC-MS approach, we aimed to shed light on the potential toxicological effects of high-dose risperidone on brain microvascular endothelial cells (MVECs) associated with the human blood brain barrier. A total of 42 metabolites were selected as significant putative metabolites of the toxicological response of high-dose risperidone in MVECs. Six highly correlated pathways were identified, including those involving diacylglycerol, fatty acid, ceramide, glycerophospholipid, amino acid, and tricarboxylic acid metabolism. We demonstrated that methods focused on metabolomics are useful for identifying metabolites that may be used to clarify the mechanism of drug-induced toxicity.
Collapse
Affiliation(s)
- Surachai Ngamratanapaiboon
- Division of Pharmacology, Department of Basic Medical Sciences, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Napatarin Srikornvit
- Medical Student in Doctor of Medicine Programme, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Patipol Hongthawonsiri
- Medical Student in Doctor of Medicine Programme, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Krittaboon Pornchokchai
- Medical Student in Doctor of Medicine Programme, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Siriphattarinya Wongpitoonmanachai
- Medical Student in Doctor of Medicine Programme, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Jiajun Mo
- Medical Student in Doctor of Medicine Programme, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Petchlada Pholkla
- Medical Student in Doctor of Medicine Programme, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| | - Pracha Yambangyang
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Phichanan Duchda
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenyuk Lohwacharin
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
- Professor Aroon Sorathesn Center of Excellence in Environmental Engineering, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watcharaporn Devakul Na Ayutthaya
- Division of Pharmacology, Department of Basic Medical Sciences, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Hitti EG, Muazzen Z, Moghrabi W, Al-Yahya S, Khabar KSA. Hydroxychloroquine attenuates double-stranded RNA-stimulated hyper-phosphorylation of tristetraprolin/ZFP36 and AU-rich mRNA stabilization. Immunology 2024; 173:511-519. [PMID: 39046234 DOI: 10.1111/imm.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
The human innate immune system recognizes dsRNA as a pathogen-associated molecular pattern that induces a potent inflammatory response. The primary source of pathogenic dsRNA is cells infected with replicating viruses, but can also be released from uninfected necrotic cells. Here, we show that the dsRNA poly(I:C) challenge in human macrophages activates the p38 MAPK-MK2 signalling pathway and subsequently the phosphorylation of tristetraprolin (TTP/ZFP36). The latter is an mRNA decay-promoting protein that controls the stability of AU-rich mRNAs (AREs) that code for many inflammatory mediators. Hydroxychloroquine (HCQ), a common anti-malaria drug, is used to treat inflammatory and autoimmune disorders and, controversially, during acute COVID-19 disease. We found that HCQ reduced the dsRNA-dependent phosphorylation of p38 MAPK and its downstream kinase MK2. Subsequently, HCQ reduced the abundance and protein stability of the inactive (phosphorylated) form of TTP. HCQ reduced the levels and the mRNA stability of poly (I:C)-induced cytokines and inflammatory mRNAs like TNF, IL-6, COX-2, and IL-8 in THP-1 and primary blood monocytes. Our results demonstrate a new mechanism of the anti-inflammatory role of HCQ at post-transcriptional level (TTP phosphorylation) in a model of dsRNA activation, which usually occurs in viral infections or RNA release from necrotic tissue.
Collapse
Affiliation(s)
- Edward G Hitti
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zeyad Muazzen
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Walid Moghrabi
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Suhad Al-Yahya
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Vilaça M, Lopes C, Seabra R, Rocha E. 17α-Ethynylestradiol and Levonorgestrel Exposure of Rainbow Trout RTL-W1 Cells at 18 °C and 21 °C Mainly Reveals Thermal Tolerance, Absence of Estrogenic Effects, and Progestin-Induced Upregulation of Detoxification Genes. Genes (Basel) 2024; 15:1189. [PMID: 39336780 PMCID: PMC11431550 DOI: 10.3390/genes15091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Fish are exposed to increased water temperatures and aquatic pollutants, including endocrine-disrupting compounds (EDCs). Although each stressor can disturb fish liver metabolism independently, combined effects may exist. To unveil the molecular mechanisms behind the effects of EDCs and temperature, fish liver cell lines are potential models needing better characterisation. Accordingly, we exposed the rainbow trout RTL-W1 cells (72 h), at 18 °C and 21 °C, to ethynylestradiol (EE2), levonorgestrel (LNG), and a mixture of both hormones (MIX) at 10 µM. The gene expression of a selection of targets related to detoxification (CYP1A, CYP3A27, GST, UGT, CAT, and MRP2), estrogen exposure (ERα, VtgA), lipid metabolism (FAS, FABP1, FATP1), and temperature stress (HSP70b) was analysed by RT-qPCR. GST expression was higher after LNG exposure at 21 °C than at 18 °C. LNG further enhanced the expression of CAT, while both LNG and MIX increased the expressions of CYP3A27 and MRP2. In contrast, FAS expression only increased in MIX, compared to the control. ERα, VtgA, UGT, CYP1A, HSP70b, FABP1, and FATP1 expressions were not influenced by the temperature or the tested EDCs. The RTL-W1 model was unresponsive to EE2 alone, sensitive to LNG (in detoxification pathway genes), and mainly insensitive to the temperature range but had the potential to unveil specific interactions.
