1
|
Muratori BG, da Veiga IET, Medeiros GN, Silva SMSE, Soliani AG, Prado CM, Cerutti SM. Standardized extract of Ginkgo biloba induced memory consolidation in female mice with hypofunction of vesicular acetylcholine transporter. Behav Brain Res 2025; 482:115455. [PMID: 39892653 DOI: 10.1016/j.bbr.2025.115455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Basal forebrain cholinergic neurons are pivotal for cholinergic signaling in the neocortex and hippocampal formation, crucially implicated in neurodegenerative diseases like late-onset Alzheimer's disease (LOAD), recognition memory impairments, and decision-making. The acetylcholine transporter (VAChT) is essential for loading acetylcholine into synaptic vesicles. Building on our previous findings showing that Ginkgo biloba extract (EGb) preserves recognition memory, we hypothesized EGb would enhance memory in female mice with varying VAChT reductions. We also explored whether reduced cholinergic signaling induces anxiety-like behavior and whether EGb could alleviate such symptoms. Three-month-old female mice with severe VAChT reduction (knockdown homozygotes; VAChT KDHOM), moderate reduction (heterozygotes; VAChT KDHET), and wild-type (WT) mice received the vehicle, 5 mg/kg Donepezil, or EGb at doses of 250, 500, and 1000 mg/kg for 30 days. Memory assessments included aversive tasks like discriminative avoidance memory and non-aversive tasks like object recognition and location memory. We assessed VAChT protein expression in the hippocampal formation (HF) using Western blotting and quantified VAChT-immunopositive cells (IR+) in specific HF subfields (dCA1, dCA3, dDG) using immunohistochemistry. Chronic EGb treatment significantly improved long-term memory in female VAChT KDHOM mice in object recognition and locations memories in a dose-dependent manner, unlike Donepezil. Enhanced memory was correlated with an increase in VAChT-IR+ cells in the dCA1 of VAChT KDHOM mice. Additionally, EGb reduced VAChT-IR+ cells in the dDG of VAChT KDHET mice, which was associated with decreased anxiety-like behavior. These findings suggest that EGb effectively mitigates deficits caused by cholinergic deficiency in hippocampal-dependent memory consolidation, thereby improving our understanding of its role in modulating long-term memory and hippocampal plasticity.
Collapse
Affiliation(s)
- Beatriz G Muratori
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Irina Emanuela T da Veiga
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Gleiciene N Medeiros
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Sofia M S E Silva
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Andressa G Soliani
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil
| | - Carla Máximo Prado
- Department of Biosciences, Universidade Federal de São Paulo, Campus Baixada Santista, Santos, SP, Brazil
| | - Suzete M Cerutti
- Cellular and Behavioral Neuropharmacology Laboratory, Department of Biological Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Hunt T, Pontifex MG, Vauzour D. (Poly)phenols and brain health - beyond their antioxidant capacity. FEBS Lett 2024; 598:2949-2962. [PMID: 39043619 PMCID: PMC11665953 DOI: 10.1002/1873-3468.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/25/2024]
Abstract
(Poly)phenols are a group of naturally occurring phytochemicals present in high amounts in plant food and beverages with various structures and activities. The impact of (poly)phenols on brain function has gained significant attention due to the growing interest in the potential benefits of these dietary bioactive molecules for cognitive health and neuroprotection. This review will therefore summarise the current knowledge related to the impact of (poly)phenols on brain health presenting evidence from both epidemiological and clinical studies. Cellular and molecular mechanisms in relation to the observed effects will also be described, including their impact on the gut microbiota through the modulation of the gut-brain axis. Although (poly)phenols have the potential to modulate the gut-brain axis regulation and influence cognitive function and decline through their interactions with gut microbiota, anti-inflammatory and antioxidant properties, further research, including randomised controlled trials and mechanistic studies, is needed to better understand the underlying mechanisms and establish causal relationships between (poly)phenol intake and brain health.
Collapse
Affiliation(s)
- Thomas Hunt
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| | | | - David Vauzour
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
| |
Collapse
|
3
|
Liu Q, Wang J, Gu Z, Ouyang T, Gao H, Kan H, Yang Y. Comprehensive Exploration of the Neuroprotective Mechanisms of Ginkgo biloba Leaves in Treating Neurological Disorders. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1053-1086. [PMID: 38904550 DOI: 10.1142/s0192415x24500435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Neurological disorders (NDs) are diseases that seriously affect the health of individuals worldwide, potentially leading to a significant reduction in the quality of life for patients and their families. Herbal medicines have been widely used in the treatment of NDs due to their multi-target and multi-pathway features. Ginkgo biloba leaves (GBLs), one of the most popular herbal medicines in the world, have been demonstrated to present therapeutic effects on NDs. However, the pharmacological mechanisms of GBLs in the treatment of neurological disorders have not been systematically summarized. This study aimed to summarize the molecular mechanism of GBLs in treating NDs from the cell models, animal models, and clinical trials of studies. Four databases, i.e., PubMed, Google Scholar, CNKI, and Web of Science were searched using the following keywords: "Ginkgo biloba", "Ginkgo biloba extract", "Ginkgo biloba leaves", "Ginkgo biloba leaves extract", "Neurological disorders", "Neurological diseases", and "Neurodegenerative diseases". All items meeting the inclusion criteria on the treatment of NDs with GBLs were extracted and summarized. Additionally, PRISMA 2020 was performed to independently evaluate the screening methods. Out of 1385 records in the database, 52 were screened in relation to the function of GBLs in the treatment of NDs; of these 52 records, 39 were preclinical trials and 13 were clinical studies. Analysis of pharmacological studies revealed that GBLs can improve memory, cognition, behavior, and psychopathology of NDs and that the most frequently associated GBLs are depression, followed by Alzheimer's disease, stroke, Huntington's disease, and Parkinson's disease. Additionally, the clinical studies of depression, AD, and stroke are the most common, and most of the remaining ND data are available from in vitro or in vivo animal studies. Moreover, the possible mechanisms of GBLs in treating NDs are mainly through free radical scavenging, anti-oxidant activity, anti-inflammatory response, mitochondrial protection, neurotransmitter regulation, and antagonism of PAF. This is the first paper to systematically and comprehensively investigate the pharmacological effects and neuroprotective mechanisms of GBLs in the treatment of NDs thus far. All findings contribute to a better understanding of the efficacy and complexity of GBLs in treating NDs, which is of great significance for the further clinical application of this herbal medicine.
