1
|
Sun J, Li R, Zhang J, Huang Y, Lu Y, Liu C, Li Y, Liu T. Analysis of compatibility mechanism of shenxiong glucose injection after multiple dosing based on differences of PK-PD correlation and cytochrome P450 enzyme. J Pharm Biomed Anal 2024; 239:115899. [PMID: 38103414 DOI: 10.1016/j.jpba.2023.115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Shenxiong glucose injection (SGI) containing a water extract from the roots of Danshen and Ligustrazine hydrochloride, is the main drug used for the prevention and treatment of acute myocardial ischemia (AMI) in China. Based on the characteristics of drug clinical applications, this study aims to uncover the compatibility mechanism of SGI by investigating pharmacokinetic (PK) and pharmacodynamic (PD) differences between Danshen glucose injection (DGI), Ligustrazine glucose injection (LGI) and SGI groups after multiple dosing during the pathological state from the perspective of metabolic enzymes. Compared to the LGI group, the absorption (Cmax) and exposure (AUC) of ligustrazine increased significantly, and the protein expression of CYP1A2, CYP2C11 and CYP3A2 in the SGI group decreased significantly. Furthermore, the PK and PD experimental data for Danshen and ligustrazine in AMI rats were fitted to obtain a PK-PD binding model with three components. PK-PD parameter analysis showed that in the SGI group the IC50 values of ligustrazine and danshensu on AST, CK-MB, cTn-I and the IC50 values of rosmarinic acid on AST and CK-MB were lower than the DGI or LGI group. It is speculated that Danshen inhibited CYP1A2, CYP2C11 and CYP3A2 mediating the metabolism of ligustrazine and decreased the expression of these three isozymes, which further affected the in vivo process of ligustrazine. Moreover, the combination of Danshen and ligustrazine could have better regulating effect on AST, CK-MB and cTn-I. This preliminary study has provided a scientific basis for understanding the compatibility mechanism of SGI from the viewpoint of the regulation of CYP enzymes in the PK-PD model.
Collapse
Affiliation(s)
- Jia Sun
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guiyang 550004, China
| | - Rong Li
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Jingya Zhang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yong Huang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China; National Engineering Research Center of Miao's Medicines, Guiyang 550004, China
| | - Yuan Lu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Chunhua Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and Traditional Chinese Medicine Development and Application, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and Traditional Chinese Medicine Development and Application, Guizhou Medical University, Guiyang 550004, China.
| | - Ting Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China.
| |
Collapse
|
2
|
Wang X, Fa J, Zhang Y, Huang S, Liu J, Gao J, Xing L, Liu Z, Wang X. Evaluation of Herb–Drug Interaction Between Danshen and Rivaroxaban in Rat and Human Liver Microsomes. Front Pharmacol 2022; 13:950525. [PMID: 35928264 PMCID: PMC9343791 DOI: 10.3389/fphar.2022.950525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
The combination of Salvia miltiorrhiza (Danshen) and rivaroxaban is a promising treatment option in clinical practice in China, but the herb–drug interaction between Danshen and rivaroxaban remains unclear. Therefore, this study aims to reveal the interaction between Danshen and rivaroxaban. We not only investigated the inhibitory properties of Danshen tablet on rivaroxaban metabolism in rat and human liver microsomes but also evaluated the inhibitory effects of Danshen tablet and its eight active components (dihydrotanshinone I, tanshinone I, tanshinone IIA, cryptotanshinone, danshensu, salvianolic acid A, salvianolic acid B, and salvianolic acid C) on cytochrome P450 (CYP) enzymes. The results showed that Danshen tablet potently inhibited the metabolism of rivaroxaban in rat and human liver microsomes. In the CYP inhibition study, we found that dihydrotanshinone I, the active component of Danshen tablet, potently inhibited the activities of rat CYP3A and CYP2J, with IC50 values at 13.85 and 6.39 μM, respectively. In further inhibition kinetic study, we found that Danshen tablet is a mixed inhibitor in rivaroxaban metabolism in rat and human liver microsomes, with the Ki value at 0.72 and 0.25 mg/ml, respectively. In conclusion, there is a potential interaction between Danshen tablet and rivaroxaban. Danshen tablet inhibits the metabolism of rivaroxaban, which may be because its lipid-soluble components such as dihydrotanshinone I strongly inhibit the activities of CYP enzymes, especially CYP3A and CYP2J. Therefore, when Danshen tablet and rivaroxaban are used simultaneously in the clinic, it is necessary to strengthen the drug monitoring of rivaroxaban and adjust the dosage.