Collapse
Affiliation(s)
- Margarida Vilaça
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Célia Lopes
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Rosária Seabra
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Eduardo Rocha
- Laboratory of Histology and Embryology, Department of Microscopy, ICBAS-School of Medicine and Biomedical Sciences, University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Team of Animal Morphology and Toxicology, CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
von Kortzfleisch VT, Richter SH. Systematic heterogenization revisited: Increasing variation in animal experiments to improve reproducibility? J Neurosci Methods 2024; 401:109992. [PMID: 37884081 DOI: 10.1016/j.jneumeth.2023.109992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Life sciences are currently facing a reproducibility crisis. Originally, the crisis was born out of single alarming failures to reproduce findings at different times and locations. Nowadays, systematic studies indicate that the prevalence of irreproducible research does in fact exceed 50%. Viewed from a rather cynical perspective, Fett's law of the lab "Never replicate a successful experiment" has thus taken on a completely new meaning. In this respect, animal research has come under particular scrutiny, as the stakes are high in terms of both research ethics and societal impact. To counteract this, it is essential to identify sources of poor reproducibility as well as to iron out these failures. We here review the current debate, briefly discuss potential reasons, and summarize steps that have already been undertaken to improve reproducibility in animal research. By the example of classical behavioural phenotyping studies, we particularly highlight the role strict standardization plays in exacerbating the crisis, and review the concept of systematic heterogenization as an alternative strategy to deal with variation in animal studies. Briefly, we argue that systematic variation rather than strict homogenization of experimental conditions benefits the robustness of research findings, and hence their reproducibility. To this end, we will present concrete examples for systematically heterogenized experiments and provide a practical guide on how to apply systematic heterogenization in experimental practice.
Collapse
Affiliation(s)
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, 48149 Münster, Germany.
| |
Collapse
|
5
|
Calnan M, Kirchin S, Roberts DL, Wass MN, Michaelis M. Understanding and tackling the reproducibility crisis - Why we need to study scientists' trust in data. Pharmacol Res 2024; 199:107043. [PMID: 38128855 DOI: 10.1016/j.phrs.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
In the life sciences, there is an ongoing discussion about a perceived 'reproducibility crisis'. However, it remains unclear to which extent the perceived lack of reproducibility is the consequence of issues that can be tackled and to which extent it may be the consequence of unrealistic expectations of the technical level of reproducibility. Large-scale, multi-institutional experimental replication studies are very cost- and time-intensive. This Perspective suggests an alternative, complementary approach: meta-research using sociological and philosophical methodologies to examine researcher trust in data. An improved understanding of the criteria used by researchers to judge data reliability will provide crucial, initial evidence on the actual scale of the reproducibility crisis and on measures to tackle it.
Collapse
Affiliation(s)
- Michael Calnan
- School of Social Policy, Sociology and Social Research, University of Kent, Canterbury, UK
| | - Simon Kirchin
- Department of Philosophy, University of Kent, Canterbury, UK
| | - David L Roberts
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Mark N Wass
- School of Biosciences, University of Kent, Canterbury, UK
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury, UK; Dr Petra Joh Research Institute, Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Guo H, Gupta R, Sharma D, Zhanov E, Malone C, Jada R, Liu Y, Garg M, Singamaneni S, Zhao F, Tian L. Ultrasensitive, Multiplexed Buoyant Sensor for Monitoring Cytokines in Biofluids. NANO LETTERS 2023; 23:10171-10178. [PMID: 37922456 PMCID: PMC10863391 DOI: 10.1021/acs.nanolett.3c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/05/2023]
Abstract
Multiplexed quantification of low-abundance protein biomarkers in complex biofluids is important for biomedical research and clinical diagnostics. However, in situ sampling without perturbing biological systems remains challenging. In this work, we report a buoyant biosensor that enables in situ monitoring of protein analytes at attomolar concentrations with a 15 min temporal resolution. The buoyant biosensor implemented with fluorescent nanolabels enabled the ultrasensitive and multiplexed detection and quantification of cytokines. Implementing the biosensor in a digital manner (i.e., counting the individual nanolabels) further improves the low detection limit. We demonstrate that the biosensor enables the detection and quantification of the time-varying concentrations of cytokines (e.g., IL-6 and TNF-α) in macrophage culture media without perturbing the live cells. The easy-to-apply biosensor with attomolar sensitivity and multiplexing capability can enable an in situ analysis of protein biomarkers in various biofluids and tissues to aid in understanding biological processes and diagnosing and treating diverse diseases.
Collapse
Affiliation(s)
- Heng Guo
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Rohit Gupta
- Department
of Mechanical Engineering and Materials Science, Institute of Materials
Science and Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Dhavan Sharma
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Elizabeth Zhanov
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Connor Malone
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Ravi Jada
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Ying Liu
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Mayank Garg
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Srikanth Singamaneni
- Department
of Mechanical Engineering and Materials Science, Institute of Materials
Science and Engineering, Washington University
in St. Louis, St. Louis, Missouri 63130, United States
| | - Feng Zhao
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| | - Limei Tian
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
- Center
for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|