Collapse
Affiliation(s)
- Qiwei Liu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Zongyun Gu
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Ting Ouyang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Honglei Gao
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| | - Hongxing Kan
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
- Anhui Computer Application Research Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Hefei, P. R. China
| | - Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine Hefei, Anhui 230012, P. R. China
| |
Collapse
|
4
|
Wang Y, Huang Y, Ma A, You J, Miao J, Li J. Natural Antioxidants: An Effective Strategy for the Treatment of Alzheimer's Disease at the Early Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11854-11870. [PMID: 38743017 DOI: 10.1021/acs.jafc.4c01323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The critical role of oxidative stress in Alzheimer's disease (AD) has been recognized by researchers recently, and natural antioxidants have been demonstrated to have anti-AD activity in animal models, such as Ginkgo biloba extract, soy isoflavones, lycopene, and so on. This paper summarized these natural antioxidants and points out that natural antioxidants always have multiple advantages which are help to deal with AD, such as clearing free radicals, regulating signal transduction, protecting mitochondrial function, and synaptic plasticity. Based on the available data, we have created a relatively complete pathway map of reactive oxygen species (ROS) and AD-related targets and concluded that oxidative stress caused by ROS is the core of AD pathogenesis. In the prospect, we introduced the concept of a combined therapeutic strategy, termed "Antioxidant-Promoting Synaptic Remodeling," highlighting the integration of antioxidant interventions with synaptic remodeling approaches as a novel avenue for therapeutic exploration.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Yan Huang
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Aixia Ma
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jiahe You
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jing Miao
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| | - Jinyao Li
- School of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi, Xinjiang 830000, PR China
- National Demonstration Center for Experimental Biology Education, Xinjiang University, Urumqi, Xinjiang 830000, PR China
| |
Collapse
|
5
|
Kennedy DO, Wightman EL. Mental Performance and Sport: Caffeine and Co-consumed Bioactive Ingredients. Sports Med 2022; 52:69-90. [PMID: 36447122 PMCID: PMC9734217 DOI: 10.1007/s40279-022-01796-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
The plant defence compound caffeine is widely consumed as a performance enhancer in a sporting context, with potential benefits expected in both physiological and psychological terms. However, although caffeine modestly but consistently improves alertness and fatigue, its effects on mental performance are largely restricted to improved attention or concentration. It has no consistent effect within other cognitive domains that are important to sporting performance, including working memory, executive function and long-term memory. Although caffeine's central nervous system effects are often attributed to blockade of the receptors for the inhibitory neuromodulator adenosine, it also inhibits a number of enzymes involved both in neurotransmission and in cellular homeostasis and signal propagation. Furthermore, it modulates the pharmacokinetics of other endogenous and exogenous bioactive molecules, in part via interactions with shared cytochrome P450 enzymes. Caffeine therefore enjoys interactive relationships with a wide range of bioactive medicinal and dietary compounds, potentially broadening, increasing, decreasing, or modulating the time course of their functional effects, or vice versa. This narrative review explores the mechanisms of action and efficacy of caffeine and the potential for combinations of caffeine and other dietary compounds to exert psychological effects in excess of those expected following caffeine alone. The review focusses on, and indeed restricted its untargeted search to, the most commonly consumed sources of caffeine: products derived from caffeine-synthesising plants that give us tea (Camellia sinensis), coffee (Coffea genus), cocoa (Theabroma cacao) and guaraná (Paullinia cupana), plus multi-component energy drinks and shots. This literature suggests relevant benefits to mental performance that exceed those associated with caffeine for multi-ingredient energy drinks/shots and several low-caffeine extracts, including high-flavanol cocoa and guarana. However, there is a general lack of research conducted in such a way as to disentangle the relative contributions of the component parts of these products.
Collapse
Affiliation(s)
- David O. Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| | - Emma L. Wightman
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST UK
| |
Collapse
|
6
|
Cheng N, Bell L, Lamport DJ, Williams CM. Dietary Flavonoids and Human Cognition: A Meta-Analysis. Mol Nutr Food Res 2022; 66:e2100976. [PMID: 35333451 PMCID: PMC9787524 DOI: 10.1002/mnfr.202100976] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/09/2022] [Indexed: 12/30/2022]
Abstract
Improving cognition is important in all age groups, from performance in school examinations to prevention of cognitive decline in later life. Dietary polyphenols, in particular flavonoids, have been examined for their benefits to cognitive outcomes. This meta-analysis evaluates the effects of dietary flavonoids on cognition across the lifespan. In January 2020 databases were searched for randomized controlled trials investigating flavonoid effects on human cognition. Eighty studies, comprising 5519 participants, were included in the final meta-analysis. The global analysis indicates dietary flavonoids induced significant benefit to cognitive performance (g = 0.148, p < 0.001), with subgroup analyses revealing that cocoa (g = 0.224, p = 0.036), ginkgo (g = 0.187, p ≤ 0.001), and berries (g = 0.149, p = 0.009) yielded the most notable improvements. Significant benefits were observed from chronic studies, in middle-aged and older adults, and with low and medium doses. The domains of long-term memory, processing speed, and mood showed sensitivity to flavonoid intervention. This meta-analysis provides evidence for the positive effects of flavonoids on cognition and highlights several moderating factors. Flavonoid-based dietary interventions therefore potentially offer a highly accessible, safe, and cost-effective treatment to help tackle the burden of cognitive decline.
Collapse
Affiliation(s)
- Nancy Cheng
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| | - Lynne Bell
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| | - Daniel J. Lamport
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| | - Claire M. Williams
- School of Psychology and Clinical Language SciencesUniversity of Reading, ReadingUK
| |
Collapse
|
7
|
Traversing through half a century research timeline on Ginkgo biloba, in transforming a botanical rarity into an active functional food ingredient. Biomed Pharmacother 2022; 153:113299. [PMID: 35750010 DOI: 10.1016/j.biopha.2022.113299] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Neurodegenerative diseases and various other chronic ailments have gradually transformed into public-health issues. Neurodegenerative disorders are a range of progressive neural abnormalities characterized by cellular dysfunctions, neuronal structure, and function loss. Among many chronic disorders, oxidative stress, inflammation, mitochondrial dysregulation, and cellular alterations in the human body are considered the most prevalent diagnostic symptoms. They have a profound impact on patients' health and wellbeing. The disease's poor curability, high healthcare costs, and lethality are the principal reasons for approaching and exploring the conventional treatment's phytotherapeutic alternatives. Ginkgo biloba (Maidenhair tree) is a well-known and widely used herbal plant in the Ginkgoaceae family. Its phytochemical constituents, Flavonoids, and terpenes, have been identified as the primary ingredients of Ginkgo biloba leaf extracts. It has been widely used due to its therapeutic properties, including its neuroprotective, anti-dementia, antioxidant, anti-inflammatory, vasoactive, anti-psychotic, anti-neoplastic, and anti-platelet activity. In recent decades, plenty of Ginkgo-derived substances has been researched and elucidated to have significant therapeutic effects in numerous disease models. This review aims to provide a thorough understanding of the botanical basis for Ginkgo biloba, its usage as herbal medicine, and its pivotal role in functional foods. Additionally, the clinical significance of Ginkgo biloba, as observed in various research works and clinical investigations, is also emphasized, facilitating a better understanding of their molecular basis and application in many chronic diseases.