Collapse
Affiliation(s)
- Xu Wang
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Fa
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Shengbo Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jie Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Junqing Gao
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Xing
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
| | - Zongjun Liu
- Department of Cardiology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Putuo Clinical Medical School, Anhui Medical University, Shanghai, China
- *Correspondence: Zongjun Liu, ; Xin Wang,
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
- *Correspondence: Zongjun Liu, ; Xin Wang,
| |
Collapse
|
3
|
Liu J, Shi Y, Wu C, Hong B, Peng D, Yu N, Wang G, Wang L, Chen W. Comparison of Sweated and Non-Sweated Ethanol Extracts of Salvia miltiorrhiza Bge. (Danshen) Effects on Human and rat Hepatic UDP-Glucuronosyltransferase and Preclinic Herb-Drug Interaction Potential Evaluation. Curr Drug Metab 2022; 23:473-483. [PMID: 35585828 DOI: 10.2174/1389200223666220517115845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influenced its quality and pharmacological properties. Sweated and non-sweated DEE preparation combining with various synthetic drugs, adding up the possibility of herbal-drug interactions. OBJECTIVE This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzymes expression and activity and proposed a potential mechanism. METHODS The expression of two processed DEE on rat UGT1A, UGT2B and nuclear receptors including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα) were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. RESULTS The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups, meanwhile the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved with the activation of nuclear receptors CAR, PXR, and PPARα; In vitro, sweated DEE (0-80 μg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 μg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05); Tanshinone I (0-1 μM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 μM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 μM) is not a potent UGT inhibitor both in humans and rats; Additionally, there existed significant differences between two processed DEE in expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3 and 2B15 (P<0.05). CONCLUSION The effects of two processed DEE on hepatic UGT enzyme expression and activity were different. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug's exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which exerted an important influence on its pharmacological activity.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Chengyuan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Bangzhen Hong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui,230012, China.,Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China.,Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Anhui Hefei 230012, China
| |
Collapse
|
4
|
Evaluation of acacetin inhibition potential against cytochrome P450 in vitro and in vivo. Chem Biol Interact 2020; 329:109147. [PMID: 32738202 DOI: 10.1016/j.cbi.2020.109147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/16/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Acacetin is a natural flavonoid that is widely distributed in plants and possesses numerous pharmacological activities. The aim of the present study was to investigate the effects of acacetin on the activities of the cytochrome P450 family members CYP1A2, CYP2B1, CYP2C11, CYP2D1, CYP2E1, and CYP3A2 in rat liver microsomes in vitro and rats in vivo to evaluate potential herb-drug interactions by using a cocktail approach. Phenacetin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and midazolam were chosen as the probe substrates. An ultra-performance liquid chromatography-tandem mass spectrometry method was developed for the simultaneous detection of the probe substrates and their metabolites. In vitro, the mode of acacetin inhibition of CYP2B1, CYP2C11, and CYP2E1 was competitive, while mixed inhibition was observed for CYP1A2 and CYP3A2. The Ki values in this study were less than 8.32 μM. In vivo, the mixed probe substrates were administered by gavage after daily intraperitoneal injection with 50 mg/kg acacetin or saline for 2 weeks. The main pharmacokinetic parameters, area under the plasma concentration-time curve (AUC), plasma clearance (CL), and maximum plasma concentration (Cmax) of the probe substrates were significantly different in the experimental group than in the control group. Overall, the in vitro and in vivo results indicated that acacetin would be at high risk to cause toxicity and drug interactions via cytochrome P450 inhibition.
Collapse
|
5
|
Pang HH, Li MY, Wang Y, Tang MK, Ma CH, Huang JM. Effect of compatible herbs on the pharmacokinetics of effective components of Panax notoginseng in Fufang Xueshuantong Capsule. J Zhejiang Univ Sci B 2017; 18:343-352. [PMID: 28378572 DOI: 10.1631/jzus.b1600235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fufang Xueshuantong (FXT) is a well-known Chinese herbal formula which has been used to treat cardiovascular and ophthalmic diseases, especially diabetic retinopathy. Panax notoginseng (Burkill) F.H. Chen (PN) is the main herb of FXT, whose major bioactive constituents are ginsenosides. However, the scientific basis of the compatibility of FXT is still ambiguous. The present study investigated the scientific basis of the compatibility of FXT by comparing the pharmacokinetics of marker compounds after oral administrations of PN and FXT. A high performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method was developed for simultaneous detection of notoginsenoside R1 (NR1), ginsenoside Rg1 (GRg1), and ginsenoside Rb1 (GRb1) in rat plasma. The pharmacokinetic studies of FXT and PN were performed using the established method with the pharmacokinetic parameters being determined by non-compartmental analysis. The results showed that the pharmacokinetic parameters (maximum concentration, area under the curve (AUC0-t), clearance, and mean residence time) of NR1, GRg1, and GRb1 were significantly different after oral administration of FXT (P<0.05) compared with PN. The AUC0-t values of GRg1 and GRb1 were 1.7- and 3.4-fold greater, respectively, in FXT than in PN. The compatible herbs of FXT could prolong the retention time and increase the systemic exposure of NR1, GRg1, and GRb1 compared with PN in vivo, providing some scientific basis for the compatibility and clinical use of FXT.
