1
|
Montoya-García CO, Hidalgo-Martínez D, Becerra-Martínez E, Reyes-López CA, Enciso-Maldonado GA, Volke-Haller VH. Impact of NPK fertilization on the metabolomic profile and nutritional quality of Portulaca oleracea L. using nuclear magnetic resonance analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109464. [PMID: 39756182 DOI: 10.1016/j.plaphy.2024.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Purslane is a plant with high nutritional content that is mainly produced in the central part of Mexico. The nutritional content of purslane depends on various factors such as climatic and soil conditions, phenology, and fertilization. This article describes the 1H NMR metabolomics profiling of purslane in relation to fertilization at two harvest stages: C1 and C2 (27 and 42 days after emergence). During the first stage, 30 metabolites were identified including free amino acids and organic acids. In the second stage, 35 metabolites were identified, with higher concentrations of carbohydrates and nucleosides being observed. Multivariate analysis revealed differences in the metabolome between harvests C1 and C2. Notably, higher abundances of fructose, galactose, α-glucose, β-glucose, myo-inositol, sucrose, and nucleosides such as adenosine and uridine were observed in C2. Discriminant analysis further demonstrated variations in metabolites among plants treated with different doses of nitrogen, phosphorus, and potassium at the two harvest stages studied. Plants treated with the highest dose of nitrogen (300 kg N ha-1) exhibited maximum levels of metabolites, while low nitrogen-treated plants (0 kg N ha-1) displayed an inverse trend. Amino acids such as alanine, asparagine, GABA, glutamine, histidine, isoleucine, leucine, phenylalanine, proline, threonine, tyrosine, and valine were found to be the most abundant in plants treated with N300. In contrast, untreated plants showed higher levels of citric acid and malic acid. Our results highlight the effectiveness of 1H NMR as a methodology for understanding the role of fertilization and nutrient content in optimizing the crop production of purslane.
Collapse
Affiliation(s)
- César Omar Montoya-García
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, Ciudad de México, Mexico; Departamento de Edafología, Colegio de Postgraduados, Campus Montecillo, Km. 36.5, Carretera México-Texcoco, Montecillo, Texcoco, 56230, Estado de México, Mexico.
| | - Diego Hidalgo-Martínez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Elvia Becerra-Martínez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - César A Reyes-López
- Sección de Estudios de Posgrado e Investigación, ENMyH, Instituto Politécnico Nacional. Guillermo Massieu Helguera, No. 239, Fracc. "La Escalera", Ticomán, Mexico City, C.P. 07320, Mexico
| | | | - Víctor Hugo Volke-Haller
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, 04960, Ciudad de México, Mexico
| |
Collapse
|
2
|
Heydarirad G, Rastegar S, Haji-Abdolvahab H, Fuzimoto A, Hunter J, Zare R, Pasalar M. Efficacy and safety of purslane (Portulaca oleracea) for mild to moderate chronic hand eczema; A randomized, double-blind, placebo-controlled clinical trial. Explore (NY) 2024; 20:401-410. [PMID: 37872023 DOI: 10.1016/j.explore.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
INTRODUCTION Chronic hand eczema (CHE) is a common skin inflammation with a complex pathophysiology. Due to its anti-inflammatory properties, Portulaca oleracea L. (purslane) is traditionally used in Persian medicine for skin ailments. This study aimed to evaluate the safety and efficacy of a standardized purslane extract (based on traditional Persian medicine) for adults with mild or moderately severe CHE. METHODS A randomized, double-blind, placebo-controlled clinical trial was conducted at Razi Hospital in Iran from January to June 2022. Participants were randomly allocated to receive an oral purslane or placebo syrup plus topical Vaseline for four weeks. Seventy participants were randomly allocated into the intervention (n = 35) and placebo (n = 35) groups. The primary outcomes were the extent and severity of CHE symptoms over the four weeks after adjusting for age, gender and baseline score. Secondary outcomes were quality of life, symptom recurrence, treatment satisfaction, and adverse events. RESULTS After 4 weeks of treatment, compared to the placebo group (n = 31), the purslane group (n = 31) had significantly lower physician-reported fissure scores (adjusted mean difference (adjMD): -0.50, 95 %CI -3.93 to -0.34, p = 0.043), participant-reported itching (adjMD -0.51, 95 %CI -2.32 to -0.31, p = 0.041), dryness (adjMD -1.46, 95 %CI -2.89 to -0.03, p = 0.045), and total itching, dryness and thickness (adjMD -2.36, 95 %CI -6.23 to -1.51, p = 0.023) scores. Fourteen participants (purslane n = 10; placebo n = 4, p = 0.068) experienced adverse events of mild to moderate severity. CONCLUSION Purslane has some promising effects for reducing the extent and severity of CHE symptoms, and no direct comparisons have been made with commonly used treatments. Future multicenter trials and mechanistic studies are warranted to establish the safety and effectiveness of purslane as a potential therapeutic agent for CHE. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT20200707048040N1).
