1
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
2
|
Potential Role of Superoxide Dismutase 3 (SOD3) in Resistance to Influenza A Virus Infection. Antioxidants (Basel) 2023; 12:antiox12020354. [PMID: 36829913 PMCID: PMC9952479 DOI: 10.3390/antiox12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Influenza A virus infection induces the production of excessive reactive oxygen species (ROS). Overproduction of ROS can overwhelm the antioxidant defense system, leading to increasing intensive oxidative stress. However, antioxidant defense against oxidative damage induced by influenza A virus infection, and in particular the significance of the SOD3 response in the pathogenesis of influenza virus infection, has not been well characterized. Here, we investigated the potential role of SOD3 in resistance to influenza A virus infection. In this study, SOD3, as an important antioxidant enzyme, was shown to be highly elevated in A549 cells following influenza A virus infection. Furthermore, inhibition of SOD3 impacted viral replication and virulence. We found that SOD3 disrupts IAV replication by impairing the synthesis of vRNA, whereas it did not affect viral ribonucleoprotein nuclear export. In addition, overexpression of SOD3 greatly reduced the levels of ROS caused by influenza A virus infection, regulated the inflammatory response to virus infection by inhibiting the phosphorylation of p65 of the NF-κB signaling pathway, and inhibited virus-induced apoptosis to a certain extent. Taken together, these findings indicate that SOD3 is actively involved in influenza A virus replication. Pharmacological modulation or targeting of SOD3 may pave the way for a novel therapeutic approach to combating influenza A virus infection.
Collapse
|
3
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
4
|
Silva LR, da Silva-Júnior EF. Multi-Target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives Against Influenza Viruses. Curr Top Med Chem 2022; 22:1485-1500. [PMID: 35086449 DOI: 10.2174/1568026622666220127112056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/13/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Influenza viruses (INFV), Orthomyxoviridae family, are mainly transmitted among humans, via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules more effective and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found a promising multi-target agent against INFV since can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile to most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Melo Mota Avenue, 57072-970, AC Simões campus, Maceió, Brazil
| |
Collapse
|
5
|
Milenkovic D, Ruskovska T, Rodriguez-Mateos A, Heiss C. Polyphenols Could Prevent SARS-CoV-2 Infection by Modulating the Expression of miRNAs in the Host Cells. Aging Dis 2021; 12:1169-1182. [PMID: 34341700 PMCID: PMC8279534 DOI: 10.14336/ad.2021.0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses (CoVs) are single-stranded RNA viruses which following virus attachment and entry into the host cell, particularly type 2 pneumocytes but also endothelial cells, release RNA into cytosol where it serves as a matrix for the host translation machinery to produce viral proteins. The viral RNA in cytoplasm can interact with host cell microRNAs which can degrade viral RNA and/or prevent viral replication. As such host cellular miRNAs represent key cellular mediators of antiviral defense. Polyphenols, plant food bioactives, exert antiviral properties, which is partially due to their capacity to modulate the expression of miRNAs. The objective of this work was to assess if polyphenols can play a role in prevention of SARS-CoV-2 associated complications by modulating the expression of host miRNAs. To test this hypothesis, we performed literature search to identify miRNAs that could bind SARS-CoV-2 RNA as well as miRNAs which expression can be modulated by polyphenols in lung, type 2 pneumocytes or endothelial cells. We identified over 600 miRNAs that have capacity to bind viral RNA and 125 miRNAs which expression can be modulated by polyphenols in the cells of interest. We identified that there are 17 miRNAs with both the capacity to bind viral RNA and which expression can be modulated by polyphenols. Some of these miRNAs have been identified as having antiviral properties or can target genes involved in regulation of processes of viral replication, apoptosis or viral infection. Taken together this analysis suggests that polyphenols could modulate expression of miRNAs in alveolar and endothelial cells and exert antiviral capacity.
Collapse
Affiliation(s)
- Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, F-63000 Clermont-Ferrand, France.
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia.
| | | | - Christian Heiss
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK.
| |
Collapse
|
6
|
Zhang X, Wang Y, Qin Q, Wang Y, Xu J, He X. Pronounced anti-neuroinflammatory jasmonates and terpenes isolated from lychee seeds. Fitoterapia 2021; 152:104924. [PMID: 33984432 DOI: 10.1016/j.fitote.2021.104924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
Lychee is a favorite fruit of the Cantonese and native to Southeast Asia. In this study, the anti-neuroinflammatory bioactive compounds of lychee seeds have been carried out. Five new jasmonates (1, 2, 6-8) and seventeen known compounds were isolated using a series of chemical and chromatographic methods. Their chemical structures were identified through comprehensive spectroscopic analysis. Anti-neuroinflammatory activities were assayed and evaluated for the purified compounds. Most of the compounds exhibited pronounced anti-neuroinflammatory activities on nitric oxide (NO) induced by lipopolysaccharide (LPS) in BV-2 microglia cells. Moreover, compounds 1, 2 and 20 could reduce the expression of LPS-induced pro-inflammatory factors (iNOS and COX-2), inhibit the expression of mRNA levels of iNOS, COX-2, IL-6 and block NF-κB nuclear translocation in dose-dependent manners. This study suggested that lychee phytochemicals could be benefit to some neuroinflammatory-associated diseases, such as Alzheimer's disease.