Collapse
Affiliation(s)
- Huan-Huan Pang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Meng-Yi Li
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yuan Wang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Min-Ke Tang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Chang-Hua Ma
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jian-Mei Huang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
6
|
Cai M, Guo Y, Wang S, Wei H, Sun S, Zhao G, Dong H. Tanshinone IIA Elicits Neuroprotective Effect Through Activating the Nuclear Factor Erythroid 2-Related Factor-Dependent Antioxidant Response. Rejuvenation Res 2017; 20:286-297. [PMID: 28162056 DOI: 10.1089/rej.2016.1912] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Min Cai
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongxin Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shiquan Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sisi Sun
- The Medical Department of the Emergence Center of Xi'an, Xi'an, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Singh A, Zhao K. Herb-Drug Interactions of Commonly Used Chinese Medicinal Herbs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:197-232. [PMID: 28807159 DOI: 10.1016/bs.irn.2017.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With more and more popular use of traditional herbal medicines, in particular Chinese herbal medicines, herb-drug interactions have become a more and more important safety issue in the clinical applications of the conventional drugs. Researches in this area are increasing very rapidly. Herb-drug interactions are complicated due to the fact that multiple chemical components are involved, and these compounds may possess diverse pharmacological activities. Interactions can be in both pharmacokinetics and pharmacodynamics. Abundant studies focused on pharmacokinetic interactions of herbs and drugs. Herbs may affect the behavior of the concomitantly used drugs by changing their absorption, distribution, metabolism, and excretion. Studies on pharmacodynamics interactions of herbs and drugs are still very limited. Herb-drug interactions are potentially causing changes in drug levels and drug activities and leading to either therapeutic failure or toxicities. Sometime it can be fatal. The exposures to drugs, lacking of knowledge in the potential adverse herb-drug interactions, will put big risk to patients' safety in medical services. On the contrary, some interactions may be therapeutically beneficial. It may be used to help develop new therapeutic strategies in the future. This chapter is trying to review the development in the area of herb-drug interactions based on the recently published research findings. Information on the potential interactions among the commonly used Chinese medicinal herbs and conventional drugs is summarized in this chapter.
Collapse
Affiliation(s)
- Amrinder Singh
- Traditional Chinese Herbal Medicine Programme, Middlesex University, The Borough, Hendon, London, United Kingdom
| | - Kaicun Zhao
- Traditional Chinese Herbal Medicine Programme, Middlesex University, The Borough, Hendon, London, United Kingdom.
| |
Collapse
|
8
|
Salvia miltiorrhiza Roots against Cardiovascular Disease: Consideration of Herb-Drug Interactions. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9868694. [PMID: 28473993 PMCID: PMC5394393 DOI: 10.1155/2017/9868694] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/12/2017] [Indexed: 11/18/2022]
Abstract
Salvia miltiorrhiza root (Danshen) is widely used in Asia for its cardiovascular benefits and contains both hydrophilic phenolic acids and lipophilic tanshinones, which are believed to be responsible for its therapeutic efficacy. This review summarized the effects of these bioactive components from S. miltiorrhiza roots on pharmacokinetics of comedicated drugs with mechanic insights regarding alterations of protein binding, enzyme activity, and transporter activity based on the published data stemming from both in vitro and in vivo human studies. In vitro studies indicated that cytochrome P450 (CYP450), carboxylesterase enzyme, catechol-O-methyltransferase, organic anion transporter 1 (OAT1) and OAT3, and P-glycoprotein were the major targets involved in S. miltiorrhiza-drug interactions. Lipophilic tanshinones had much more potent inhibitory effects towards CYPs activities compared to hydrophilic phenolic acids, evidenced by much lower Ki values of the former. Clinical S. miltiorrhiza-drug interaction studies were mainly conducted using CYP1A2 and CYP3A4 probe substrates. In addition, the effects of coexisting components on the pharmacokinetic behaviors of those noted bioactive compounds were also included herein.