Collapse
Affiliation(s)
- Ghazaleh Heydarirad
- Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Rastegar
- Department of Traditional Medicine, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Jennifer Hunter
- Director, Health Research Group, Sydney, New South Wales, Australia
| | - Roghayeh Zare
- Research Center of Persian Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehdi Pasalar
- Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Portulaca oleracea L. Extract Regulates Hepatic Cholesterol Metabolism via the AMPK/MicroRNA-33/34a Pathway in Rats Fed a High-Cholesterol Diet. Nutrients 2022; 14:nu14163330. [PMID: 36014836 PMCID: PMC9414803 DOI: 10.3390/nu14163330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This study examined the effect of extruded Portulaca oleracea L. extract (PE) in rats fed a high-cholesterol diet through the AMP-activated protein kinase (AMPK) and microRNA (miR)-33/34a pathway. Sprague–Dawley rats were randomized into three groups and fed either a standard diet (SD), a high-cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), or an HC diet containing 0.8% PE for 4 weeks. PE supplementation improved serum, liver, and fecal lipid profiles. PE upregulated the expression of genes involved in cholesterol efflux and bile acids’ synthesis such as liver X receptor alpha (LXRα), ATP-binding cassette subfamily G5/G8 (ABCG5/8), and cholesterol 7 alpha-hydroxylase (CYP7A1), and downregulated farnesoid X receptor (FXR) in the liver. In addition, hepatic gene expression levels of apolipoprotein A-l (apoA-1), paraoxonase 1 (PON1), ATP-binding cassette subfamily A1/G1 (ABCA1/G1), lecithin-cholesterol acyltransferase (LCAT), and scavenger receptor class B type 1 (SR-B1), which are related to serum high-density lipoprotein cholesterol metabolism, were upregulated by PE. Furthermore, hepatic AMPK activity in the PE group was higher than in the HC group, and miR-33/34a expression levels were suppressed. These results suggest that PE improves the cholesterol metabolism by modulating AMPK activation and miR-33/34a expression in the liver.
Collapse
|
4
|
Bao M, Hou K, Xin C, Zeng D, Cheng C, Zhao H, Wang Z, Wang L. Portulaca oleracea L. Extract Alleviated Type 2 Diabetes Via Modulating the Gut Microbiota and Serum Branched-Chain Amino Acid Metabolism. Mol Nutr Food Res 2022; 66:e2101030. [PMID: 35212446 DOI: 10.1002/mnfr.202101030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 12/21/2022]
Abstract
SCOPE Portulaca oleracea L. extracts (PE) show hypoglycemic function, but the precise mechanism remains obscure. This study is designed to investigate the association of the antidiabetes effect of PE with the gut microbiota modulation and BCAAs metabolism. METHODS AND RESULTS The Orbitrap LC-MS to Orbitrap Fusion Lumos Tribrid mass spectrometer is employed to analyze the major compounds in PE. The components of the intestinal microflora in diet-induced/STZ-treated diabetic mice are analyzed by high-throughput 16S rRNA genes sequencing. The results show that PE improves blood glucose and insulin level, increases anti-inflammatory cytokine level, lowers serum branched-chain amino acids (BCAAs), and increases serum glutamine level. PE also protects the mucosal epithelium of the colon and cecum from damage. On the impact of gut microbial composition, PE reduces the Firmicutes to Bacteroidetes ratio and the abundance of the Lachnospiraceae_NK4A136_group, Blautia, Ruminiclostridium_9, Dubosiella, and increases the abundance of the Bacteroides, Akkermansia, and Mucisprillum genera. Bacterial functionality prediction indicates PE potentially inhibits bacterial BCAAs biosynthesis, and promotes the tissue-specific expression of BCAAs catabolic enzyme for reducing BCAAs supplementation. CONCLUSION These results reveal that PE improving T2D-related biochemical abnormalities is associated not only with gut microbiota modification but also with the tissue-specific expression of BCAAs catabolic enzyme.
