1
|
Hou W, Xu XL, Huang LJ, Zhang ZY, Zhou ZN, Wang JY, Ouyang X, Xin SY, Zhang ZY, Xiong Y, Huang H, Lan JX. Bioactivities and Action Mechanisms of Ellipticine Derivatives Reported Prior to 2023. Chem Biodivers 2024; 21:e202400210. [PMID: 38433548 DOI: 10.1002/cbdv.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 03/05/2024]
Abstract
Currently, natural products are one of the priceless options for finding novel chemical pharmaceutical entities. Ellipticine is a naturally occurring alkaloid isolated from the leaves of Ochrosia elliptica Labill. Ellipticine and its derivatives are characterized by multiple biological activities. The purpose of this review was to provide a critical and systematic assessment of ellipticine and its derivatives as bioactive molecules over the last 60 years. Publications focused mainly on the total synthesis of alkaloids of this type without any evaluation of bioactivity have been excluded. We have reviewed papers dealing with the synthesis, bioactivity evaluation and mechanism of action of ellipticine and its derivatives. It was found that ellipticine and its derivatives showed cytotoxicity, antimicrobial ability, and anti-inflammatory activity, among which cytotoxicity toward cancer cell lines was the most investigated aspect. The inhibition of DNA topoisomerase II was the most relevant mechanism for cytotoxicity. The PI3K/AKT pathway, p53 pathway, and MAPK pathway were also closely related to the antiproliferative ability of these compounds. In addition, the structure-activity relationship was deduced, and future prospects were outlined. We are confident that these findings will lay a scientific foundation for ellipticine-based drug development, especially for anticancer agents.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xin-Liang Xu
- Department of Pharmacy, Xingguo People's Hospital, Xingguo Hospital Affiliated to Gannan Medical University, Ganzhou, 342400, P. R. China
| | - Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhen-Yu Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Xi Ouyang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Yi Xiong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, P. R. China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, P. R. China
| |
Collapse
|
2
|
El-Sawy ER, Kirsch G. An Overview of Aplysinopsins: Synthesis and Biological Activities. Mar Drugs 2023; 21:md21050268. [PMID: 37233462 DOI: 10.3390/md21050268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Marine products are among the most promising sources of biologically active molecules. Aplysinopsins, tryptophan-derived marine natural products, were isolated from different natural marine sources including sponges, stony corals (hard corals) especially genus scleractinian, as well as sea anemone, in addition to one nudibranch. Aplysinopsins were reported to be isolated from different marine organisms related to various geographic areas such as Pacific, Indonesia, Caribbean, and Mediterranean regions. This review gives an up-to-date overview of marine alkaloid aplysinopsins: their various sources, their synthesis, and the fact that many aplysinopsin derivatives are biologically active compounds.
Collapse
Affiliation(s)
- Eslam R El-Sawy
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57050 Metz, France
| |
Collapse
|
3
|
El-Sawy ER, El-Shahid ZA, Soliman AAF, Nassrallah A, Abdelwahab AB, Kirsch G, Abdelmegeed H. Synthetic Analogs of Marine Alkaloid Aplysinopsin Suppress Anti-Apoptotic Protein BCL2 in Prostate Cancer. Molecules 2022; 28:109. [PMID: 36615305 PMCID: PMC9821956 DOI: 10.3390/molecules28010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Aplysinopsins are a class of indole alkaloids that possess various pharmacological activities. Although their action has been studied in regard to many diseases, their effect on prostate cancer has not yet been examined. Therefore, we synthesized a new series of aplysinopsin analogs and investigated their cytotoxic activity against prostate cancer. Five analogs showed high antitumor activity via suppressing the expression of the anti-apoptotic gene Bcl2, simulationously increasing the expression of the pro-apoptotic genes p53, Bax and Caspase 3. The inhibition of BCL2 led to the activation of BAX, which in turn activated Caspase 3, leading to apoptosis. This dual mechanism of action via apoptosis and cell cycle arrest induction is responsible for aplysinopsin analogs antitumor activity. Hence, our newly synthesized analogs are highly promising candidates for further preclinical studies against prostate cancer.