Collapse
Affiliation(s)
- Xuehai Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuyi Qin
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| |
Collapse
|
7
|
Musarra-Pizzo M, Pennisi R, Ben-Amor I, Mandalari G, Sciortino MT. Antiviral Activity Exerted by Natural Products against Human Viruses. Viruses 2021; 13:v13050828. [PMID: 34064347 PMCID: PMC8147851 DOI: 10.3390/v13050828] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Viral infections are responsible for several chronic and acute diseases in both humans and animals. Despite the incredible progress in human medicine, several viral diseases, such as acquired immunodeficiency syndrome, respiratory syndromes, and hepatitis, are still associated with high morbidity and mortality rates in humans. Natural products from plants or other organisms are a rich source of structurally novel chemical compounds including antivirals. Indeed, in traditional medicine, many pathological conditions have been treated using plant-derived medicines. Thus, the identification of novel alternative antiviral agents is of critical importance. In this review, we summarize novel phytochemicals with antiviral activity against human viruses and their potential application in treating or preventing viral disease.
Collapse
Affiliation(s)
- Maria Musarra-Pizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Shenzhen International Institute for Biomedical Research, 1301 Guanguang Rd. 3F Building 1-B, Silver Star Hi-Tech Park Longhua District, Shenzhen 518116, China
| | - Ichrak Ben-Amor
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Unit of Biotechnology and Pathologies, Higher Institute of Biotechnology of Sfax, University of Sfax, Sfax 3029, Tunisia
| | - Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale SS. Annunziata, 98168 Messina, Italy; (M.M.-P.); (R.P.); (I.B.-A.)
- Correspondence: (G.M.); (M.T.S.); Tel.: +39-090-6767-5217 (G.M. & M.T.S.)
| |
Collapse
|
8
|
Yang J, Zhang B, Huang Y, Liu T, Zeng B, Chai J, Wu J, Xu X. Antiviral activity and mechanism of ESC-1GN from skin secretion of hylarana guentheri against influenza a virus. J Biochem 2021; 169:757-765. [PMID: 33624755 DOI: 10.1093/jb/mvab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022] Open
Abstract
Development of new and effective anti-influenza drugs is critical for prophylaxis and treatment of influenza A virus infection. A wide range of amphibian skin secretions have been identified to show antiviral activity. Our previously reported ESC-1GN, a peptide from the skin secretion of Hylarana guentheri, displayed good antimicrobial and anti-inflammatory effects. Here, we found that ESC-1GN possessed significant antiviral effects against influenza A viruses. Moreover, ESC-1GN could inhibit the entry of divergent H5N1 and H1N1 virus strains with the IC50 values from 1.29 to 4.59 μM. Mechanism studies demonstrated that ESC-1GN disrupted membrane fusion activity of influenza A viruses by interaction with HA2 subunit. The results of site-directed mutant assay and molecular docking revealed that E105, N50 and the residues around them on HA2 subunit could form hydrogen bonds with amino acid on ESC-1GN, which were critical for ESC-1GN binding to HA2 and inhibiting the entry of influenza A viruses. Altogether, these not only suggest that ESC-1GN maybe represent a new type of excellent template designing drugs against influenza A viruses, but also it may shed light on the immune mechanism and survival strategy of H. guentheri against viral pathogens.
Collapse
Affiliation(s)
- Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Baishuang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
9
|
Levy E, Delvin E, Marcil V, Spahis S. Can phytotherapy with polyphenols serve as a powerful approach for the prevention and therapy tool of novel coronavirus disease 2019 (COVID-19)? Am J Physiol Endocrinol Metab 2020; 319:E689-E708. [PMID: 32755302 PMCID: PMC7518070 DOI: 10.1152/ajpendo.00298.2020] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 02/08/2023]
Abstract
Much more serious than the previous severe acute respiratory syndrome (SARS) coronavirus (CoV) outbreaks, the novel SARS-CoV-2 infection has spread speedily, affecting 213 countries and causing ∼17,300,000 cases and ∼672,000 (∼+1,500/day) deaths globally (as of July 31, 2020). The potentially fatal coronavirus disease (COVID-19), caused by air droplets and airborne as the main transmission modes, clearly induces a spectrum of respiratory clinical manifestations, but it also affects the immune, gastrointestinal, hematological, nervous, and renal systems. The dramatic scale of disorders and complications arises from the inadequacy of current treatments and absence of a vaccine and specific anti-COVID-19 drugs to suppress viral replication, inflammation, and additional pathogenic conditions. This highlights the importance of understanding the SARS-CoV-2 mechanisms of actions and the urgent need of prospecting for new or alternative treatment options. The main objective of the present review is to discuss the challenging issue relative to the clinical utility of plants-derived polyphenols in fighting viral infections. Not only is the strong capacity of polyphenols highlighted in magnifying health benefits, but the underlying mechanisms are also stressed. Finally, emphasis is placed on the potential ability of polyphenols to combat SARS-CoV-2 infection via the regulation of its molecular targets of human cellular binding and replication, as well as through the resulting host inflammation, oxidative stress, and signaling pathways.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Edgard Delvin
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
| | - Valérie Marcil
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| | - Schohraya Spahis
- Research Centre, Sainte-Justine University Health Center, Montreal, Quebec, Canada
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
- Institute of Nutrition and Functional Foods, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
10
|
Chen KK, Minakuchi M, Wuputra K, Ku CC, Pan JB, Kuo KK, Lin YC, Saito S, Lin CS, Yokoyama KK. Redox control in the pathophysiology of influenza virus infection. BMC Microbiol 2020; 20:214. [PMID: 32689931 PMCID: PMC7370268 DOI: 10.1186/s12866-020-01890-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 07/01/2020] [Indexed: 01/07/2023] Open
Abstract
Triggered in response to external and internal ligands in cells and animals, redox homeostasis is transmitted via signal molecules involved in defense redox mechanisms through networks of cell proliferation, differentiation, intracellular detoxification, bacterial infection, and immune reactions. Cellular oxidation is not necessarily harmful per se, but its effects depend on the balance between the peroxidation and antioxidation cascades, which can vary according to the stimulus and serve to maintain oxygen homeostasis. The reactive oxygen species (ROS) that are generated during influenza virus (IV) infection have critical effects on both the virus and host cells. In this review, we outline the link between viral infection and redox control using IV infection as an example. We discuss the current state of knowledge on the molecular relationship between cellular oxidation mediated by ROS accumulation and the diversity of IV infection. We also summarize the potential anti-IV agents available currently that act by targeting redox biology/pathophysiology.