Collapse
Affiliation(s)
- Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Deyong Zeng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Cuilin Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Haitian Zhao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, NO. 92 Xidazhi Street, Nangang District, Harbin, Heilongjiang, 150001, P. R. China
| |
Collapse
|
5
|
Zhang H, Chen G, Yang J, Yang C, Guo M. Screening and characterisation of potential antioxidant, hypoglycemic and hypolipidemic components revealed in Portulaca oleracea via multi-target affinity ultrafiltration LC-MS and molecular docking. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:272-285. [PMID: 34467579 DOI: 10.1002/pca.3086] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Portulaca oleracea is a commonly used nutritional vegetable and traditional herbal medicine with plenty of nutrients and manifold pharmacological activities. However, the potential active ingredients for its remarkable antioxidant, hypoglycemic and hypolipidemic activities remain unexplored. OBJECTIVES The present study aims to systematically evaluate the antioxidant activities of different extracts of P. oleracea and screen bioactive ligands that can interact with α-glucosidase, pancreatic lipase, and superoxide dismutase (SOD). METHODS In this research, the antioxidant activities of different parts of P. oleracea and their corresponding total phenolic content (TPC) and total flavonoid content (TFC) were systematically determined. Subsequently, a multi-target affinity ultrafiltration method was developed using affinity ultrafiltration with SOD, α-glucosidase, and pancreatic lipase coupled to liquid chromatography-mass spectrometry (UF-LC-MS). Later, molecular docking was used to further investigate the possible interaction mechanism between these ligands and target enzymes. RESULTS Among them, the ethyl acetate (EA) fraction showed the highest antioxidant activity along with the highest TPC and TFC, and four compounds in the EA fraction were quickly retrieved as potential SOD, α-glucosidase, and pancreatic lipase ligands, respectively. Molecular docking revealed that these potential ligands exhibited strong binding ability and inhibitory activities on SOD, α-glucosidase, and pancreatic lipase. CONCLUSION The present study revealed that P. oleracea can be used as a functional food with excellent antioxidant, hypoglycemic and hypolipidemic effects. Meanwhile, the integrated strategy based on multi-target UF-LC-MS and molecular docking also provided a powerful tool and a multidimensional perspective for further exploration of active ingredients in P. oleracea responsible for the antioxidant, hypoglycemic and hypolipidemic activities.
Collapse
Affiliation(s)
- Hui Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Jinpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
He X, Hu Y, Liu W, Zhu G, Zhang R, You J, Shao Y, Li Y, Zhang Z, Cui J, He Y, Ge G, Yang H. Deciphering the Effective Constituents and Mechanisms of Portulaca oleracea L. for Treating NASH via Integrating Bioinformatics Analysis and Experimental Pharmacology. Front Pharmacol 2022; 12:818227. [PMID: 35126150 PMCID: PMC8807659 DOI: 10.3389/fphar.2021.818227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a highly prevalent metabolic disorder. Currently, there are no effective pharmacotherapeutic options for preventing and treating NASH. Portulaca oleracea L. (POL) is an edible herb that has been used for preventing and treating some metabolic disorders in China, but the bioactive constituents in POL and the related mechanisms for treating NASH are still unclear. Here, a comprehensive research strategy was used to identify the core genes and the key constituents in POL for treating NASH, via integrating bioinformatics analysis and experimental pharmacology both in vitro and in vivo. The phenotypes and mechanisms of POL were carefully investigated by performing a set of in vivo and in vitro experiments. Bioinformatics analysis suggested that prostaglandin-endoperoxide synthase 2 (PTGS2) was the core target and myricetin (Myr) was the key constituent in POL for treating NASH. In NASH mice model induced by methionine choline deficiency diet, POL significantly alleviated hepatic steatosis and liver injury. In free fatty acids-induced hepatocytes, POL and Myr significantly down-regulated the expression of PTGS2, decreased the number of lipid droplets, and regulated the mRNA expression of lipid synthesis and homeostasis genes, including FASN, CPT1a, SERBP1c, ACC1, and SCD1. In lipopolysaccharide-induced macrophages, POL and Myr significantly reduced the expression of PTGS2 and blocked the secretion of inflammatory mediators TNF-α, IL-6, and IL-1β. Further investigations demonstrate that Myr acts as both suppressor and inhibitor of PTGS2. Collectively, POL and its major component Myr can ameliorate NASH via down-regulating and inhibiting PTGS2, suggesting that POL and Myr can be developed as novel medicines for treating NASH.