Collapse
|
8
|
Barbalho SM, Direito R, Laurindo LF, Marton LT, Guiguer EL, Goulart RDA, Tofano RJ, Carvalho ACA, Flato UAP, Capelluppi Tofano VA, Detregiachi CRP, Bueno PCS, Girio RSJ, Araújo AC. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants (Basel) 2022; 11:525. [PMID: 35326176 PMCID: PMC8944638 DOI: 10.3390/antiox11030525] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases, cardiovascular disease (CVD), hypertension, insulin resistance, cancer, and other degenerative processes commonly appear with aging. Ginkgo biloba (GB) is associated with several health benefits, including memory and cognitive improvement, in Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. Its antiapoptotic, antioxidant, and anti-inflammatory actions have effects on cognition and other conditions associated with aging-related processes, such as insulin resistance, hypertension, and cardiovascular conditions. The aim of this study was to perform a narrative review of the effects of GB in some age-related conditions, such as neurodegenerative diseases, CVD, and cancer. PubMed, Cochrane, and Embase databases were searched, and the PRISMA guidelines were applied. Fourteen clinical trials were selected; the studies showed that GB can improve memory, cognition, memory scores, psychopathology, and the quality of life of patients. Moreover, it can improve cerebral blood flow supply, executive function, attention/concentration, non-verbal memory, and mood, and decrease stress, fasting serum glucose, glycated hemoglobin, insulin levels, body mass index, waist circumference, biomarkers of oxidative stress, the stability and progression of atherosclerotic plaques, and inflammation. Therefore, it is possible to conclude that the use of GB can provide benefits in the prevention and treatment of aging-related conditions.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Ledyane Taynara Marton
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
- School of Food and Technology of Marilia (FATEC), Avenida Castro Alves, Marília 17500-000, SP, Brazil
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Ricardo José Tofano
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Antonely C. A. Carvalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Uri Adrian Prync Flato
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Viviane Alessandra Capelluppi Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| | - Cláudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
| | - Patrícia C. Santos Bueno
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Raul S. J. Girio
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho 1001, Marília 17525-902, SP, Brazil;
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (E.L.G.); (R.d.A.G.); (R.J.T.); (A.C.A.C.); (U.A.P.F.); (C.R.P.D.); (P.C.S.B.); (A.C.A.)
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (L.F.L.); (L.T.M.); (V.A.C.T.)
| |
Collapse
|
9
|
de Vries K, Medawar E, Korosi A, Witte AV. The Effect of Polyphenols on Working and Episodic Memory in Non-pathological and Pathological Aging: A Systematic Review and Meta-Analysis. Front Nutr 2022; 8:720756. [PMID: 35155509 PMCID: PMC8826433 DOI: 10.3389/fnut.2021.720756] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Life expectancy steadily increases, and so do age-associated diseases, leading to a growing population suffering from cognitive decline and dementia. Impairments in working memory (WM) and episodic memory (EM) are associated with an increased risk of developing dementia. While there are no effective pharmacological therapies to preserve or enhance cognition and to slow down the progression from mild memory complaints to dementia so far, plant-based nutrients including polyphenols have been suggested to exert beneficial effects on brain aging. This review studies whether supplementary polyphenols are effective in preserving or enhancing memory in both non-pathological and pathological aging, and whether there are polyphenol efficiency differences between WM and EM. A systematic literature search was conducted and 66 out of 294 randomized clinical trials with 20 participants or more per group, aged 40 years or older were included. These covered a daily intake of 35–1,600 mg polyphenols, e.g., flavonols, flavonoids, isoflovones, anthocyanins, and/or stilbenes, over the course of 2 weeks to 6.5 years duration. In total, around half of the studies reported a significantly improved performance after polyphenol administration compared to control, while three studies reported a worsening of performance, and the remainder did not observe any effects. According to pooled WM and EM meta-analysis of all memory outcomes reported in 49 studies, overall effect size for WM and EM indicated a significant small positive effect on EM and WM with similar estimates (b ~ 0.24, p < 0.001), with large study heterogeneity and significant Funnel asymmetry tests suggesting a positivity bias. These results remained similar when excluding studies reporting extremely large positive effect sizes from the meta-analyses. While Ginkgo biloba and isoflavones did not show benefits in subgroup meta-analyses, those suggested some effects in extracts containing anthocyanins, other flavonoids and resveratrol, again potentially resulting from publication bias. To conclude, a systematic review and meta-analysis indicate that short- to moderate-term polyphenol interventions might improve WM and EM in middle-to older aged adults, however, publication bias in favor of positive results seems likely, rendering definite conclusions difficult. Future studies with larger, more diverse samples and sensitive monitoring of cardiovascular, metabolic and beginning brain pathologies as well as longer follow-up are needed to better understand the impact of age, (beginning) pathologies, gender, and long-term use on polyphenol action.
Collapse
Affiliation(s)
- Karin de Vries
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Evelyn Medawar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - A. Veronica Witte
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic for Cognitive Neurology, University Medical Center Leipzig, Leipzig, Germany
- *Correspondence: A. Veronica Witte
| |
Collapse
|
10
|
Kandiah N, Chan YF, Chen C, Dasig D, Dominguez J, Han S, Jia J, Kim S, Limpawattana P, Ng L, Nguyen DT, Ong PA, Raya‐Ampil E, Saedon N, Senanarong V, Setiati S, Singh H, Suthisisang C, Trang TM, Turana Y, Venketasubramanian N, Yong FM, Youn YC, Ihl R. Strategies for the use of Ginkgo biloba extract, EGb 761 ® , in the treatment and management of mild cognitive impairment in Asia: Expert consensus. CNS Neurosci Ther 2021; 27:149-162. [PMID: 33352000 PMCID: PMC7816207 DOI: 10.1111/cns.13536] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a neurocognitive state between normal cognitive aging and dementia, with evidence of neuropsychological changes but insufficient functional decline to warrant a diagnosis of dementia. Individuals with MCI are at increased risk for progression to dementia; and an appreciable proportion display neuropsychiatric symptoms (NPS), also a known risk factor for dementia. Cerebrovascular disease (CVD) is thought to be an underdiagnosed contributor to MCI/dementia. The Ginkgo biloba extract, EGb 761® , is increasingly being used for the symptomatic treatment of cognitive disorders with/without CVD, due to its known neuroprotective effects and cerebrovascular benefits. AIMS To present consensus opinion from the ASian Clinical Expert group on Neurocognitive Disorders (ASCEND) regarding the role of EGb 761® in MCI. MATERIALS & METHODS The ASCEND Group reconvened in September 2019 to present and critically assess the current evidence on the general management of MCI, including the efficacy and safety of EGb 761® as a treatment option. RESULTS EGb 761® has demonstrated symptomatic improvement in at least four randomized trials, in terms of cognitive performance, memory, recall and recognition, attention and concentration, anxiety, and NPS. There is also evidence that EGb 761® may help delay progression from MCI to dementia in some individuals. DISCUSSION EGb 761® is currently recommended in multiple guidelines for the symptomatic treatment of MCI. Due to its beneficial effects on cerebrovascular blood flow, it is reasonable to expect that EGb 761® may benefit MCI patients with underlying CVD. CONCLUSION As an expert group, we suggest it is clinically appropriate to incorporate EGb 761® as part of the multidomain intervention for MCI.