Collapse
|
9
|
Xu XQ, Geng T, Zhang SB, Kang DY, Li YJ, Ding G, Huang WZ, Wang ZZ, Xiao W. Inhibition of Re Du Ning Injection on Enzyme Activities of Rat Liver Microsomes Using Cocktail Method. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Chen A, Zhou X, Tang S, Liu M, Wang X. Evaluation of the inhibition potential of plumbagin against cytochrome P450 using LC-MS/MS and cocktail approach. Sci Rep 2016; 6:28482. [PMID: 27329697 PMCID: PMC4916434 DOI: 10.1038/srep28482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone), a natural naphthoquinone compound isolated from roots of Plumbago zeylanica L., has drawn a lot of attention for its plenty of pharmacological properties including antidiabetes and anti-cancer. The aim of this study was to investigate the effects of plumbagin on CYP1A2, CYP2B1/6, CYP2C9/11, CYP2D1/6, CYP2E1 and CYP3A2/4 activities in human and rat liver and evaluate the potential herb-drug interactions using the cocktail approach. All CYP substrates and their metabolites were analyzed using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Plumbagin presented non-time-dependent inhibition of CYP activities in both human and rat liver. In humans, plumbagin was not only a mixed inhibitor of CYP2B6, CYP2C9, CYP2D6, CYP2E1 and CYP3A4, but also a non-competitive inhibitor of CYP1A2, with Ki values no more than 2.16 μM. In rats, the mixed inhibition of CYP1A2 and CYP2D1, and competitive inhibition for CYP2B1, CYP2C11 and CYP2E1 with Ki values less than 9.93 μM were observed. In general, the relatively low Ki values of plumbagin in humans would have a high potential to cause the toxicity and drug interactions involving CYP enzymes.
Collapse
Affiliation(s)
- Ang Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaojing Zhou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shuowen Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.,Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
11
|
Wang R, Zhang H, Wang Y, Yu X, Yuan Y. Effects of salvianolic acid B and tanshinone IIA on the pharmacokinetics of losartan in rats by regulating the activities and expression of CYP3A4 and CYP2C9. JOURNAL OF ETHNOPHARMACOLOGY 2016; 180:87-96. [PMID: 26806573 DOI: 10.1016/j.jep.2016.01.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 12/08/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Losartan (LST) is a common chemical drug used to treat high blood pressure and reduce the risk of stroke in certain people with heart disease. Danshen, prepared from the dried root and rhizome of Salvia miltiorrhiza Bunge, has been widely used for prevention and treatment of various cardiovascular and cerebrovascular diseases. There are more than 35 formulations containing Danshen indexed in the 2010 Chinese Pharmacopoeia, which are often combined with LST to treat cardiovascular and cerebrovascular diseases in the clinic. The effects of the two major components of Danshen, salvianolic acid B (SA-B) and tanshinone IIA (Tan IIA), on the pharmacokinetics of losartan and its metabolite, EXP3174, in rats were investigated by liquid chromatography coupled with mass spectrometry (LC-MS). Male Sprague-Dawley rats were randomly assigned to 3 groups: LST, LST+SA-B and LST+Tan IIA, and the main pharmacokinetic parameters were estimated after oral administration of LST, LST+SA-B and LST+Tan IIA. It was found that there are significant differences in the pharmacokinetic parameters among the three groups: Cmax, t1/2, AUC, AUMC in the LST+SA-B group was smaller than those in group LST, while larger in group LST+Tan IIA. Further, the effects of SA-B and Tan IIA on the metabolism of losartan was also investigated using rat liver microsomes in vitro. The results indicated that SA-B can induce the metabolism of LST, while Tan IIA can inhibit the metabolism of LST in rat liver microsomes in vitro by regulating activities of CYP450 enzymes. In addition, the effect of SA-B and Tan IIA on CYP3A4 and CYP2C9 expression was studied in Chang liver cells by western-blotting and Real-time PCR. It was concluded that the two components of Danshen, SA-B and Tan IIA have different influences on the metabolism of LST: SA-B can obviously speed up the metabolism of LST by inducing CYP3A4/CYP2C9 activities and expression, however, Tan IIA can slow down the metabolism of LST by inhibiting CYP3A4/CYP2C9 activities.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Hai Zhang
- Department of Pharmacy, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Yujie Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Xiaoyan Yu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 280 Mo He Rd, Shanghai 201999, China.