Collapse
Affiliation(s)
- Xiaoli He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiren Hu
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoxi Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawen You
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Shao
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunhao Li
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zeng Zhang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingang Cui
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanming He
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjie Yang
- Department of Endocrinology, Research Laboratory of Pharmacy, Center of Experimental Animals, Clinical Research Institute of Integrative Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Tian X, Ding Y, Kong Y, Wang G, Wang S, Cheng D. Purslane (Portulacae oleracea L.) attenuates cadmium-induced hepatorenal and colonic damage in mice: Role of chelation, antioxidant and intestinal microecological regulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153716. [PMID: 34481339 DOI: 10.1016/j.phymed.2021.153716] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/24/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Cadmium (Cd) is a representative pernicious metal, which has high biological toxicity. Its precaution through dietary administration is considered an important strategy. Considering that Portulaca oleracea L. (Por.L) has antioxidant, anti-inflammatory and other high medicinal value, and purslane insoluble dietary fiber (PIDF) has good binding property to metal ions, they could be good methods for Cd-induced biotoxicity therapy. PURPOSE To investigate the beneficial effects of Por.L or PIDF against Cd-induced subchronic toxicity and identify its underlying mechanisms. STUDY DESIGN AND METHODS C57BL/6 male mice (n = 12) were received 100 mg l-1 CdCl2 in water for 8 weeks. Mice were divided into four groups: Control, Cd-treated, 8% Por.L + Cd, and 8% PIDF + Cd. Histological evaluation, inductively coupled plasma-mass spectrometry, western blotting analysis, quantitative real time-PCR, gas chromatography-mass spectrometry and 16S rDNA analysis were used in the study. RESULTS Por.L treatment was able to inhibit inflammation and accumulation of Cd, enhance the activity of antioxidant enzymes, increase beneficial bacterial species of Akkermansia and Faecalibaculum and suppress the production of inflammatory cytokines in the colon, such as TNF-α, IL-6, IL-1β and IFN-γ. PIDF mainly relieved the toxicity of Cd by increasing the production of short chain fatty acids with anti-inflammatory functions and repressing the liver and kidney inflammation mediated by the TLR4/ MyD88/NF-κB pathway. CONCLUSION Our study has demonstrated that the antagonistic-Cd effects of Por.L might be mediated via chelation, antioxidation, regulation of intestinal microecology. Thus, our study provides a novel insight into Por.L as a promising function food for the anti-Cd biotoxicity. Por.L supplement could be considered as a potential coping strategy to alleviate hazardous effects in Cd-exposed humans.
Collapse
Affiliation(s)
- Xuena Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yixin Ding
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yu Kong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Guangliang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai Cheng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
8
|
Pereira AG, Fraga-Corral M, García-Oliveira P, Jimenez-Lopez C, Lourenço-Lopes C, Carpena M, Otero P, Gullón P, Prieto MA, Simal-Gandara J. Culinary and nutritional value of edible wild plants from northern Spain rich in phenolic compounds with potential health benefits. Food Funct 2021; 11:8493-8515. [PMID: 33034610 DOI: 10.1039/d0fo02147d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Wild edible plants (WEPs) have been consumed since ancient times. They are considered as non-domesticated plants that grow spontaneously in nature, particularly in forests and bushlands, where they can be found and collected to be incorporated into human nutrition. Increasingly, WEPs are gaining importance as they are potential sources of food due to their nutritional value, besides showing positive health effects and offer innovative applications in haute cuisine. As these autochthonous plants grow naturally in the environment, they are more suitable to adapt to different climatic conditions as well as biotic and abiotic factors. Therefore, a door has been opened for their possible cultivation as they seem to require fewer expenses than other commercially cultivated plants. Moreover, the consumers demand for new products of natural origin that are sustainable and ecologically labeled have also boosted WEPs' recovery and incorporation into the market. In addition, they are considered as promising sources of essential compounds needed not only in human diet including carbohydrates, proteins, and lipids but also of other minor compounds as phenols, vitamins, or carotenoids that have shown numerous beneficial bioactivities such as antioxidants, anti-inflammatory, or anti-tumor activity. The use of these plants rich in bioactive molecules could be beneficial from the health point of view as the human body is not always capable of producing enough defenses, for instance, preventing oxidative damage. In particular, the presence of phenolic compounds in these vegetal matrices is supposed to provide a prophylactic effect against further pathogenesis and disorders related to aging or oxidative stresses. Regarding all this information based on traditional knowledge and ethnobotanical data, different WEPs found in the Northwestern region of Spain were selected, namely, Mentha suaveolens, Glechoma hederacea, Prunus spinosa, Apium nodiflorum, Artemisia absinthium, Silybum marianum, Picris hieracioides, Portulaca oleracea, Crithmum maritimum, and the genus Amaranthus. However, even though tradition and popular knowledge are excellent tools for the exploitation of these plants, it is necessary to develop regulations in this aspect to assure safety and veracity of food products. This article aims to review the main aspects of their bioactive properties, their traditional use, and the possibility of their incorporation into the market as new functional foods, looking at innovative and healthy gastronomic applications.