Collapse
Affiliation(s)
- Nagaendran Kandiah
- National Neuroscience InstituteSingaporeSingapore
- Duke‐NUSSingaporeSingapore
- Lee Kong Chian‐Imperial CollegeSingaporeSingapore
| | | | - Christopher Chen
- Departments of Pharmacology and Psychological MedicineYong Loo Lin School of MedicineMemory Aging and Cognition CentreNational University of SingaporeSingaporeSingapore
| | | | | | | | - Jianping Jia
- Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - SangYun Kim
- Department of NeurologySeoul National University College of Medicine and Seoul National University Bundang HospitalSeoulKorea
| | - Panita Limpawattana
- Srinakarind HospitalFaculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Li‐Ling Ng
- Changi General HospitalSingaporeSingapore
| | - Dinh Toan Nguyen
- Department of Internal MedicineUniversity of Medicine and PharmacyHue UniversityHue CityVietnam
| | | | | | | | | | - Siti Setiati
- Department of Internal MedicineCipto Mangunkusumo HospitalJakartaIndonesia
| | - Harjot Singh
- Dr Harjot Singh's Neuropsychiatry Centre and HospitalAmritsarIndia
| | | | - Tong Mai Trang
- Department of NeurologyUniversity Medical CenterHo Chi Minh CityVietnam
| | - Yuda Turana
- School of Medicine and Health ScienceAtma Jaya Catholic University of IndonesiaJakartaIndonesia
| | | | | | | | | |
Collapse
|
11
|
Preventing dementia? Interventional approaches in mild cognitive impairment. Neurosci Biobehav Rev 2021; 122:143-164. [PMID: 33440197 DOI: 10.1016/j.neubiorev.2020.12.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/13/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022]
Abstract
Mild cognitive impairment (MCI) is defined as an intermediate state between normal cognitive aging and dementia. It describes a status of the subjective impression of cognitive decline and objectively detectible memory impairment beyond normal age-related changes. Activities of daily living are not affected. As the population ages, there is a growing need for early, proactive programs that can delay the consequences of dementia and improve the well-being of people with MCI and their caregivers. Various forms and approaches of intervention for older people with MCI have been suggested to delay cognitive decline. Pharmacological as well as non-pharmacological approaches (cognitive, physiological, nutritional supplementation, electric stimulation, psychosocial therapeutic) and multicomponent interventions have been proposed. Interventional approaches in MCI from 2009 to April 2019 concerning the cognitive performance are presented in this review.
Collapse
|
12
|
Băjenaru O, Prada G, Antochi F, Jianu C, Tudose C, Cuciureanu A, Docu AA, Perrot V, Avram M, Tiu C. Effectiveness and Safety Profile of Ginkgo biloba Standardized Extract (EGb761®) in Patients with Amnestic Mild Cognitive Impairment. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2021; 20:378-384. [PMID: 33557741 DOI: 10.2174/1871527320666210208125524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Ginkgo biloba is a common symptomatic treatment for cognitive impairment, although data on its efficacy are controversial. OBJECTIVE The aim of the current study was to evaluate the effectiveness of standardized Ginkgo biloba extract EGb761® (Tanakan®) for the improvements of cognitive functions over 24 months in a local cohort of patients diagnosed with amnestic mild cognitive impairment (aMCI). METHODS This multicentre non-interventional study included 500 eligible patients with a MCI treated with 120 mg/day standardized Ginkgo biloba extract EGb761® (Tanakan®). Patients were evaluated using several scales for assessment of cognition, memory, activities of daily living, and depression (MMSE, FAQ, CGI, HAM-D) at baseline and every 6 months after that for a 24-month period. The median change in MMSE at the 24-month follow-up was the primary outcome of the study. RESULTS A statistically significant increase of 2 points in the median MMSE score was obtained. In patients with other concomitant cognitive disorders, the improvement in MMSE was less significant. Tanakan® improved memory impairment (using the delayed recall test) and the ability to accomplish activities of daily living (mean FAQ score, 1.7); it also decreased the severity of depression (mean HAM-D score, 2.4) at the end of the study. More than 80% of the patients showed minimal improvement of their condition as assessed by the CGI-Improvement Scale. CONCLUSION The administration of EGb761® (Tanakan®) led to a significant improvement of cognitive decline, memory, activities of daily living, and depression in subjects with aMCI over 24 months.
Collapse
Affiliation(s)
- Ovidiu Băjenaru
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Gabriel Prada
- Department of Geriatrics and Gerontology, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Florina Antochi
- Department of Neurology, University Emergency Hospital Bucharest, Bucharest, Romania
| | - Cătălin Jianu
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Victor Babes", Timisoara, Romania
| | - Cătălina Tudose
- Department of Psychiatry, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Adina Cuciureanu
- Department of Neurology, Individual Medical Office, Iasi, Romania
| | - Any A Docu
- Department of Neurology, Faculty of Medicine, University of Medicine and Pharmacy "Ovidius", Constanta, Romania
| | | | | | - Cristina Tiu
- Department of Neurology, University Emergency Hospital Bucharest, Bucharest, Romania
| |
Collapse
|
13
|
Roe AL, Venkataraman A. The Safety and Efficacy of Botanicals with Nootropic Effects. Curr Neuropharmacol 2021; 19:1442-1467. [PMID: 34315377 PMCID: PMC8762178 DOI: 10.2174/1570159x19666210726150432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022] Open
Abstract
Recent estimates for the global brain health supplement category, i.e. nootropic market size, will grow to nearly $5.8 billion by 2023. Overall, nearly one-quarter (23%) of adults currently take a supplement to maintain or improve brain health or delay and reverse dementia. Not surprisingly, the use of such supplements increases with age - more than one-third of the oldest generation (ages 74 and older) takes a supplement for brain health. This widespread use is being driven by a strong desire both in the younger and older generations to enhance cognitive performance and achieve healthy aging. The most prevalent botanicals currently dominating the nootropic marketplace include Gingko biloba, American ginseng, and Bacopa monnieri. However, other botanicals that affect stress, focus, attention, and sleep have also been procured by dietary supplement companies developing products for improving both, short and long-term brain health. This review focuses on efficacy data for neuroactive botanicals targeted at improving cognitive function, stress reduction, memory, mood, attention, concentration, focus, and alertness, including Bacopa monnieri, Ginkgo biloba, Holy basil, American ginseng, Gotu kola, Lemon balm, Common and Spanish sages and spearmint. Botanicals are discussed in terms of available clinical efficacy data and current safety profiles. Data gaps are highlighted for both efficacy and safety to bring attention to unmet needs and future research.