Collapse
Affiliation(s)
- Ker-Kong Chen
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Densitory, Kaohisung University Hospital, Kaohisung, 807, Taiwan
| | - Moeko Minakuchi
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kung-Kai Kuo
- Department Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan
- Saito Laboratory of Cell Technology Institute, Yalta, Tochigi, 329-1471, Japan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| | - Kazunari K Yokoyama
- Waseda Research Institute for Science and Engineering, Waseca University, Shinjuku, Tokyo, 162-8480, Japan.
- Graduate Institute of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Rd., San-Ming District, Kaohsiung, 80807, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
11
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
12
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
|
14
|
Lee JY, Abundo MEC, Lee CW. Herbal Medicines with Antiviral Activity Against the Influenza Virus, a Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1663-1700. [PMID: 30612461 DOI: 10.1142/s0192415x18500854] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The rapidly changing influenza virus has remained a consistent threat to the well-being of a variety of species on the planet. Influenza virus' high mutation rate has allowed the virus to rapidly and continuously evolve, as well as generate new strains that are resistant to the current commercially available antivirals. Thus, the increased resistance has compelled the scientific community to explore alternative compounds that have antiviral effects against influenza virus. In this paper, the authors systematically review numerous herbal extracts that were shown to have antiviral effects against the virus. Specifically, the herbal antiviral targets mainly include hemagglutinin, neuraminidase and matrix 2 proteins. In some instances, herbal extracts inhibited the replication of oseltamivir-resistant strains and certain pentacyclic triterpenes exhibited higher antiviral activity than oseltamivir. This paper also explores the possibility of targeting various host-cell signaling pathways that are utilized by the virus during its replication process. Infected cell pathways are hijacked by intracellular signaling cascades such as NF-kB signaling, PI3K/Akt pathway, MAPK pathway and PKC/PKR signaling cascades. Herbal antivirals have been shown to target these pathways by suppressing nuclear export of influenza vRNP and thus inhibiting the phosphorylation signaling cascade. In conclusion, copious amounts of herbal antivirals have been shown to inhibit influenza virus, however further studies are needed for these new compounds to be up to modern pharmacological standards.
Collapse
Affiliation(s)
- Ju-Young Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,‡ Mom-Pyon Han Pharmacy, Nambusoonhwan-ro 770, Seosan City, Chungnam, Republic of Korea
| | - Michael Edward C Abundo
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Chang-Won Lee
- * Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, Ohio, USA.,† Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Kim M, Park WH, Lee S, Suh DH, Kim K, No JH, Kim YB. Oligonol, a Low Molecular Weight Polyphenol, Enhances Apoptotic Cell Death in Ovarian Cancer Cells via Suppressing NF-κB Activation. Nutr Cancer 2019; 71:141-148. [PMID: 30633587 DOI: 10.1080/01635581.2018.1557215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Oligonol, a low molecular weight polyphenol derived from lychee fruit, not only has anti-inflammatory effects in various disease conditions but also has antitumor-promoting effects. We evaluate the nuclear factor-kappa B (NF-κB)-related anticancer effect of oligonol in ovarian cancer using SKOV-3 cells. METHODS Cell viability was examined after oligonol treatment using MTT assay and reactive oxygen species (ROS) production measurement. Subsequently, apoptotic cell death was visualized by the TdT-mediated dUTP nick-end labeling (TUNEL) method. The effect of oligonol on the NF-κB signaling pathway was evaluated using western blot analysis and luciferase activity measurement of p65, an NF-κB subunit. RESULTS Cell viability significantly decreased after oligonol treatment of 72 h. Apoptosis-related markers were highly expressed in oligonol-treated cells, and increased apoptosis after oligonol treatment was also confirmed using the TUNEL assay. Western blotting results showed the expression of NF-κB signaling pathway factors, p-ERK, TRAF2, and p-IκBα, increased following treatment with oligonol, whereas p65 and COX-2 expression decreased. Immunofluorescence imaging results showed p65 luciferase activity in the nucleus as well as a shift to cytoplasmic expression. CONCLUSION Oligonol treatment significantly enhances apoptotic cell death in SKOV-3 cells, with the suppression of NF-κB activation, which plays an essential role in this anticancer effect.