Collapse
Affiliation(s)
- A G Pereira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain. and Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain. and Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - P García-Oliveira
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain. and Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - C Jimenez-Lopez
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain. and Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - C Lourenço-Lopes
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - M Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - Paz Otero
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain. and Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary, University of Santiago of Compostela, 27002 Lugo, Spain
| | - P Gullón
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - M A Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
9
|
Wang C, Liu Q, Ye F, Tang H, Xiong Y, Wu Y, Wang L, Feng X, Zhang S, Wan Y, Huang J. Dietary purslane (Portulaca oleracea L.) promotes the growth performance of broilers by modulation of gut microbiota. AMB Express 2021; 11:31. [PMID: 33620605 PMCID: PMC7902751 DOI: 10.1186/s13568-021-01190-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/08/2021] [Indexed: 12/28/2022] Open
Abstract
Purslane is a widespread wild vegetable with both medicinal and edible properties. It is highly appreciated for its high nutritional value and is also considered as a high-quality feed resource for livestock and poultry. In this study, Sanhuang broilers were used to investigate the effect of feeding purslane diets on the growth performance in broilers and their gut microbiota. A total of 48 birds with good growth and uniform weight were selected and randomly allocated to four treatment groups A (control), B, C and D. Dietary treatments were fed with basal diet without purslane and diets containing 1%, 2% and 3% purslane. The 16S rDNA was amplified by PCR and sequenced using the Illumina HiSeq platform to analyze the composition and diversity of gut microbiota in the four sets of samples. The results showed that dietary inclusion of 2% and 3% purslane could significantly improve the growth performance and reduce the feed conversion ratio. Microbial diversity analysis indicated that the composition of gut microbiota of Sanhuang broilers mainly included Gallibacterium, Bacteroides and Escherichia-Shigella, etc. As the content of purslane was increased, the abundance of Lactobacillus increased significantly, and Escherichia-Shigella decreased. LEfSe analysis revealed that Bacteroides_caecigallinarum, Lachnospiraceae, Lactobacillales and Firmicutes had significant differences compared with the control group. PICRUSt analysis revealed bacteria mainly enriched in carbohydrate metabolism pathway due to the additon of purslane in the diet. These results suggest that the addition of purslane to feed could increase the abundance of Lactobacillus in intestine, modulate the environment of gut microbiota and promote the metabolism of carbohydrates to improve its growth performance. This study indicates that the effect of purslane on the growth-promoting performance of broilers might depend on its modulation on gut microbiota, so as to provide a certain scientific basis for the application of purslane in the feed industry.
Collapse
|
10
|
Phytochemical Composition and Antioxidant Activity of Portulaca oleracea: Influence of the Steaming Cooking Process. Foods 2021; 10:foods10010094. [PMID: 33466382 PMCID: PMC7824898 DOI: 10.3390/foods10010094] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, we compared the phenolic composition and antioxidant capacity of methanolic extracts of raw and steamed aerial parts of Portulaca oleracea L. Two new cyclo-dopa amides were identified, named oleraceins X and Y, along with six known ones (oleraceins A, B, C, N, J, and U). Compounds identification and quantification were done by high-performance liquid chromatography with diode array and mass spectrometry detections. The most abundant compounds were phenolic alkaloids (oleraceins), and the main quantified compounds were isocitric and citric acids, with concentrations of 500–550 and 440–600 mg/100 g dried extract, respectively. The study of both the influence of the steaming process in Portulaca oleracea L. and total phenolic content and radical scavenging assays (ABTS·+ and DPPH) were also carried out. The total individual phenolic content of raw Portulaca decreased from 1380 mg/100 g DE to 1140 mg/100 g DE after the steaming process. The antioxidant capacity in ABTS and DPPH assays decreased approximately 50 and 40%, respectively, after samples were cooked by steaming. The raw extracts presented the highest concentration of bioactive compounds, as well as higher antioxidant and radical scavenging values.