Collapse
Affiliation(s)
- Amy L. Roe
- Personal Healthcare Division, The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| | - Arvind Venkataraman
- Personal Healthcare Division, The Procter & Gamble Company, 8700 Mason-Montgomery Road, Mason, OH, 45040, USA
| |
Collapse
|
14
|
Müller WE, Eckert A, Eckert GP, Fink H, Friedland K, Gauthier S, Hoerr R, Ihl R, Kasper S, Möller HJ. Therapeutic efficacy of the Ginkgo special extract EGb761 ® within the framework of the mitochondrial cascade hypothesis of Alzheimer's disease. World J Biol Psychiatry 2019; 20:173-189. [PMID: 28460580 DOI: 10.1080/15622975.2017.1308552] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction as an important common pathomechanism for the whole spectrum of age-associated memory disorders from cognitive symptoms in the elderly over mild cognitive impairment to Alzheimer's dementia. Thus, a drug such as the Ginkgo special extract EGb 761® which improves mitochondrial function should be able to ameliorate cognitive deficits over the whole aging spectrum. METHODS We review the most relevant publications about effects of EGb 761® on cognition and synaptic deficits in preclinical studies as well as on cognitive deficits in man from aging to dementia. RESULTS EGb 761® improves mitochondrial dysfunction and cognitive impairment over the whole spectrum of age-associated cognitive disorders in relevant animal models and in vitro experiments, and also shows clinical efficacy in improving cognition over the whole range from aging to Alzheimer's or even vascular dementia. CONCLUSIONS EGb 761® shows clinical efficacy in the treatment of cognitive deficits over the whole spectrum of age-associated memory disorders. Thus, EGb 761® can serve as an important pharmacological argument for the mitochondrial cascade hypothesis of dementia.
Collapse
Affiliation(s)
- Walter E Müller
- a Department of Pharmacology , Biocenter, Goethe-University , Frankfurt/M , Germany
| | - Anne Eckert
- b Neurobiological laboratory, Department of Psychiatry , Basel , Switzerland
| | - Gunter P Eckert
- c Department of Nutritional Sciences , Justus-Liebig University , Giessen , Germany
| | - Heidrun Fink
- d Department of Pharmacology and Toxicology , Free University , Berlin , Germany
| | - Kristina Friedland
- e Department of Molecular and Clinical Pharmacy , University Erlangen , Erlangen , Germany
| | - Serge Gauthier
- f McGill Center for Studies in Aging , Montreal , Canada
| | - Robert Hoerr
- g Dr.Willmar Schwabe GmbH & Co. KG , Karlsruhe , Germany
| | - Ralf Ihl
- h Alexianer Hospital, Clinic of Geriatric Psychiatry , Krefeld , Germany
| | - Siegfried Kasper
- i Department of Psychiatry , Medical University , Vienna , Austria
| | - Hans-Jürgen Möller
- j Department of Psychiatry , Ludwig-Maximilian University , Munich , Germany
| |
Collapse
|
15
|
Kennedy DO. Phytochemicals for Improving Aspects of Cognitive Function and Psychological State Potentially Relevant to Sports Performance. Sports Med 2019; 49:39-58. [PMID: 30671903 PMCID: PMC6445817 DOI: 10.1007/s40279-018-1007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Subjective alertness and optimal cognitive function, including in terms of attention, spatial/working memory and executive function, are intrinsic to peak performance in many sports. Consumption of a number of plant-derived 'secondary metabolite' phytochemicals can modulate these psychological parameters, although there is a paucity of evidence collected in a sporting context. The structural groups into which these phytochemicals fall-phenolics, terpenes and alkaloids-vary in terms of the ecological roles they play for the plant, their toxicity and the extent to which they exert direct effects on brain function. The phenolics, including polyphenols, play protective roles in the plant, and represent a natural, benign component of the human diet. Increased consumption has been shown to improve cardiovascular function and is associated with long-term brain health. However, whilst short-term supplementation with polyphenols has been shown to consistently modulate cerebral blood-flow parameters, evidence of direct effects on cognitive function and alertness/arousal is currently comparatively weak. Terpenes play both attractant and deterrent roles in the plant, and typically occur less frequently in the diet. Single doses of volatile monoterpenes derived from edible herbs such as sage (Salvia officinalis/lavandulaefolia) and peppermint (Mentha piperita), diterpene-rich Ginkgo biloba extracts and triterpene-containing extracts from plants such as ginseng (Panax ginseng/quinquefolius) and Bacopa monnieri have all been shown to enhance relevant aspects of cognitive function and alertness. The alkaloids play toxic defensive roles in the plant, including via interference with herbivore brain function. Whilst most alkaloids are inappropriate in a sporting context due to toxicity and legal status, evidence suggests that single doses of nicotine and caffeine may be able to enhance relevant aspects of cognitive function and/or alertness. However, their benefits may be confounded by habituation and withdrawal effects in the longer term. The efficacy of volatile terpenes, triterpene-rich extracts and products combining low doses of caffeine with other phytochemicals deserves more research attention.
Collapse
Affiliation(s)
- David O Kennedy
- Brain, Performance and Nutrition Research Centre, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK.
| |
Collapse
|
16
|
An overview of the possible therapeutic role of SUMOylation in the treatment of Alzheimer’s disease. Pharmacol Res 2018; 130:420-437. [DOI: 10.1016/j.phrs.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
17
|
Zuo W, Yan F, Zhang B, Li J, Mei D. Advances in the Studies of Ginkgo Biloba Leaves Extract on Aging-Related Diseases. Aging Dis 2017; 8:812-826. [PMID: 29344418 PMCID: PMC5758353 DOI: 10.14336/ad.2017.0615] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/15/2017] [Indexed: 12/17/2022] Open
Abstract
The prevalence of degenerative disorders in public health has promoted in-depth investigations of the underlying pathogenesis and the development of new treatment drugs. Ginkgo biloba leaves extract (EGb) is obtained from Ginkgo biloba leaves and has been used for thousands of years. In recent decades, both basic and clinical studies have established the effects of EGb. It is widely used in various degenerative diseases such as cerebrovascular disease, Alzheimer's disease, macroangiopathy and more. Here, we reviewed several pharmacological mechanisms of EGb, including its antioxidant properties, prevention of mitochondrial dysfunctions, and effect on apoptosis. We also described some clinical applications of EGb, such as its effect on neuro and cardiovascular protection, and anticancer properties. The above biological functions of EGb are mainly focused on aging-related disorders, but its effect on other diseases remains unclear. Thus, through this review, we aim to encourage further studies on EGb and discover more potential applications.