Collapse
Affiliation(s)
- Miseon Kim
- a Department of Obstetrics and Gynecology, CHA Gangnam Medical Center , CHA University School of Medicine , Seoul , Republic of Korea
| | - Wook Ha Park
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Seul Lee
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Dong Hoon Suh
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Kidong Kim
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Jae Hong No
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| | - Yong Beom Kim
- b Department of Obstetrics and Gynecology , Seoul National University Bundang Hospital , Seongnam , Republic of Korea
| |
Collapse
|
16
|
Luganini A, Terlizzi ME, Catucci G, Gilardi G, Maffei ME, Gribaudo G. The Cranberry Extract Oximacro ® Exerts in vitro Virucidal Activity Against Influenza Virus by Interfering With Hemagglutinin. Front Microbiol 2018; 9:1826. [PMID: 30131793 PMCID: PMC6090095 DOI: 10.3389/fmicb.2018.01826] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/13/2023] Open
Abstract
The defense against influenza virus (IV) infections still poses a series of challenges. The current antiviral arsenal against influenza viruses is in fact limited; therefore, the development of new anti-influenza strategies effective against antigenically different viruses is an urgent priority. Bioactive compounds derived from medicinal plants and fruits may provide a natural source of candidates for such broad-spectrum antivirals. In this regard, cranberry (Vaccinium macrocarpon Aiton) extracts on the basis of their recognized anti-adhesive activities against bacteria, may provide potential compounds able to prevent viral attachment to target cells. Nevertheless, only few studies have so far investigated the possible use of cranberry extracts as an antiviral tool. This study focuses on the suitability of a cranberry extract as a direct-acting anti-influenza compound. We show that the novel cranberry extract Oximacro® inhibits influenza A and B viruses (IAV, IBV) replication in vitro because of its high content of A-type proanthocyanidins (PAC-A) dimers and trimers. Mechanistic studies revealed that Oximacro® prevents attachment and entry of IAV and IBV into target cells and exerts a virucidal activity. Oximacro® was observed to interact with the ectodomain of viral hemagglutinin (HA) glycoprotein, thus suggesting the interference with HA functions and a consequent loss of infectivity of IV particles. Fluorescence spectroscopy revealed a reduction in the intrinsic fluorescence of HA protein after incubation with purified dimeric PAC-A (PAC-A2), thus confirming a direct interaction between HA and Oximacro® PAC-A2. In silico docking simulations further supported the in vitro results and indicated that among the different components of the Oximacro® chemical profile, PAC-A2 exhibited the best binding propensity with an affinity below 10 nM. The role of PAC-A2 in the anti-IV activity of Oximacro® was eventually confirmed by the observation that it prevented IAV and IVB replication and caused the loss of infectivity of IV particles, thus indicating PAC-A2 as the major active component of Oximacro®. As a whole, these results suggest Oximacro® as a potential candidate to create novel antiviral agents of natural origin for the prevention of IV infections.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Maria E. Terlizzi
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianluca Catucci
- Biochemistry Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Gianfranco Gilardi
- Biochemistry Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Massimo E. Maffei
- Plant Physiology Laboratory, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
17
|
Hossain MK, Saha SK, Abdal Dayem A, Kim JH, Kim K, Yang GM, Choi HY, Cho SG. Bax Inhibitor-1 Acts as an Anti-Influenza Factor by Inhibiting ROS Mediated Cell Death and Augmenting Heme-Oxygenase 1 Expression in Influenza Virus Infected Cells. Int J Mol Sci 2018; 19:ijms19030712. [PMID: 29498634 PMCID: PMC5877573 DOI: 10.3390/ijms19030712] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 01/23/2023] Open
Abstract
Influenza virus remains a major health concern worldwide, and there have been continuous efforts to develop effective antivirals despite the use of annual vaccination programs. The purpose of this study was to determine the anti-influenza activity of Bax inhibitor-1 (BI-1). Madin-Darby Canine Kidney (MDCK) cells expressing wild type BI-1 and a non-functional BI-1 mutant, BI-1 ∆C (with the C-terminal 14 amino acids deleted) were prepared and infected with A/PR/8/34 influenza virus. BI-1 overexpression led to the suppression of virus-induced cell death and virus production compared to control Mock or BI-1 ∆C overexpression. In contrast to BI-1 ∆C-overexpressing cells, BI-1-overexpressing cells exhibited markedly reduced virus-induced expression of several viral genes, accompanied by a substantial decrease in ROS production. We found that treatment with a ROS scavenging agent, N-acetyl cysteine (NAC), led to a dramatic decrease in virus production and viral gene expression in control MDCK and BI-1 ∆C-overexpressing cells. In contrast, NAC treatment resulted in the slight additional suppression of virus production and viral gene expression in BI-1-overexpressing cells but was statistically significant. Moreover, the expression of heme oxygenase-1 (HO-1) was also significantly increased following virus infection in BI-1-overexpressing cells compared to control cells. Taken together, our data suggest that BI-1 may act as an anti-influenza protein through the suppression of ROS mediated cell death and upregulation of HO-1 expression in influenza virus infected MDCK cells.