Collapse
|
11
|
The Beneficial Health Effects of Vegetables and Wild Edible Greens: The Case of the Mediterranean Diet and Its Sustainability. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10249144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Mediterranean diet (MD) concept as currently known describes the dietary patterns that were followed in specific regions of the area in the 1950s and 1960s. The broad recognition of its positive effects on the longevity of Mediterranean populations also led to the adoption of this diet in other regions of the world, and scientific interest focused on revealing its health effects. MD is not only linked with eating specific nutritional food products but also with social, religious, environmental, and cultural aspects, thus representing a healthy lifestyle in general. However, modern lifestyles adhere to less healthy diets, alienating people from their heritage. Therefore, considering the increasing evidence of the beneficial health effects of adherence to the MD and the ongoing transitions in consumers’ behavior, the present review focuses on updating the scientific knowledge regarding this diet and its relevance to agrobiodiversity. In addition, it also considers a sustainable approach for new marketing opportunities and consumer trends of the MD.
Collapse
|
12
|
|
13
|
Wang L, Zhu L, Gong L, Zhang X, Wang Y, Liao J, Ke L, Dong B. Effects of Activated Charcoal-Herb Extractum Complex on Antioxidant Status, Lipid Metabolites and Safety of Excess Supplementation in Weaned Piglets. Animals (Basel) 2019; 9:E1151. [PMID: 31847500 PMCID: PMC6940724 DOI: 10.3390/ani9121151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 11/17/2022] Open
Abstract
This study was aimed at evaluating the effects of activated charcoal-herb extractum complex (CHC) on antioxidant status, serum lipid metabolites and its safety supplement in weaning piglets. In experiment 1, a total of 216 piglets (Duroc × Landrace × Large White) weaned at 28 days of age with initial body weight of 8.55 ± 1.18 kg were assigned randomly to six treatment groups. each treatment group had six pens, with six pigs per pen. Pigs were fed a corn-soybean meal-based diet supplemented with 500, 1000, 1500 or 2000 mg kg-1 of CHC over two 14-d periods. Diets supplemented with 0 and 1000 mg kg-1 of montmorillonite (MMT) were set as the negative and positive controls, respectively. In experiment 2, pigs (n = 108) weaned at 28 days of age with initial body weight of 8.58 ± 0.04 kg were randomly assigned to three treatment groups. Each treatment group had six pens, with six pigs per pen. Pigs were fed a corn-soybean meal-based diet supplemented with 0, 1000 or 10,000 mg kg-1 of CHC over two 14-d periods. In experiment 1, on day 14, supplementation with CHC significantly decreased very low-density lipoprotein (VLDL) concentration while they decreased low-density lipoprotein (LDL) concentration on d 28, CHC at 500, 1000 or 1500 mg kg-1 significantly increase high-density lipoprotein (HDL) concentration. Supplementation with 500 or 1000 mg kg-1 CHC reduced serum malondialdehyde (MDA) concentration during the entire experimental period and increased the concentration of serum total superoxide dismutase (T-SOD) on d 14. CHC at 500 or 1000 mg kg-1 significantly reduced the liver MDA concentration and increased liver T-SOD concentration. In experiment 2, increased ADG was obvious during the first 14 days and the whole period in 1000 mg kg-1 supplemented pigs, similarly F: G was lowest in the first 14 days. There was no difference in growth performance, visceral index, haematological and serum biochemical parameters and visceral organs morphology between pigs fed 10,000 mg kg-1 of CHC and control. Together, 500 to 1000 mg kg-1 CHC was confirmed to improve antioxidant status, and serum lipid metabolites in this study and excess supplementation of CHC is safe in weaning piglets.
Collapse
Affiliation(s)
- Liqi Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (L.W.); (L.Z.); (L.G.); (X.Z.); (Y.W.)
| | - Lin Zhu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (L.W.); (L.Z.); (L.G.); (X.Z.); (Y.W.)
| | - Limin Gong
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (L.W.); (L.Z.); (L.G.); (X.Z.); (Y.W.)
| | - Xin Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (L.W.); (L.Z.); (L.G.); (X.Z.); (Y.W.)
| | - Yubo Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (L.W.); (L.Z.); (L.G.); (X.Z.); (Y.W.)
| | - Jianling Liao
- Fujian Baicaoshaung Biotechnology Co., Ltd., Nanping 353200, China; (J.L.); (L.K.)
| | - Linfu Ke
- Fujian Baicaoshaung Biotechnology Co., Ltd., Nanping 353200, China; (J.L.); (L.K.)
| | - Bing Dong
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (L.W.); (L.Z.); (L.G.); (X.Z.); (Y.W.)