Collapse
Affiliation(s)
- Wei Zuo
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Feng Yan
- Cerebrovascular Diseases Research Institute, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurobiology, Capital Medical University, Beijing, China
| | - Bo Zhang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiantao Li
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Mei
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
Diosgenin-Rich Yam Extract Enhances Cognitive Function: A Placebo-Controlled, Randomized, Double-Blind, Crossover Study of Healthy Adults. Nutrients 2017; 9:nu9101160. [PMID: 29064406 PMCID: PMC5691776 DOI: 10.3390/nu9101160] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/10/2017] [Accepted: 10/18/2017] [Indexed: 12/12/2022] Open
Abstract
Diosgenin, a yam-derived compound, was found to facilitate the repair of axonal atrophy and synaptic degeneration and improve memory dysfunction in a transgenic mouse model of Alzheimer’s disease (AD). It was also found to enhance neuronal excitation and memory function even in normal mice. We hypothesized that diosgenin, either isolated or in an extract, may represent a new category of cognitive enhancers with essential activities that morphologically and functionally reinforce neuronal networks. This study aimed to investigate the effects of a diosgenin-rich yam extract on cognitive enhancement in healthy volunteers. For this placebo-controlled, randomized, double-blind, crossover study, 28 healthy volunteers (age: 20–81 years) were recruited from Toyama Prefecture, Japan, and was randomly assigned to receive either a yam extract or placebo. Preliminary functional animal experiments indicated that an oil solvent mediated the most efficient distribution of diosgenin into the blood and brain after oral administration, and was a critical factor in the cognitive benefits. Therefore, test samples (placebo and yam extract) were prepared with olive oil and formulated as soft capsules. The intake period was 12 weeks, and a 6-week washout period separated the two crossover intake periods. The Japanese version of the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) test was used for neurocognitive assessment, and the adverse effects were monitored through blood testing. Diosgenin-rich yam extract consumption for 12 weeks yielded significant increases in total RBANS score. Among the 12 individual standard cognitive subtests, diosgenin-rich yam extract use significantly improved the semantic fluency. No adverse effects were reported. The diosgenin-rich yam extract treatment appeared to safely enhance cognitive function in healthy adults.
Collapse
|
19
|
Ribeiro ML, Moreira LM, Arçari DP, Dos Santos LF, Marques AC, Pedrazzoli J, Cerutti SM. Protective effects of chronic treatment with a standardized extract of Ginkgo biloba L. in the prefrontal cortex and dorsal hippocampus of middle-aged rats. Behav Brain Res 2016; 313:144-150. [PMID: 27424157 DOI: 10.1016/j.bbr.2016.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
This study assessed the effects of chronic treatment with a standardized extract of Ginkgo biloba L. (EGb) on short-term and long-term memory as well as on anxiety-like and locomotor activity using the plus-maze discriminative avoidance task (PM-DAT). Additionally, we evaluated the antioxidant and neuroprotective effects of EGb on the prefrontal cortex (PFC) and dorsal hippocampus (DH) of middle-aged rats using the comet assay. Twelve-month-old male Wistar rats were administered vehicle or EGb (0.5mgkg(-1) or 1.0gkg(-1)) for 30days. Behavioural data showed that EGb treatment improved short-term memory. Neither an anti-anxiety effect nor a change in locomotor activity was observed. Twenty-four hours after the behavioural tests, the rats were decapitated, and the PFC and DH were quickly dissected out and prepared for the comet assay. The levels of DNA damage in the PFC were significantly lower in rats that were treated with 1.0gkg(-1) EGb. Both doses of EGb decreased H2O2-induced DNA breakage in cortical cells, whereas the levels of DNA damage in the EGb-treated animals were significantly lower than those in the control animals. No significant differences in the level of DNA damage in hippocampal cells were observed among the experimental groups. EGb treatment was not able to reduce H2O2-induced DNA damage in hippocampal cells. Altogether, our data provide the first demonstration that chronic EGb treatment improved the short-term memory of middle-aged rats, an effect that could be associated with a reduction in free radical production in the PFC. These data suggest that EGb treatment might increase the survival of cortical neurons and corroborate and extend the view that EGb has protective and therapeutic properties.
Collapse
Affiliation(s)
- Marcelo L Ribeiro
- Laboratório de Biologia Molecular-Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil; Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil
| | - Luciana M Moreira
- Laboratório de Biologia Molecular-Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil; Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil
| | - Demetrius P Arçari
- Laboratório de Biologia Molecular-Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil; Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil
| | - Letícia França Dos Santos
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil; Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| | - Antônio Cezar Marques
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil; Universidade São Francisco, Bragança Paulista, São Paulo, Brazil
| | - José Pedrazzoli
- Laboratório de Biologia Molecular-Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Bragança Paulista, São Paulo, Brazil; Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil
| | - Suzete M Cerutti
- Cellular and Behavioral Pharmacology Laboratory, Department of Biological Science, Universidade Federal de Sao Paulo, Diadema, São Paulo, Brazil; Universidade São Francisco, Bragança Paulista, São Paulo, Brazil.
| |
Collapse
|
20
|
Beck SM, Ruge H, Schindler C, Burkart M, Miller R, Kirschbaum C, Goschke T. Effects of Ginkgo biloba extract EGb 761® on cognitive control functions, mental activity of the prefrontal cortex and stress reactivity in elderly adults with subjective memory impairment - a randomized double-blind placebo-controlled trial. Hum Psychopharmacol 2016; 31:227-42. [PMID: 27147264 PMCID: PMC5084772 DOI: 10.1002/hup.2534] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Cognitive control as well as stress reactivity is assumed to depend on prefrontal dopamine and decline with age. Because Ginkgo biloba extract EGb761 increases prefrontal dopamine in animals, we assessed its effects on cognitive functions related to prefrontal dopamine. METHODS Effects of 240-mg EGb761 daily on task-set-switching, response-inhibition, delayed response, prospective-memory, task-related fMRI-BOLD-signals and the Trier Social Stress-Test were explored in a randomized, placebo-controlled, double-blind pilot-trial in 61 elderly volunteers with subjective memory impairment. RESULTS Baseline-FMRI-data showed BOLD-responses in regions commonly activated by the specific tasks. Task-switch-costs decreased with EGb761 compared to placebo (ANOVA-interaction: Group × Time × Switch-Costs p = 0.018, multiple tests uncorrected), indicating improved cognitive flexibility. Go-NoGo-task reaction-times corrected for error-rates indicated a trend for improved response inhibition. No treatment effects were found for the delayed response and prospective-memory tasks and fMRI-data. A non-significant trend indicated a potentially accelerated endocrine stress-recovery. EGb761 was safe and well tolerated. CONCLUSION We observed indications for improved cognitive flexibility without changes in brain activation, suggesting increased processing efficiency with EGb761. Together with a trend for improved response inhibition results are compatible with mild enhancement of prefrontal dopamine. These conclusions on potential beneficial effect of EGb761 on prefrontal dopaminergic functions should be confirmed by direct measurements. © 2016 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stefanie M. Beck
- Department of PsychologyTechnische Universität DresdenDresdenGermany,Neuroimaging CentreTechnische Universität DresdenDresdenGermany
| | - Hannes Ruge
- Department of PsychologyTechnische Universität DresdenDresdenGermany,Neuroimaging CentreTechnische Universität DresdenDresdenGermany
| | - Christoph Schindler
- Institute for Clinical Pharmacology, Faculty of Medicine Carl Gustav CarusTechnische Universität DresdenDresdenGermany,Clinical Research Center Hannover & Institute for Clinical PharmacologyHannover Medical SchoolHannoverGermany
| | | | - Robert Miller
- Department of PsychologyTechnische Universität DresdenDresdenGermany
| | | | - Thomas Goschke
- Department of PsychologyTechnische Universität DresdenDresdenGermany,Neuroimaging CentreTechnische Universität DresdenDresdenGermany
| |
Collapse
|
21
|
Zhu J, Shi R, Chen S, Dai L, Shen T, Feng Y, Gu P, Shariff M, Nguyen T, Ye Y, Rao J, Xing G. The Relieving Effects of BrainPower Advanced, a Dietary Supplement, in Older Adults with Subjective Memory Complaints: A Randomized, Double-Blind, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2016; 2016:7898093. [PMID: 27190539 PMCID: PMC4842387 DOI: 10.1155/2016/7898093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Subjective memory complaints (SMCs) are common in older adults that can often predict further cognitive impairment. No proven effective agents are available for SMCs. The effect of BrainPower Advanced, a dietary supplement consisting of herbal extracts, nutrients, and vitamins, was evaluated in 98 volunteers with SMCs, averaging 67 years of age (47-88), in a randomized, double-blind, placebo-controlled trial. Subjective hypomnesis/memory loss (SML) and attention/concentration deficits (SAD) were evaluated before and after 12-week supplementation of BrainPower Advanced capsules (n = 47) or placebo (n = 51), using a 5-point memory questionnaire (1 = no/slight, 5 = severe). Objective memory function was evaluated using 3 subtests of visual/audio memory, abstraction, and memory recall that gave a combined total score. The BrainPower Advanced group had more cases of severe SML (severity ⩾ 3) (44/47) and severe SAD (43/47) than the placebo group (39/51 and 37/51, < 0.05, < 0.05, resp.) before the treatment. BrainPower Advanced intervention, however, improved a greater proportion of the severe SML (29.5%)(13/44) (P < 0.01) and SAD (34.9%)(15/43)(P < 0.01) than placebo (5.1% (2/39) and 13.5% (5/37), resp.). Thus, 3-month BrainPower Advanced supplementation appears to be beneficial to older adults with SMCs.