Collapse
Affiliation(s)
- Mohammed Kawser Hossain
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Subbroto Kumar Saha
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Jung-Hyun Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Kyeongseok Kim
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Gwang-Mo Yang
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Hye Yeon Choi
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
18
|
Liu JX, Zhang Y, Hu QP, Li JQ, Liu YT, Wu QG, Wu JG, Lai XP, Zhang ZD, Li X, Li G. Anti-inflammatory effects of rosmarinic acid-4-O-β-D-glucoside in reducing acute lung injury in mice infected with influenza virus. Antiviral Res 2017; 144:34-43. [PMID: 28461072 DOI: 10.1016/j.antiviral.2017.04.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 11/29/2022]
Abstract
Rosmarinic acid-4-O-β-D-glucoside (RAG) is a dicaffeoyl phenolic compound isolated from Sarcandra glabra (Thunb.) Nakai. Preliminary studies show that RAG has significant anti-inflammatory properties and can alleviate ear swelling in mice and the paw swelling in rats. Here, the anti-influenza effects of RAG were investigated in mice infected with A/FM/1/47 H1N1 virus. The survival rate and body weight were observed, the lung edema, virus copies, inflammatory cytokines (including IL-4, IL-5, TNF-α and IFN-γ) and oxidative damage indexes (including SOD, MDA, NO, and CAT) were measured. Moreover, immune cell recruitment in alveoli was measured with white blood cells and differential counts. Therapeutic RAG concentrations substantially improve the symptoms, mitigate body weight loss and alleviate lung edema induced by virus, thus improve survival protection effects. Furthermore, RAG was shown to regulate influenza virus-induced inflammatory cytokine expression, specifically by downregulating the Th1 cell cytokines IFN-γ, TNF-α and upregulating the Th2 cell cytokines IL-4, IL-5. Cell migration and infiltration were also diminished after RAG administration.
Collapse
Affiliation(s)
- Jian-Xing Liu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiu-Ping Hu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ji-Qiang Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Yun-Tao Liu
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Qing-Guang Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jian-Guo Wu
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiao-Ping Lai
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Dongguan, 523808, China
| | - Zhong-de Zhang
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China
| | - Xiong Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, 510120, China.
| | - Geng Li
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size. Sci Rep 2016; 6:36304. [PMID: 27824099 PMCID: PMC5099886 DOI: 10.1038/srep36304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/13/2016] [Indexed: 11/21/2022] Open
Abstract
Litchi chinensis is a subtropical fruit crop, popular for its nutritional value and taste. Fruits with small seed size and thick aril are desirable in litchi. To gain molecular insight into gene expression that leads to the reduction in the size of seed in Litchi chinensis, transcriptomes of two genetically closely related genotypes, with contrasting seed size were compared in developing ovules. The cDNA library constructed from early developmental stages of ovules (0, 6, and 14 days after anthesis) of bold- and small-seeded litchi genotypes yielded 303,778,968 high quality paired-end reads. These were de-novo assembled into 1,19,939 transcripts with an average length of 865 bp. A total of 10,186 transcripts with contrast in expression were identified in developing ovules between the small- and large- seeded genotypes. A majority of these differences were present in ovules before anthesis, thus suggesting the role of maternal factors in seed development. A number of transcripts indicative of metabolic stress, expressed at higher level in the small seeded genotype. Several differentially expressed transcripts identified in such ovules showed homology with Arabidopsis genes associated with different stages of ovule development and embryogenesis.
Collapse
|
20
|
Kessy HNE, Hu Z, Zhao L, Zhou M. Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp. Molecules 2016; 21:molecules21060729. [PMID: 27271581 PMCID: PMC6273031 DOI: 10.3390/molecules21060729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/13/2016] [Accepted: 05/30/2016] [Indexed: 11/16/2022] Open
Abstract
The effects of different treatment methods on the stability and antioxidant capacity of the bioactive phenolic compounds of litchi pericarps were investigated. Fresh litchi pericarps were open air–dried, steam-blanched for 3 min in combination with hot air oven drying at 60 and 80 °C, and unblanched pericarps were dried in a hot air oven at 40, 60, 70 and 80 °C until equilibrium weight was reached. The total phenolic compounds, flavonoids, anthocyanins, proanthocyanidins and individual procyanidins, and antioxidant activity were analyzed. The combination of blanching and drying at 60 °C significantly (p < 0.05) improved the release of phenolic compounds, individual procyanidins, and the extracts′ antioxidant capacity compared with the unblanched hot air oven-dried and open air–dried pericarps. Drying of fresh unblanched litchi pericarps in either open air or a hot air oven caused significant losses (p < 0.05) in phenolic compounds and individual procyanidins, leading to a reduction in the antioxidant activity. A similar increase, retention or reduction was reflected in flavonoids, proanthocyanidins and anthocyanins because they are sub-groups of phenolic compounds. Ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picryldydrazyl (DPPH) radical-scavenging capacity of the treated pericarps were significantly correlated (r ≥ 0.927, p < 0.01) with the total phenolic compounds. Thus, the combination of steam blanching and drying treatments of fresh litchi pericarps could produce a stable and dry litchi pericarp that maintains phenolic compounds and antioxidant capacity as a raw material for further recovery of the phytochemicals.
Collapse
Affiliation(s)
- Honest N E Kessy
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| | - Zhuoyan Hu
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| | - Lei Zhao
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| | - Molin Zhou
- Department of Food Engineering, College of Food Science, South China Agricultural University, 483, Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
21
|
Park SK, Seong RK, Kim JA, Son SJ, Kim Y, Yokozawa T, Shin OS. Oligonol promotes anti-aging pathways via modulation of SIRT1-AMPK-Autophagy Pathway. Nutr Res Pract 2016; 10:3-10. [PMID: 26865910 PMCID: PMC4742308 DOI: 10.4162/nrp.2016.10.1.3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/05/2015] [Accepted: 08/26/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND/OBJECTIVES Oligonol, mainly found in lychee fruit, is an antioxidant polyphenolic compound which has been shown to have anti-inflammatory and anti-cancer properties. The detailed mechanisms by which oligonol may act as an anti-aging molecule have not been determined. MATERIALS/METHODS In this study, we evaluated the ability of oligonol to modulate sirtuin (SIRT) expression in human lung epithelial (A549) cells. Oligonol was added to A549 cells and reactive oxygen species production, mitochondrial superoxide formation, and p21 protein levels were measured. Signaling pathways activated upon oligonol treatment were also determined by western blotting. Furthermore, the anti-aging effect of oligonol was evaluated ex vivo in mouse splenocytes and in vivo in Caenorhabditis elegans. RESULTS Oligonol specifically induced the expression of SIRT1, whose activity is linked to gene expression, metabolic control, and healthy aging. In response to influenza virus infection of A549 cells, oligonol treatment significantly up-regulated SIRT1 expression and down-regulated viral hemagglutinin expression. Oligonol treatment also resulted in the activation of autophagy pathways and the phosphorylation of AMP-activated protein kinase (AMPK). Furthermore, oligonol-treated spleen lymphocytes from old mice showed increased cell proliferation, and mRNA levels of SIRT1 in the lungs of old mice were significantly lower than those in the lungs of young mice. Additionally, in vivo lethality assay revealed that oligonol extended the lifespan of C. elegans infected with lethal Vibrio cholerae. CONCLUSIONS These data demonstrated that oligonol may act as an anti-aging molecule by modulating SIRT1/autophagy/AMPK pathways.