| |
Collapse
|
14
|
Farag MA, Shakour ZTA. Metabolomics driven analysis of 11 Portulaca leaf taxa as analysed via UPLC-ESI-MS/MS and chemometrics. PHYTOCHEMISTRY 2019; 161:117-129. [PMID: 30825706 DOI: 10.1016/j.phytochem.2019.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/14/2019] [Accepted: 02/17/2019] [Indexed: 05/23/2023]
Abstract
Portulaca oleracea, commonly known as purslane, is a popular plant of considerable value for its nutritive composition as well as traditional medicinal uses. P. oleracea is reported to possess neuroprotective, antimicrobial, antidiabetic, antioxidant, anti-inflammatory, antiulcerogenic, and anticancer activities. Three taxa of P. oleracea L. (P. oleracea, P. rausii and P. granulatostellulata) are grown as mixed populations in several locations in Egypt. The close morphological similarities among these taxa warrants development of methods for their correct identification or classification. We aimed in this study to assess metabolome differences among three P. oleracea taxa via ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) in the context of their genetic diversity and/or geographical origin. A total of 85 metabolites were identified including 6 amino acids, 22 phenolic compounds, 16 alkaloids, and 11 fatty acids characterized based on their MSn and UV spectra. Methoxylated flavone glycosides, O-flavonoids, C-flavonoids and four previously undescribed cyclodopa alkaloids are reported in P. oleracea for the first time. Multivariate data analyses were used for samples classification and revealing that cyclodopa alkaloids (oleracein A, C, K and N) contributed the most for accessions classification. To the best of our knowledge, this study presents the first metabolite profile of Portulaca and its compositional differences that provide chemical based evidence for its nutritive and/or health benefits.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., P.B. 11562, Cairo, Egypt; Department of Chemistry, School of Sciences & Engineering, American University in Cairo, New Cairo, 11835, Egypt.
| | - Zeinab T Abdel Shakour
- Laboratory of Phytochemistry, National Organization for Drug Control and Research, Cairo, Egypt
| |
Collapse
|
15
|
Mollazadeh H, Mahdian D, Hosseinzadeh H. Medicinal plants in treatment of hypertriglyceridemia: A review based on their mechanisms and effectiveness. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:43-52. [PMID: 30668411 DOI: 10.1016/j.phymed.2018.09.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/31/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hypertriglyceridemia (HTg) defines as high amounts of triglyceride (TG) in the blood which can lead to serious complications over time. HTg is usually a part of metabolic disorders such as diabetes mellitus, metabolic syndrome, and dyslipidemia. Different medications have been used to treat HTg but experimentally, many herbs have been recommended for treating HTg as an adjuvant therapy. In most cases, the recommendations are based on animal studies and limited evidences exist about their mechanisms and clinical usefulness. PURPOSE This review focused on the herbs which have been shown TG lowering effect. METHOD The search was done in PubMed, Science Direct, Scopus, Web of Science and Google Scholar databases a 20-year period between 1997 to 2017 with keywords search of medicinal plant, plant extract, hypertriglyceridemia, dyslipidemia, hyperlipidemia, lipoprotein lipase and apolipoprotein. RESULTS According to the results, many plants showed positive effects but Allium sativum, Nigella sativa, Curcuma longa, Anethum graveolens and Commiphora mukul had the best TG lowering effect with exact mechanisms of action. CONCLUSION It seems that use of these plants as complementary therapeutics or extraction of their active ingredients along with currently available drugs will improve the management of HTg in patients.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Davood Mahdian
- Department of Pharmacology, School of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamic and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Habibian M, Sadeghi G, Karimi A. Comparative effects of powder, aqueous and methanolic extracts of purslane (Portulaca oleracea L.) on growth performance, antioxidant status, abdominal fat deposition and plasma lipids in broiler chickens. ANIMAL PRODUCTION SCIENCE 2019. [DOI: 10.1071/an17352] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was performed to evaluate the comparative effects of dietary supplementation of dried purslane powder (PP), purslane aqueous extract (PAE) and purslane methanolic extract (PME) on performance, antioxidant status, carcass traits and selected plasma lipid parameters in broiler chickens. In total, 420 1-day-old male broiler chicks were divided into seven treatments for 49 days as follows: control (basal diet), basal diets plus 1500 or 3000 mg/kg of PP (PP1500 and PP3000 respectively), basal diets plus 150 or 300 mg/kg of PAE (PAE150 and PAE300 respectively) and basal diets plus 150 or 300 mg/kg of PME (PME150 and PME300 respectively). During the total period of the experiment (0–49 days of the experiment), birds receiving the PP3000 diet had higher (P < 0.05) bodyweight gain and a lower feed conversion ratio compared with those