Collapse
Affiliation(s)
- Jingfen Zhu
- Department of Community Health and Family Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Rong Shi
- School of Public Health, Shanghai University of TCM, Shanghai 201203, China
| | - Su Chen
- Si-Tang Community Health Service Center of Shanghai, Shanghai 200431, China
| | - Lihua Dai
- Department of Emergency Medicine, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tian Shen
- Department of Community Health and Family Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yi Feng
- Department of Community Health and Family Medicine, School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Pingping Gu
- Southern California Kaiser Sunset, 4867 Sunset Boulevard, Los Angeles, CA 90027, USA
| | - Mina Shariff
- Department of Research, DRM Resources, 1683 Sunflower Avenue, Costa Mesa, CA 92626, USA
| | - Tuong Nguyen
- Department of Research, DRM Resources, 1683 Sunflower Avenue, Costa Mesa, CA 92626, USA
| | - Yeats Ye
- Maryland Population Research Center, University of Maryland, College Park, MD 20742, USA
| | - Jianyu Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Guoqiang Xing
- Imaging Institute of Rehabilitation and Development of Brain Function, North Sichuan Medical University, Nanchong Central Hospital, Nanchong 637000, China
- Lotus Biotech.com LLC, John Hopkins University-MCC, 9601 Medical Center Drive, Rockville, MD 20850, USA
| |
Collapse
|
22
|
Nash KM, Shah ZA. Current Perspectives on the Beneficial Role of Ginkgo biloba in Neurological and Cerebrovascular Disorders. INTEGRATIVE MEDICINE INSIGHTS 2015; 10:1-9. [PMID: 26604665 PMCID: PMC4640423 DOI: 10.4137/imi.s25054] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 02/05/2023]
Abstract
Ginkgo biloba extract is an alternative medicine available as a standardized formulation, EGb 761®, which consists of ginkgolides, bilobalide, and flavonoids. The individual constituents have varying therapeutic mechanisms that contribute to the pharmacological activity of the extract as a whole. Recent studies show anxiolytic properties of ginkgolide A, migraine with aura treatment by ginkgolide B, a reduction in ischemia-induced glutamate excitotoxicity by bilobalide, and an alternative antihypertensive property of quercetin, among others. These findings have been observed in EGb 761 as well and have led to clinical investigation into its use as a therapeutic for conditions such as cognition, dementia, cardiovascular, and cerebrovascular diseases. This review explores the therapeutic mechanisms of the individual EGb 761 constituents to explain the pharmacology as a whole and its clinical application to cardiovascular and neurological disorders, in particular ischemic stroke.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Zahoor A Shah
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA. ; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH, USA
| |
Collapse
|
23
|
Gavrilova SI, Preuss UW, Wong JWM, Hoerr R, Kaschel R, Bachinskaya N. Efficacy and safety of Ginkgo biloba extract EGb 761 in mild cognitive impairment with neuropsychiatric symptoms: a randomized, placebo-controlled, double-blind, multi-center trial. Int J Geriatr Psychiatry 2014; 29:1087-95. [PMID: 24633934 DOI: 10.1002/gps.4103] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 02/20/2014] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The study was conducted to explore the effects of EGb 761 (Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany) on neuropsychiatric symptoms (NPS) and cognition in patients with mild cognitive impairment (MCI). METHODS One hundred and sixty patients with MCI who scored at least 6 on the 12-item Neuropsychiatric Inventory (NPI) were enrolled in this double-blind, multi-center trial and randomized to receive 240 mg EGb 761 daily or placebo for a period of 24 weeks. Effects on NPS were assessed using the NPI, the state sub-score of the State-Trait Anxiety Inventory and the Geriatric Depression Scale. Further outcome measures were the Trail-Making Test (A/B) for cognition and global ratings of change. Statistical analyses followed the intention-to-treat principle. RESULTS The NPI composite score decreased by 7.0 ± 4.5 (mean, standard deviation) points in the EGb 761-treated group and by 5.5 ± 5.2 in the placebo group (p = 0.001). Improvement by at least 4 points was found in 78.8% of patients treated with EGb 761 and in 55.7% of those receiving placebo (p = 0.002). Superiority of EGb 761 over placebo (p < 0.05) was also found for the State-Trait Anxiety Inventory score, the informants' global impression of change, and both Trail-Making Test scores. There were statistical trends favoring EGb 761 in the Geriatric Depression Scale and the patients' global impression of change. Adverse events (all non-serious) were reported by 37 patients taking EGb 761 and 36 patients receiving placebo. CONCLUSIONS EGb 761 improved NPS and cognitive performance in patients with MCI. The drug was safe and well tolerated.