Collapse
Affiliation(s)
- Eslam R. El-Sawy
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| | - Zeinab A. El-Shahid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza 12622, Egypt
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Giza 12622, Egypt
| | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57050 Metz, France
| | - Heba Abdelmegeed
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt
| |
Collapse
|
4
|
Kamboj A, Sihag B, Brar DS, Kaur A, Salunke DB. Structure activity relationship in β-carboline derived anti-malarial agents. Eur J Med Chem 2021; 221:113536. [PMID: 34058709 DOI: 10.1016/j.ejmech.2021.113536] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/21/2021] [Accepted: 05/02/2021] [Indexed: 11/28/2022]
Abstract
Malaria, even though an avoidable and treatable disease, can be fatal if ignored. Artemisinin Combination Therapy (ACT) and RTS, S/AS01 vaccine (Mosquirix™) are the only modest means available with humans to overcome malaria, a lethal affliction wreaking havoc across the globe. Employment of ACT is associated with problems such as 'Artemisinin Resistance' and the 'Hypnozoite conundrum' that hinder the complete eradication of malaria. In this view, the natural products specifically comprising β-carboline scaffold have shown good antiplasmodial responses against different strains of malaria. Taking these observations forward, researchers have performed structure-activity relationship (SAR) studies around three different β-carboline skeletons (tetrahydro β-carbolines, dihydro β-carbolines, β-carbolines) to design new β-carboline derived heterocyclic structures or modified naturally occurring derivatives. In addition, different approaches such as dimerization and linkage to other moieties have also been adopted to enhance the antimalarial activity. The present review describes a comprehensive SAR study encapsulating various natural and synthetic β-carbolines to elaborate upon the utility of these skeletons in designing drugs to subdue this deadly disease.
Collapse
Affiliation(s)
- Aarzoo Kamboj
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Binita Sihag
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deshkanwar Singh Brar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India; National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Chauhan M, Saxena A, Saha B. An insight in anti-malarial potential of indole scaffold: A review. Eur J Med Chem 2021; 218:113400. [PMID: 33823394 DOI: 10.1016/j.ejmech.2021.113400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
Malaria is a major parasitic disease in tropical and sub-tropical regions. Pertaining to the sustaining resistance in malarial parasite against the available drugs, novel treatment options are the need of the hour. In this resolve recently, focus has shifted to finding the natural alternatives that possess anti-plasmodial activity for combatting malaria. Drawing on the text written in ancient scriptures and Ayurveda, natural compounds are now being screened for their therapeutic properties. Indole is one such natural compound, present in all living organisms, it displays a range of therapeutic activities including anticancer, anti-inflammatory, antimalarial etc. In this review, we have discussed various indole scaffold as well as the semi-synthetic drugs containing indole moiety that have been synthesized for malaria treatment.
Collapse
Affiliation(s)
- Mehak Chauhan
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Anjali Saxena
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Biswajit Saha
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
6
|
Jaromin A, Czopek A, Parapini S, Basilico N, Misiak E, Gubernator J, Zagórska A. Synthesis and Antiplasmodial Activity of Novel Bioinspired Imidazolidinedione Derivatives. Biomolecules 2020; 11:biom11010033. [PMID: 33383906 PMCID: PMC7823712 DOI: 10.3390/biom11010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022] Open
Abstract
Malaria is an enormous threat to public health, due to the emergence of Plasmodium falciparum resistance to widely-used antimalarials, such as chloroquine (CQ). Current antimalarial drugs are aromatic heterocyclic derivatives, most often containing a basic component with an added alkyl chain in their chemical structure. While these drugs are effective, they have many side effects. This paper presents the synthesis and preliminary physicochemical characterisation of novel bioinspired imidazolidinedione derivatives, where the imidazolidinedione core was linked via the alkylene chain and the basic piperazine component to the bicyclic system. These compounds were tested against the asexual stages of two strains of P. falciparum—the chloroquine-sensitive (D10) and chloroquine-resistant (W2) strains. In parallel, in vitro cytotoxicity was investigated on a human keratinocyte cell line, as well as their hemolytic activity. The results demonstrated that the antiplasmodial effects were stronger against the W2 strain (IC50 between 2424.15–5648.07 ng/mL (4.98–11.95 µM)), compared to the D10 strain (6202.00–9659.70 ng/mL (12.75–19.85 µM)). These molecules were also non-hemolytic to human erythrocytes at a concentration active towards the parasite, but with low toxicity to mammalian cell line. The synthetized derivatives, possessing enhanced antimalarial activity against the CQ-resistant strain of P. falciparum, appear to be interesting antimalarial drug candidates.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-3756203
| | - Anna Czopek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 str, 30-688 Kraków, Poland; (A.C.); (E.M.); (A.Z.)