Collapse
Affiliation(s)
- Seul-Ki Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Rak-Kyun Seong
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Ji-Ae Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Seok-Jun Son
- BK21 Plus Graduate Program, Department of Animal Science and Institute of Rare Earth for Biological Application , Chonbuk National University, Jeonju 54896, Korea
| | - Younghoon Kim
- BK21 Plus Graduate Program, Department of Animal Science and Institute of Rare Earth for Biological Application , Chonbuk National University, Jeonju 54896, Korea
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea.; Department of Microbiology, College of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
22
|
Bahramsoltani R, Sodagari HR, Farzaei MH, Abdolghaffari AH, Gooshe M, Rezaei N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev Anti Infect Ther 2015; 14:57-80. [PMID: 26567957 DOI: 10.1586/14787210.2016.1120670] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Influenza virus belongs to orthomyxoviridae family. This virus is a major public health problems, with high rates of morbidity and mortality. Despite a wide range of pharmacotherapeutic choices inhibiting specific sequences of pathological process of influenza, developing more effective therapeutic options is an immediate challenge. In this paper, a comprehensively review of natural polyphenolic products used worldwide for the management of influenza infection is presented. Cellular and molecular mechanisms of the natural polyphenols on influenza infection including suppressing virus replication cycle, viral hemagglutination, viral adhesion and penetration into the host cells, also intracellular transductional signaling pathways have been discussed in detail. Based on cellular, animal, and human evidence obtained from several studies, the current paper demonstrates that natural polyphenolic compounds possess potential effects on both prevention and treatment of influenza, which can be used as adjuvant therapy with conventional chemical drugs for the management of influenza and its complications.
Collapse
Affiliation(s)
| | - Hamid Reza Sodagari
- b Young Researchers and Elite Club , Karaj Branch, Islamic Azad University , Karaj , Iran
| | - Mohammad Hosein Farzaei
- c Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,d Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- e Medicinal Plants Research Center , Institute of Medicinal Plants, ACECR , Karaj , Iran.,f International Campus, ICTUMS, Tehran University of Medical Sciences , Tehran , Iran
| | - Maziar Gooshe
- g Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- h Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,i Molecular Immunology Research Center and Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,j Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
23
|
Dayem AA, Choi HY, Kim YB, Cho SG. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 2015; 10:e0121610. [PMID: 25806943 PMCID: PMC4373826 DOI: 10.1371/journal.pone.0121610] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 02/02/2015] [Indexed: 12/24/2022] Open
Abstract
Influenza is an infectious respiratory disease with frequent seasonal epidemics that causes a high rate of mortality and morbidity in humans, poultry, and animals. Influenza is a serious economic concern due to the costly countermeasures it necessitates. In this study, we compared the antiviral activities of several flavonols and other flavonoids with similar, but distinct, hydroxyl or methyl substitution patterns at the 3, 3′, and 4′ positions of the 15-carbon flavonoid skeleton, and found that the strongest antiviral effect was induced by isorhamnetin. Similar to quercetin and kaempferol, isorhamnetin possesses a hydroxyl group on the C ring, but it has a 3′-methyl group on the B ring that is absent in quercetin and kaempferol. Co-treatment and pre-treatment with isorhamnetin produced a strong antiviral effect against the influenza virus A/PR/08/34(H1N1). However, isorhamnetin showed the most potent antiviral potency when administered after viral exposure (post-treatment method) in vitro. Isorhamnetin treatment reduced virus-induced ROS generation and blocked cytoplasmic lysosome acidification and the lipidation of microtubule associated protein1 light chain 3-B (LC3B). Oral administration of isorhamnetin in mice infected with the influenza A virus significantly decreased lung virus titer by 2 folds, increased the survival rate which ranged from 70–80%, and decreased body weight loss by 25%. In addition, isorhamnetin decreased the virus titer in ovo using embryonated chicken eggs. The structure-activity relationship (SAR) of isorhamnetin could explain its strong anti-influenza virus potency; the methyl group located on the B ring of isorhamnetin may contribute to its strong antiviral potency against influenza virus in comparison with other flavonoids.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Hye Yeon Choi
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Young Bong Kim
- Department of Bio-Industrial Technologies, Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
| | - Ssang-Goo Cho
- Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Gwangjin-Gu, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
24
|
Dhama K, Latheef SK, Mani S, Samad HA, Karthik K, Tiwari R, Khan RU, Alagawany M, Farag MR, Alam GM, Laudadio V, Tufarelli V. Multiple Beneficial Applications and Modes of Action of Herbs in Poultry Health and Production-A Review. INT J PHARMACOL 2015. [DOI: 10.3923/ijp.2015.152.176] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
25
|
Lin YC, Chang JC, Cheng SY, Wang CM, Jhan YL, Lo IW, Hsu YM, Liaw CC, Hwang CC, Chou CH. New bioactive chromanes from Litchi chinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:2472-2478. [PMID: 25694129 DOI: 10.1021/jf5056387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Seven new δ-tocotrienols, designated litchtocotrienols A-G (1-7), together with one glorious macrocyclic analogue, macrolitchtocotrienol A (8), and one new meroditerpene chromane, cyclolitchtocotrienol A (9), were isolated from the leaves of Litchi chinensis. Their structures were mainly determined by extensive spectroscopic analysis, and their biological activities were evaluated by cytotoxicity against human gastric adenocarcinoma cell lines (AGS, ATCC CRL-1739) and hepatoma carcinoma cell line (HepG2 2.2.1.5). The structure-activity relationship of the isolated compounds was also discussed.