Collapse
Affiliation(s)
- S I Gavrilova
- Mental Health Research Center of the Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
24
|
Mohanta TK, Tamboli Y, Zubaidha P. Phytochemical and medicinal importance ofGinkgo bilobaL. Nat Prod Res 2014; 28:746-52. [DOI: 10.1080/14786419.2013.879303] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Kumar H, Song SY, More SV, Kang SM, Kim BW, Kim IS, Choi DK. Traditional Korean East Asian medicines and herbal formulations for cognitive impairment. Molecules 2013; 18:14670-93. [PMID: 24287997 PMCID: PMC6270158 DOI: 10.3390/molecules181214670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/08/2013] [Accepted: 11/18/2013] [Indexed: 02/07/2023] Open
Abstract
Hanbang, the Traditional Korean Medicine (TKM), is an inseparable component of Korean culture both within the country, and further afield. Korean traditional herbs have been used medicinally to treat sickness and injury for thousands of years. Oriental medicine reflects our ancestor’s wisdom and experience, and as the elderly population in Korea is rapidly increasing, so is the importance of their health problems. The proportion of the population who are over 65 years of age is expected to increase to 24.3% by 2031. Cognitive impairment is common with increasing age, and efforts are made to retain and restore the cognition ability of the elderly. Herbal materials have been considered for this purpose because of their low adverse effects and their cognitive-enhancing or anti-dementia activities. Herbal materials are reported to contain several active compounds that have effects on cognitive function. Here, we enumerate evidence linking TKMs which have shown benefits in memory improvements. Moreover, we have also listed Korean herbal formulations which have been the subject of scientific reports relating to memory improvement.
Collapse
Affiliation(s)
- Hemant Kumar
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chung-ju 380-701, Korea.
| | | | | | | | | | | | | |
Collapse
|
26
|
Promising therapeutics with natural bioactive compounds for improving learning and memory--a review of randomized trials. Molecules 2012; 17:10503-39. [PMID: 22945029 PMCID: PMC6268692 DOI: 10.3390/molecules170910503] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/06/2012] [Accepted: 08/27/2012] [Indexed: 12/19/2022] Open
Abstract
Cognitive disorders can be associated with brain trauma, neurodegenerative disease or as a part of physiological aging. Aging in humans is generally associated with deterioration of cognitive performance and, in particular, learning and memory. Different therapeutic approaches are available to treat cognitive impairment during physiological aging and neurodegenerative or psychiatric disorders. Traditional herbal medicine and numerous plants, either directly as supplements or indirectly in the form of food, improve brain functions including memory and attention. More than a hundred herbal medicinal plants have been traditionally used for learning and memory improvement, but only a few have been tested in randomized clinical trials. Here, we will enumerate those medicinal plants that show positive effects on various cognitive functions in learning and memory clinical trials. Moreover, besides natural products that show promising effects in clinical trials, we briefly discuss medicinal plants that have promising experimental data or initial clinical data and might have potential to reach a clinical trial in the near future.
Collapse
|
27
|
Ginkgo biloba leaf extract (EGb 761®) and its specific acylated flavonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: possible implications for the cognitive enhancing properties of EGb 761®. Int Psychogeriatr 2012; 24 Suppl 1:S25-34. [PMID: 22784425 DOI: 10.1017/s1041610212000567] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Experimental and clinical data suggest that the Ginkgo biloba standardized extract EGb 761® exerts beneficial effects in conditions which are associated with impaired cognitive function. However, the neurochemical correlates of these memory enhancing effects are not yet fully clarified. The aim of this study was to examine the effect of repeated oral administration of EGb 761® and some of its characteristic constituents on extracellular levels of dopamine (DA), noradrenaline (NA), serotonin (5-HT), acetylcholine (ACh) and the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) in the medial prefrontal cortex (mPFC) of awake rats by use of in vivo microdialysis technique. Subacute (14 days, once daily), but not acute, oral treatment with EGb 761® (100 and 300 mg/kg) or the flavonoid fraction, which represents about 24% of the whole extract caused a significant and dose-dependent increase in extracellular DA levels in the mPFC. Repeated administration of EGb 761® also caused a modest but significant increase in the NA levels, whereas the concentrations of 5-HT and those of the metabolites DOPAC, HVA and 5-HIAA were not affected. The same treatment regimen was used in a subsequent study with the aim of investigating the effects of two Ginkgo-specific acylated flavonols, 3-O-(2''-O-(6'''-O-(p-hydroxy-trans-cinnamoyl)-β-D-glucosyl)-α-L-rhamnosyl)quercetin (Q-ag) and 3-O-(2''-O-(6'''-O-(p-hydroxy-trans-cinnamoyl)-β-D-glucosyl)-α-L-rhamnosyl)kaempferol (K-ag). Both compounds together represent about 4.5% of the whole extract. Repeated oral treatment with Q-ag (10 mg/kg) for 14 days caused a significant increase in extracellular DA levels of 159% and extracellular acetylcholine (ACh) levels of 151% compared to controls. Similarly, administration of K-ag (10 mg/kg) induced a significant rise of DA levels to 142% and ACh levels to 165% of controls, whereas treatment with isorhamnetin, an O-methylated aglycon component of EGb 761® flavonol glycosides had no effect. None of the tested flavonoids had a significant effect on extracellular DOPAC and HVA levels. The present findings provide evidence that the subacute treatment with EGb 761® and its flavonol constituents increases DA and ACh release in the rat mPFC, and suggest that the two Ginkgo-specific acylated flavonol glycosides Q-ag and K-ag are active constituents contributing to these effects. As seen for isorhamnetin, the effect on neurotransmitter levels seems not to be a general effect of flavonols but rather to be a specific action of acylated flavonol glycosides which are present in EGb 761®. The direct involvement of these two flavonol derivatives in the increase of dopaminergic and cholinergic neurotransmission in the prefrontal cortex may be one of the underlying mechanisms behind the reported effects of EGb 761® on the improvement of cognitive function.
Collapse
|
28
|
Yoshitake T, Yoshitake S, Kehr J. The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol 2010; 159:659-68. [PMID: 20105177 DOI: 10.1111/j.1476-5381.2009.00580.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Experimental and clinical data suggest that extracts of Ginkgo biloba improve cognitive function. However, the neurochemical correlates of these effects are not yet fully clarified. The purpose of this study was to examine the effects of acute and repeated oral administration of the standardized extract EGb 761((R)) on extracellular levels of dopamine, noradrenaline and serotonin (5-HT), and the dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the prefrontal cortex (PFC) and striatum of conscious rats. EXPERIMENTAL APPROACH Monoamines and their metabolites were monitored by the use of microdialysis sampling and HPLC with electrochemical or fluorescence detection. KEY RESULTS A single oral dose of EGb 761 (100 mg.kg(-1)) had no effect on monoamine levels. However, following chronic (100 mg.kg(-1)/14 days/once daily) treatment, the same dose significantly increased extracellular dopamine and noradrenaline levels, while 5-HT levels were unaffected. Chronic treatment with EGb 761 showed dose-dependent increases in frontocortical dopamine levels and, to a lesser extent, in the striatum. The extracellular levels of HVA and DOPAC were not affected by either acute or repeated doses. Treatment with the main constituents of EGb 761 revealed that the increase in dopamine levels was mostly caused by the flavonol glycosides and ginkgolide fractions, whereas bilobalide treatment was without effect. CONCLUSIONS AND IMPLICATIONS The present results demonstrate that chronic but not acute treatment with EGb 761 increased dopaminergic transmission in the PFC. This finding may be one of the mechanisms underlying the reported effects of G. biloba in improving cognitive function.
Collapse
Affiliation(s)
- T Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|