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, Via Pascal 36, 20133 Milan, Italy;
| | - Ernest Misiak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 str, 30-688 Kraków, Poland; (A.C.); (E.M.); (A.Z.)
| | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 str, 30-688 Kraków, Poland; (A.C.); (E.M.); (A.Z.)
| |
Collapse
|
7
|
Surur AS, Huluka SA, Mitku ML, Asres K. Indole: The After Next Scaffold of Antiplasmodial Agents? Drug Des Devel Ther 2020; 14:4855-4867. [PMID: 33204071 PMCID: PMC7666986 DOI: 10.2147/dddt.s278588] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022] Open
Abstract
Malaria remains a global public health problem due to the uphill fight against the causative Plasmodium parasites that are relentless in developing resistance. Indole-based antiplasmodial compounds are endowed with multiple modes of action, of which inhibition of hemozoin formation is the major mechanism of action reported for compounds such as cryptolepine, flinderoles, and isosungucine. Indole-based compounds exert their potent activity against chloroquine-resistant Plasmodium strains by inhibiting hemozoin formation in a mode of action different from that of chloroquine or through a novel mechanism of action. For example, dysregulating the sodium and osmotic homeostasis of Plasmodium through inhibition of PfATP4 is the novel mechanism of cipargamin. The potential of developing multi-targeted compounds through molecular hybridization ensures the existence of indole-based compounds in the antimalarial pipeline.
Collapse
Affiliation(s)
| | - Solomon Assefa Huluka
- Department of Pharmacology and Clinical Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Kaleab Asres
- Department of Pharmaceutical Chemistry and Pharmacognosy, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Aplysinopsins as Promising Marine Natural Product Drug Leads: Recent Developments. GRAND CHALLENGES IN MARINE BIOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-69075-9_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Pfaffenbach M, Gaich T. The Rhazinilam-Leuconoxine-Mersicarpine Triad of Monoterpenoid Indole Alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2017; 77:1-84. [DOI: 10.1016/bs.alkal.2016.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Dey A, Mukherjee A, Chaudhury M. Alkaloids From Apocynaceae. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63931-8.00010-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Frausin G, Hidalgo ADF, Lima RBS, Kinupp VF, Ming LC, Pohlit AM, Milliken W. An ethnobotanical study of anti-malarial plants among indigenous people on the upper Negro River in the Brazilian Amazon. JOURNAL OF ETHNOPHARMACOLOGY 2015. [PMID: 26216513 DOI: 10.1016/j.jep.2015.07.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND In this article we present the plants used for the treatment of malaria and associated symptoms in Santa Isabel do Rio Negro in the Brazilian Amazon. The region has important biological and cultural diversities including more than twenty indigenous ethnic groups and a strong history in traditional medicine. OBJECTIVE The aims of this study are to survey information in the Baniwa, Baré, Desana, Piratapuia, Tariana, Tukano, Tuyuca and Yanomami ethnic communities and among caboclos (mixed-ethnicity) on (a) plant species used for the treatment of malaria and associated symptoms, (b) dosage forms and (c) distribution of these anti-malarial plants in the Amazon. METHODS Information was obtained through classical ethnobotanical and ethnopharmacological methods from interviews with 146 informants in Santa Isabel municipality on the upper Negro River, Brazil. RESULTS Fifty-five mainly native neotropical plant species from 34 families were in use. The detailed uses of these plants were documented. The result was 187 records (64.5%) of plants for the specific treatment of malaria, 51 records (17.6%) of plants used in the treatment of liver problems and 29 records (10.0%) of plants used in the control of fevers associated with malaria. Other uses described were blood fortification ('dar sangue'), headache and prophylaxis. Most of the therapeutic preparations were decoctions and infusions based on stem bark, root bark and leaves. These were administered by mouth. In some cases, remedies were prepared with up to three different plant species. Also, plants were used together with other ingredients such as insects, mammals, gunpowder and milk. CONCLUSION This is the first study on the anti-malarial plants from this region of the Amazon. Aspidosperma spp. and Ampelozizyphus amazonicus Ducke were the most cited species in the communities surveyed. These species have experimental proof supporting their anti-malarial efficacy. The dosage of the therapeutic preparations depends on the kind of plant, quantity of plant material available, the patient's age (children and adults) and the local expert. The treatment time varies from a single dose to up to several weeks. Most anti-malarial plants are domesticated or grow spontaneously. They are grown in home gardens, open areas near the communities, clearings and secondary forests, and wild species grow in areas of seasonally flooded wetlands and terra firme ('solid ground') forest, in some cases in locations that are hard to access. Traditional knowledge of plants was found to be falling into disuse presumably as a consequence of the local official health services that treat malaria in the communities using commercial drugs. Despite this, some species are used in the prevention of this disease and also in the recovery after using conventional anti-malarial drugs.