| |
Collapse
|
12
|
Sun M, Tang Y, Ding T, Liu M, Wang X. Investigation of cytochrome P450 inhibitory properties of maslinic acid, a bioactive compound from Olea europaea L., and its structure-activity relationship. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:56-65. [PMID: 25636872 DOI: 10.1016/j.phymed.2014.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Maslinic acid (MA), the main pentacyclic triterpene of Olea europaea L. fruit, possesses a variety of pharmacological actions, including hypoglycemic, antioxidant, cardioprotective and antitumoral activities. Despite its importance, little is known about its effects on the cytochrome P450 (CYP) activity in both humans and animals. Therefore, the aim of this study was to investigate the effects of MA on the CYP 1A2, 2C9/11, 2D1/6, 2E1 and 3A2/4 activities by human and rat liver microsomes and specific CYP isoforms. In humans, MA only weakly inhibited CYP3A4 activity in human liver microsomes and specific CYP3A4 isoform with IC50 value at 46.1 and 62.3µM, respectively. In rats, MA also exhibited weak inhibition on CYP2C11, CYP2E1 and CYP3A2 activities with IC50 values more than 100µM. Enzyme kinetic studies showed that the MA was not only a competitive inhibitor of CYP3A4 in humans, but also a competitive inhibitor of CYP2C11 and 3A2 in rats, with Ki of 18.4, 98.7 and 66.3µM, respectively. Moreover, the presence of hydroxyl group at C-2 position of triterpenic acid in MA compared with oleanolic acid could magnify its competitive inhibition on human CYP3A4 activity. The relatively high Ki values of MA would have a low potential to cause the possible toxicity and drug interactions involving CYP enzymes, thus suggesting a sufficient safety for its putative use as a nutraceutical taken together with drugs.
Collapse
Affiliation(s)
- Min Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Tang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tonggui Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
13
|
Sun M, Tang Y, Ding T, Liu M, Wang X. Inhibitory effects of celastrol on rat liver cytochrome P450 1A2, 2C11, 2D6, 2E1 and 3A2 activity. Fitoterapia 2014; 92:1-8. [DOI: 10.1016/j.fitote.2013.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/11/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
|
14
|
Zhou X, Wang Y, Hu T, Or PMY, Wong J, Kwan YW, Wan DCC, Hoi PM, Lai PBS, Yeung JHK. Enzyme kinetic and molecular docking studies for the inhibitions of miltirone on major human cytochrome P450 isozymes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:367-374. [PMID: 23102508 DOI: 10.1016/j.phymed.2012.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/21/2012] [Indexed: 06/01/2023]
Abstract
Previous studies have shown that major tanshinones isolated from Danshen (Salvia miltiorrhiza) inhibited human and rat CYP450 enzymes-mediated metabolism of model probe substrates, with potential in causing herb-drug interactions. Miltirone, another abietane type-diterpene quinone isolated from Danshen, has been reported for its anti-oxidative, anxiolytic and anti-cancer effects. The aim of this study was to study the effect of miltirone on the metabolism of model probe substrates of CYP1A2, 2C9, 2D6 and 3A4 in pooled human liver microsomes. Miltirone showed moderate inhibition on CYP1A2 (IC(50)=1.73 μM) and CYP2C9 (IC(50)=8.61 μM), and weak inhibition on CYP2D6 (IC(50)=30.20 μM) and CYP3A4 (IC(50)=33.88 μM). Enzyme kinetic studies showed that miltirone competitively inhibited CYP2C9 (K(i)=1.48 μM), and displayed mixed type inhibitions on CYP1A2, CYP2D6 and CYP3A4 with K(i) values of 3.17 μM, 24.25 μM and 35.09 μM, respectively. Molecular docking study further confirmed the ligand-binding conformations of miltirone in the active sites of these human CYP450 isoforms, and provided some information on structure-activity relationships for the CYPs inhibition by tanshinones. Taken together, CYPs inhibitions of miltirone were weaker than dihydrotanshinone, but stronger than cryptotanshinone, tanshinone I and tanshinone IIA.
Collapse
Affiliation(s)
- Xuelin Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gouws C, Steyn D, Du Plessis L, Steenekamp J, Hamman JH. Combination therapy of Western drugs and herbal medicines: recent advances in understanding interactions involving metabolism and efflux. Expert Opin Drug Metab Toxicol 2012; 8:973-84. [DOI: 10.1517/17425255.2012.691966] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|