Collapse
Affiliation(s)
- Yu-Chi Lin
- Department of Life Sciences and #Department of Engineering Science, National Cheng Kung University , Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Immunomodulatory activity of red ginseng against influenza A virus infection. Nutrients 2014; 6:517-29. [PMID: 24473234 PMCID: PMC3942714 DOI: 10.3390/nu6020517] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 01/23/2023] Open
Abstract
Ginseng herbal medicine has been known to have beneficial effects on improving human health. We investigated whether red ginseng extract (RGE) has preventive effects on influenza A virus infection in vivo and in vitro. RGE was found to improve survival of human lung epithelial cells upon influenza virus infection. Also, RGE treatment reduced the expression of pro-inflammatory genes (IL-6, IL-8) probably in part through interference with the formation of reactive oxygen species by influenza A virus infection. Long-term oral administration of mice with RGE showed multiple immunomodulatory effects such as stimulating antiviral cytokine IFN-γ production after influenza A virus infection. In addition, RGE administration in mice inhibited the infiltration of inflammatory cells into the bronchial lumens. Therefore, RGE might have the potential beneficial effects on preventing influenza A virus infections via its multiple immunomodulatory functions.
Collapse
|
27
|
Shi X, Shi Z, Huang H, Zhu H, Zhu H, Ju D, Zhou P. PEGylated human catalase elicits potent therapeutic effects on H1N1 influenza-induced pneumonia in mice. Appl Microbiol Biotechnol 2013; 97:10025-33. [PMID: 23525936 PMCID: PMC7079947 DOI: 10.1007/s00253-013-4775-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 11/30/2022]
Abstract
Therapeutic recombinant human catalase (rhCAT) can quench infection-induced reactive oxygen species (ROS), thereby alleviating the associated tissue damage. Although the intranasal route is efficient to deliver native rhCAT to the lung, the therapeutic effect is limited by rapid elimination from the blood. In this study, we modified rhCAT with the active polymer, polyethylene glycol monomethyl ether (PEG)-5000, and analyzed the pharmacokinetics of PEGylated rhCAT in mice. The high tetra-PEGylation ratio was about 60%, and PEGylation prolonged the half-life of rhCAT in serum (75 vs. 13.5 min for native rhCAT). The protective effects of PEG-rhCAT were investigated in a mouse model of influenza virus A (H1N1)-associated pneumonia. PEG-rhCAT was more effectively delivered than native rhCAT and was associated with higher survival ratio, less extensive lung injuries, reduced ROS levels, and lower viral replication. Collectively, these findings indicate that PEGylation can enhance the therapeutic efficacy of native rhCAT and suggest that PEGylated rhCAT may represent a novel complement therapy for H1N1 influenza-induced pneumonia.
Collapse
Affiliation(s)
- Xunlong Shi
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Zhihui Shi
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Hai Huang
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Hongguang Zhu
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Haiyan Zhu
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Dianwen Ju
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| | - Pei Zhou
- Department of Drug Biosynthesis, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203 China
| |
Collapse
|
28
|
Amelioration of influenza virus-induced reactive oxygen species formation by epigallocatechin gallate derived from green tea. Acta Pharmacol Sin 2012; 33:1533-41. [PMID: 22941291 DOI: 10.1038/aps.2012.80] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM To study whether epigallocatechin gallate (EGCG), a green tea-derived polyphenol, exerted anti-influenza A virus activity in vitro and in vivo. METHODS Madin-Darby canine kidney (MDCK) cells were tested. The antiviral activity of EGCG in the cells was determined using hemagglutination assay and qPCR. Time of addition assay was performed to determine the kinetics of inhibition of influenza A by EGCG. The level of reactive oxygen species (ROS) were determined with confocal microscopy and flow cytometry. BALB/c mice were treated with EGCG (10, 20 or 40 mg·kg(-1)·d(-1), po) for 5 d. On the 3rd d of the treatment, the mice were infected with influenza A virus. Histopathological changes, lung index and virus titers in the lungs were determined. RESULTS Treatment of influenza A-infected MDCK cells with EGCG (1.25-100 nmol/L) inhibited influenza A replication in a concentration-dependent manner (the ED(50) value was 8.71±1.11 nmol/L). Treatment with EGCG (20 nmol/L) significantly suppressed the increased ROS level in MDCK cells following influenza A infection. In BALB/c mice infected with influenza virus, oral administration of EGCG (40 mg·kg(-1)·d(-1)) dramatically improved the survival rate, decreased the mean virus yields and mitigated viral pneumonia in the lungs, which was equivalent to oral administration of oseltamivir (40 mg·kg(-1)·d(-1)), a positive control drug. CONCLUSION The results provide a molecular basis for development of EGCG as a novel and safe chemopreventive agent for influenza A infection.