Collapse
Affiliation(s)
- Gina Frausin
- Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, CEP 69067-375 Manaus, Amazonas, Brazil.
| | - Ari de Freitas Hidalgo
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos, 6200, Coroado I, CEP 69077-000 Manaus, Amazonas, Brazil.
| | - Renata Braga Souza Lima
- Programa de Pós-graduação em Biotecnologia, Universidade Federal do Amazonas, Avenida General Rodrigo Otavio Jordão Ramos, 6200, Coroado I, CEP 69077-000 Manaus, Amazonas, Brazil.
| | - Valdely Ferreira Kinupp
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Avenida Ferreira Pena, 1109, Centro, CEP 69025-010 Manaus, Amazonas, Brazil.
| | - Lin Chau Ming
- Faculdade de Ciências Agronômicas, Universidade Estadual Paulista "Júlio de Mesquita Filho", Fazenda Experimental Lageado, Rua José Barbosa de Barros, 1780, Caixa Postal 237, CEP 18610-307 Botucatu, São Paulo, Brazil.
| | - Adrian Martin Pohlit
- Coordenação de Tecnologia e Inovação, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, 2936, Petrópolis, CEP 69067-375 Manaus, Amazonas, Brazil.
| | | |
Collapse
|
12
|
Unconventional Knoevenagel-type indoles: Synthesis and cell-based studies for the identification of pro-apoptotic agents. Eur J Med Chem 2015; 102:648-60. [DOI: 10.1016/j.ejmech.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/22/2015] [Accepted: 08/04/2015] [Indexed: 02/02/2023]
|
13
|
Enhanced antimalarial activity by a novel artemether-lumefantrine lipid emulsion for parenteral administration. Antimicrob Agents Chemother 2014; 58:5658-65. [PMID: 24982079 DOI: 10.1128/aac.01428-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Artemether and lumefantrine (also known as benflumetol) are difficult to formulate for parenteral administration because of their low aqueous solubility. Cremophor EL as an emulsion excipient has been shown to cause serious side effects. This study reports a method of preparation and the therapeutic efficacies of novel lipid emulsion (LE) delivery systems with artemether, lumefantrine, or artemether in combination with lumefantrine, for parenteral administration. Their physical and chemical stabilities were also evaluated. Furthermore, the in vivo antimalarial activities of the lipid emulsions developed were tested in Plasmodium berghei-infected mice. Artemether, lumefantrine, or artemether in combination with lumefantrine was encapsulated in an oil phase, and the in vivo performance was assessed by comparison with artesunate for injection. It was found that the lumefantrine lipid emulsion (LUM-LE) and artemether-lumefantrine lipid emulsion (ARM-LUM-LE-3) (1:6) began to decrease the parasitemia levels after only 3 days, and the parasitemia inhibition was 90% at doses of 0.32 and 0.27 mg/kg, respectively, with immediate antimalarial effects greater than those of the positive-control group and constant antimalarial effects over 30 days. LUM-LE and ARM-LUM-LE-3 demonstrated the best performance in terms of chemical and physical stabilities and antiplasmodial efficacy, with a mean particle size of 150 nm, and they have many favorable properties for parenteral administration, such as biocompatibility, physical stability, and ease of preparation.
Collapse
|
14
|
Montoia A, Rocha e Silva LF, Torres ZE, Costa DS, Henrique MC, Lima ES, Vasconcellos MC, Souza RC, Costa MR, Grafov A, Grafova I, Eberlin MN, Tadei WP, Amorim RC, Pohlit AM. Antiplasmodial activity of synthetic ellipticine derivatives and an isolated analog. Bioorg Med Chem Lett 2014; 24:2631-4. [DOI: 10.1016/j.bmcl.2014.04.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/14/2014] [Accepted: 04/18/2014] [Indexed: 10/25/2022]
|
15
|
Chierrito TPC, Aguiar ACC, de Andrade IM, Ceravolo IP, Gonçalves RAC, de Oliveira AJB, Krettli AU. Anti-malarial activity of indole alkaloids isolated from Aspidosperma olivaceum. Malar J 2014; 13:142. [PMID: 24731256 PMCID: PMC4006081 DOI: 10.1186/1475-2875-13-142] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/21/2014] [Indexed: 11/23/2022] Open
Abstract
Background Several species of Aspidosperma (Apocynaceae) are used as treatments for human diseases in the tropics. Aspidosperma olivaceum, which is used to treat fevers in some regions of Brazil, contains the monoterpenoid indole alkaloids (MIAs) aspidoscarpine, uleine, apparicine, and N-methyl-tetrahydrolivacine. Using bio-guided fractionation and cytotoxicity testing in a human hepatoma cell line, several plant fractions and compounds purified from the bark and leaves of the plant were characterized for specific therapeutic activity (and selectivity index, SI) in vitro against the blood forms of Plasmodium falciparum. Methods The activity of A. olivaceum extracts, fractions, and isolated compounds was evaluated against chloroquine (CQ)-resistant P. falciparum blood parasites by in vitro testing with radiolabelled [3H]-hypoxanthine and a monoclonal anti-histidine-rich protein (HRPII) antibody. The cytotoxicity of these fractions and compounds was evaluated in a human hepatoma cell line using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and the SI was calculated as the ratio between the toxicity and activity. Two leaf fractions were tested in mice with Plasmodium berghei. Results All six fractions from the bark and leaf extracts were active in vitro at low doses (IC50 < 5.0 μg/mL) using the anti-HRPII test, and only two (the neutral and basic bark fractions) were toxic to a human cell line (HepG2). The most promising fractions were the crude leaf extract and its basic residue, which had SIs above 50. Among the four pure compounds evaluated, aspidoscarpine in the bark and leaf extracts showed the highest SI at 56; this compound, therefore, represents a possible anti-malarial drug that requires further study. The acidic leaf fraction administered by gavage to mice with blood-induced malaria was also active. Conclusion Using a bio-monitoring approach, it was possible to attribute the anti-P. falciparum activity of A. olivaceum to aspidoscarpine and, to a lesser extent, N-methyl-tetrahydrolivacine; other isolated MIA molecules were active but had lower SIs due to their higher toxicities. These results stood in contrast to previous work in which the anti-malarial activity of other Aspidosperma species was attributed to uleine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antoniana U Krettli
- Faculdade de Medicina, Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Prof, Alfredo Balena, 190, 30130-100 Belo Horizonte, MG, Brazil.
| |
Collapse
|
16
|
Vandekerckhove S, Desmet T, Tran HG, de Kock C, Smith PJ, Chibale K, D’hooghe M. Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg Med Chem Lett 2014; 24:1214-7. [DOI: 10.1016/j.bmcl.2013.12.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022]
|
17
|
Pohlit AM, Lima RBS, Frausin G, Silva LFRE, Lopes SCP, Moraes CB, Cravo P, Lacerda MVG, Siqueira AM, Freitas-Junior LH, Costa FTM. Amazonian plant natural products: perspectives for discovery of new antimalarial drug leads. Molecules 2013; 18:9219-40. [PMID: 23917112 PMCID: PMC6270278 DOI: 10.3390/molecules18089219] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/14/2013] [Accepted: 07/18/2013] [Indexed: 02/07/2023] Open
Abstract
Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria.
Collapse
Affiliation(s)
- Adrian Martin Pohlit
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Renata Braga Souza Lima
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Gina Frausin
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Luiz Francisco Rocha e Silva
- Instituto Nacional de Pesquisa da Amazônia (INPA), Av. André Araújo, 2936, 69067-375 Manaus, AM, Brazil; E-Mails: (R.B.S.L.); (G.F.); (L.F.R.S.)
| | - Stefanie Costa Pinto Lopes
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas-UNICAMP, P.O. Box 6109, 13083-862 Campinas, SP, Brazil; E-Mail:
| | - Carolina Borsoi Moraes
- Laboratório Nacional de Biociências (LNBio) – Centro Nacional de Pesquisa em Energia e Materiais (CNEPM) - P.O. Box 6192, 13083-970 Campinas, SP, Brazil; E-Mails: (C.B.M.); (L.H.F.-J.)