Collapse
|
29
|
Mata M, Morcillo E, Gimeno C, Cortijo J. N-acetyl-l-cysteine (NAC) inhibit mucin synthesis and pro-inflammatory mediators in alveolar type II epithelial cells infected with influenza virus A and B and with respiratory syncytial virus (RSV). Biochem Pharmacol 2011; 82:548-55. [DOI: 10.1016/j.bcp.2011.05.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 01/23/2023]
|
30
|
Bhoopat L, Srichairatanakool S, Kanjanapothi D, Taesotikul T, Thananchai H, Bhoopat T. Hepatoprotective effects of lychee (Litchi chinensis Sonn.): a combination of antioxidant and anti-apoptotic activities. JOURNAL OF ETHNOPHARMACOLOGY 2011; 136:55-66. [PMID: 21540102 DOI: 10.1016/j.jep.2011.03.061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/16/2011] [Accepted: 03/26/2011] [Indexed: 05/23/2023]
Abstract
AIM OF THE STUDY Gimjeng and Chakapat lychee (Litchi chinensis Sonn.) were evaluated for hepatoprotective activity on CCl(4)-induced hepatotoxicity in rats. MATERIALS AND METHODS Fruit pulp extracts of the lychees were examined for vitamin C, phenolic contents, anti-lipid peroxidation activity and hepatoprotective effect. Male Wistar albino rats were intraperitoneally injected (ip) with CCl(4) (2 ml/kg), then were orally administered (po) with silymarin (100mg/kg), and Gimjeng or Chakapat extracts (100 and 500 mg/kg). After ten days, the rats were sacrificed and their livers were examined histopathologically and immunohistochemically. Their serum glutamate-pyruvate transaminase, glutamate-oxalate transaminase, and alkaline phosphatase activities were analyzed. Apoptotic activity of the livers was assessed quantitatively. RESULTS The Gimjeng and Chakapat extracts showed the contents of vitamin C (1.2±0.6 and 4.3±0.1mg/100g) and phenolics like trans-cinnamic acid and pelargonidin-3-O-glucoside (9.80±0.21 and 19.56±0.4 mg GAE/g extract, respectively), and trolox equivalent antioxidant capacity (TEAC) values (11.64 and 9.09 g/mg trolox), respectively. The Gimjeng as compared to the Chakapat demonstrated a better antioxidant activity as revealed by anti-lipid peroxidation activity with the TEAC values. Administration of CCl(4) in rats elevated the serum GPT, GOT, and ALP level whereas silymarin, Gimjeng and Chakapat extracts prevented these increases significantly. Significant decrease of apoptotic cells together with restoration of morphological changes confirmed the hepatoprotective effect in the CCl(4)-induced rats pretreated with the extracts. CONCLUSION Antioxidant properties of the Gimjeng and Chakapat lychees as evidenced by the vitamin C and phenolic compounds, anti-lipid peroxidation and anti-apoptosis could explain the hepatoprotective effects in CCl(4)-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lertlakana Bhoopat
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | | | | | | | | | | |
Collapse
|
31
|
Liu G, Xiong S, Xiang YF, Guo CW, Ge F, Yang CR, Zhang YJ, Wang YF, Kitazato K. Antiviral activity and possible mechanisms of action of pentagalloylglucose (PGG) against influenza A virus. Arch Virol 2011; 156:1359-69. [DOI: 10.1007/s00705-011-0989-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/21/2011] [Indexed: 10/18/2022]
|
32
|
Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. MOLECULES (BASEL, SWITZERLAND) 2011; 16. [PMID: 21358592 PMCID: PMC6259602 DOI: 10.3390/molecules23100000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
With the appearance of the novel influenza A (H1N1) virus 2009 strain we have experienced a new influenza pandemic and many patients have died from severe complications associated with this pandemic despite receiving intensive care. This suggests that a definitive medical treatment for severe influenza-associated complications has not yet been established. Many studies have shown that superoxide anion produced by macrophages infiltrated into the virus-infected organs is implicated in the development of severe influenza-associated complications. Selected antioxidants, such as pyrrolidine dithiocabamate, N-acetyl-L-cysteine, glutathione, nordihydroguaiaretic acid, thujaplicin, resveratrol, (+)-vitisin A, ambroxol, ascorbic acid, 5,7,4-trihydroxy-8-methoxyflavone, catechins, quercetin 3-rhamnoside, iso- quercetin and oligonol, inhibit the proliferation of influenza virus and scavenge superoxide anion. The combination of antioxidants with antiviral drugs synergistically reduces the lethal effects of influenza virus infections. These results suggest that an agent with antiviral and antioxidant activities could be a drug of choice for the treatment of patients with severe influenza-associated complications. This review article updates knowledge of antioxidant therapy as a potential approach to severe influenza-associated complications.
Collapse
Affiliation(s)
- Noboru Uchide
- Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan.
| | | |
Collapse
|
33
|
Antioxidant Therapy as a Potential Approach to Severe Influenza-Associated Complications. Molecules 2011; 16:2032-52. [DOI: 10.3390/molecules16032032] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 02/23/2011] [Accepted: 02/25/2011] [Indexed: 12/24/2022] Open
|