| | - Pedro Cravo
- Programa de Mestrado em Sociedade, Tecnologia e Meio Ambiente. UniEVANGÉLICA-Centro Universitário de Anápolis, 75083-515 Anapólis, GO, Brazil; E-Mail:
- Centro de Malária e Doenças Tropicais, LA/IHMT-Universidade Nova de Lisboa, 1349-008 Lisboa, Portugal
| | - Marcus Vinícius Guimarães Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, 69040-000 Manaus, AM, Brazil; E-Mails: (M.V.G.L.); (A.M.S.)
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, 69040-000 Manaus, AM, Brazil
| | - André Machado Siqueira
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, 69040-000 Manaus, AM, Brazil; E-Mails: (M.V.G.L.); (A.M.S.)
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, 69040-000 Manaus, AM, Brazil
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências (LNBio) – Centro Nacional de Pesquisa em Energia e Materiais (CNEPM) - P.O. Box 6192, 13083-970 Campinas, SP, Brazil; E-Mails: (C.B.M.); (L.H.F.-J.)
| | - Fabio Trindade Maranhão Costa
- Departamento de Genética, Evolução e Bioagentes, Universidade Estadual de Campinas-UNICAMP, P.O. Box 6109, 13083-862 Campinas, SP, Brazil; E-Mail:
| |
Collapse
|
18
|
dos Santos Torres ZE, Silveira ER, Rocha e Silva LF, Lima ES, de Vasconcellos MC, de Andrade Uchoa DE, Filho RB, Pohlit AM. Chemical composition of Aspidosperma ulei Markgr. and antiplasmodial activity of selected indole alkaloids. Molecules 2013; 18:6281-97. [PMID: 23760029 PMCID: PMC6270234 DOI: 10.3390/molecules18066281] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/17/2022] Open
Abstract
A new indole alkaloid, 12-hydroxy-N-acetyl-21(N)-dehydroplumeran-18-oic acid (13), and 11 known indole alkaloids: 3,4,5,6-tetradehydro-β-yohimbine (3), 19(E)-hunteracine (4), β-yohimbine (5), yohimbine (6), 19,20-dehydro-17-α-yohimbine (7), uleine (10), 20-epi-dasycarpidone (11), olivacine (8), 20-epi-N-nor-dasycarpidone (14), N-demethyluleine (15) and 20(E)-nor-subincanadine E (12) and a boonein δ-lactone 9, ursolic acid (1) and 1D,1O-methyl-chiro-inositol (2) were isolated from the EtOH extracts of different parts of Aspidosperma ulei Markgr. (Apocynaceae). Identification and structural elucidation were based on IR, MS, ¹H- and ¹³C-NMR spectral data and comparison to literature data. The antiplasmodial and antimalarial activity of 1, 5, 6, 8, 10 and 15 has been previously evaluated and 1 and 10 have important in vitro and in vivo antimalarial properties according to patent and/or scientific literature. With the aim of discovering new antiplasmodial indole alkaloids, 3, 4, 11, 12 and 13 were evaluated for in vitro inhibition against the multi-drug resistant K1 strain of the human malaria parasite Plasmodium falciparum. IC₅₀ values of 14.0 (39.9), 4.5 (16.7) and 14.5 (54.3) mg/mL (mM) were determined for 3, 11 and 12, respectively. Inhibitory activity of 3, 4, 11, 12 and 13 was evaluated against NIH3T3 murine fibroblasts. None of these compounds exhibited toxicity to fibroblasts (IC₅₀ > 50 mg/mL). Of the five compounds screened for in vitro antiplasmodial activity, only 11 was active.
Collapse
Affiliation(s)
- Zelina Estevam dos Santos Torres
- Instituto Nacional de Pesquisas da Amazônia, Caixa Postal 2223 - CEP 69080-971, Manaus, Amazonas, Brasil; E-Mails: (Z.E.S.T.); (L.F.R.S.)
- Universidade Federal do Ceará, Caixa Postal 12.200 - CEP 60021-940, Fortaleza, Ceará, Brasil; E-Mails: (E.R.S.); (D.E.A.U.)
| | - Edilberto Rocha Silveira
- Universidade Federal do Ceará, Caixa Postal 12.200 - CEP 60021-940, Fortaleza, Ceará, Brasil; E-Mails: (E.R.S.); (D.E.A.U.)
| | - Luiz Francisco Rocha e Silva
- Instituto Nacional de Pesquisas da Amazônia, Caixa Postal 2223 - CEP 69080-971, Manaus, Amazonas, Brasil; E-Mails: (Z.E.S.T.); (L.F.R.S.)
- Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos, 3000, CEP 69077-000 Campus Universitário, Manaus, Amazonas, Brasil; E-Mails: (E.S.L.); (M.C.V.)
| | - Emerson Silva Lima
- Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos, 3000, CEP 69077-000 Campus Universitário, Manaus, Amazonas, Brasil; E-Mails: (E.S.L.); (M.C.V.)
| | - Marne Carvalho de Vasconcellos
- Universidade Federal do Amazonas, Avenida General Rodrigo Otávio Jordão Ramos, 3000, CEP 69077-000 Campus Universitário, Manaus, Amazonas, Brasil; E-Mails: (E.S.L.); (M.C.V.)
| | - Daniel Esdras de Andrade Uchoa
- Universidade Federal do Ceará, Caixa Postal 12.200 - CEP 60021-940, Fortaleza, Ceará, Brasil; E-Mails: (E.R.S.); (D.E.A.U.)
| | - Raimundo Braz Filho
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, CEP 28013-602 Campos dos Goytacazes, Rio de Janeiro, Brasil; E-Mail:
| | - Adrian Martin Pohlit
- Instituto Nacional de Pesquisas da Amazônia, Caixa Postal 2223 - CEP 69080-971, Manaus, Amazonas, Brasil; E-Mails: (Z.E.S.T.); (L.F.R.S.)
| |
Collapse
|
19
|
Rocha e Silva LF, Montoia A, Amorim RCN, Melo MR, Henrique MC, Nunomura SM, Costa MRF, Andrade Neto VF, Costa DS, Dantas G, Lavrado J, Moreira R, Paulo A, Pinto AC, Tadei WP, Zacardi RS, Eberlin MN, Pohlit AM. Comparative in vitro and in vivo antimalarial activity of the indole alkaloids ellipticine, olivacine, cryptolepine and a synthetic cryptolepine analog. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 20:71-76. [PMID: 23092722 DOI: 10.1016/j.phymed.2012.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/17/2012] [Accepted: 09/06/2012] [Indexed: 06/01/2023]
Abstract
Indole alkaloids ellipticine (1), cryptolepine triflate (2a), rationally designed 11-(4-piperidinamino)cryptolepine hydrogen dichloride (2b) and olivacine (3) (an isomer of 1) were evaluated in vitro against Plasmodium falciparum and in vivo in Plasmodium berghei-infected mice. 1-3 inhibited P. falciparum (IC₅₀≤1.4 μM, order of activity: 2b>1>2a>3). In vitro toxicity to murine macrophages was evaluated and revealed selectivity indices (SI) of 10-12 for 2a and SI>2.8×10² for 1, 2b and 3. 1 administered orally at 50mg/kg/day was highly active against P. berghei (in vivo inhibition compared to untreated control (IVI)=100%, mean survival time (MST)>40 days, comparable activity to chloroquine control). 1 administered orally and subcutaneously was active at 10 mg/kg/day (IVI=70-77%; MST=27-29 days). 3 exhibited high oral activity at ≥50 mg/kg/day (IVI=90-97%, MST=23-27 days). Cryptolepine (2a) administered orally and subcutaneously exhibited moderate activity at 50mg/kg/day (IVI=43-63%, MST=24-25 days). At 50 mg/kg/day, 2b administered subcutaneously was lethal to infected mice (MST=3 days) and moderately active when administered orally (IVI=45-55%, MST=25 days). 1 and 3 are promising compounds for development of antimalarials.
Collapse
Affiliation(s)
- L F Rocha e Silva
- National Institute for Amazonian Research, Av. André Araújo 2936, Aleixo, 69060-001 Manaus, Amazonas, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pohlit AM, Rocha e Silva LF, Henrique MC, Montoia A, Amorim RCN, Nunomura SM, Andrade-Neto VF. Antimalarial activity of ellipticine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1049. [PMID: 22841488 DOI: 10.1016/j.phymed.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|