fed other diets. At 24 and 49 days of the experiment, birds receiving the PP3000 diet showed greater (P < 0.05) plasma and liver activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx), and lower (P < 0.05) plasma and liver levels of malondialdehyde compared with other dietary treatments. Additionally, at 24 days of the experiment, birds receiving the PP3000 diet had a greater (P < 0.05) liver catalase activity than those receiving other dietary treatments. In addition, groups receiving the PP1500, PAE300 or PME300 diets showed greater (P < 0.05) plasma and liver activities of superoxide dismutase, catalase and glutathione peroxidase, as well as lower (P < 0.05) plasma and liver levels of malondialdehyde compared with the control group. At 24 days of the experiment, birds receiving the PP1500 or PP3000 diets showed greater (P < 0.05) jejunal activities of superoxide dismutase, catalase and glutathione peroxidase than other groups. At 49 days of the experiment, birds receiving the PP3000 diet showed greater (P < 0.05) jejunal activities of superoxide dismutase and glutathione peroxidase compared with the control group. Additionally, at both 24 and 49 days of the experiment, groups receiving the PP3000 diet had lower (P < 0.05) jejunal levels of malondialdehyde compared with the control group. At 49 days of the experiment, birds receiving the PP3000 diet had a lower (P < 0.05) relative weight of abdominal fat compared with those receiving the other dietary treatments. Moreover, groups that consumed the PP1500, PAE300 or PME300 diets showed lower (P < 0.05) relative weights of abdominal fat compared with the control group. Groups fed PP, PAE or PME treatments showed lower (P < 0.05) plasma levels of triglycerides, total cholesterol and low-density lipoprotein cholesterol, and higher (P < 0.05) plasma levels of high-density lipoprotein cholesterol than the control group at 24 and 49 days of the experiment, with the most pronounced effects observed in those receiving the PP3000 treatment. In conclusion, PP showed more beneficial effects than PAE and PME, and 3000 mg/kg was the best inclusion level of PP in broiler chicken diets.
Collapse
|
17
|
Catap ES, Kho MJL, Jimenez MRR. In vivo nonspecific immunomodulatory and antispasmodic effects of common purslane (Portulaca oleracea Linn.) leaf extracts in ICR mice. JOURNAL OF ETHNOPHARMACOLOGY 2018; 215:191-198. [PMID: 29325915 DOI: 10.1016/j.jep.2018.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/29/2017] [Accepted: 01/06/2018] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea (common purslane) is used in traditional medicine to cure various illnesses. However, its immune-protective properties and antispasmodic effects still need more pharmacological data if the plant will be utilized in herbal and drug formulations. Therefore, the present study determined the capacity of this plant species to modulate nonspecific immune responses and to confirm its antispasmodic activity in vivo in ICR mice. MATERIALS AND METHODS Phagocytic activity of peritoneal macrophage, splenic lymphocyte proliferation and plasma lysozyme levels were measured in mice that were immunosuppressed using cyclophosphamide and treated with the ethyl acetate extract of Portulaca oleracea. In addition, the charcoal meal transit test was used to measure intestinal motility using ethanolic (EtOH), hexane (HEX), and ethyl acetate (EA) solvent extracts. Phytochemical analysis was undertaken and DPPH scavenging properties of the three solvent extracts were also determined. RESULTS The EA extract of P. oleracea exhibited immunoactivity through significant increase in phagocytosis and higher proliferative response in splenic lymphocytes. Plasma lysozyme level was also higher in EA-treated mice at high dose but this was not statistically significant. Decreased intestinal motility was also exhibited in mice treated with the three leaf solvent extracts compared to the negative control and the acetylcholine-treated group. The antispasmodic activity of the solvent extracts was comparable to that of the atropine-treated group. Phytochemical analysis showed the presence of tannins in EA extract in addition to alkaloids and steroids. The EtOH and HEX extracts contain alkaloids, steroids and terpenoids. DPPH scavenging activity was highest in the EA extract. CONCLUSIONS The present study showed that the EA extract of P. oleracea leaves ameliorated the immunosuppressive action of cyclophosphamide in mice. The results also indicated that the three solvent extracts of the plant decreased smooth muscle spasms in mice ileum. However, further experiments are warranted to further isolate the plant's immunoactive component. Also, the mechanisms involved in the immunoactivity and antispasmodic properties of P. oleracea deserve full elucidation.
Collapse
Affiliation(s)
- Elena S Catap
- Institute of Biology, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines; Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines.
| | - Markyn Jared L Kho
- Institute of Biology, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Maria Rexie R Jimenez
- Institute of Biology, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines; Natural Sciences Research Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
18
|
Jiang M, Zhang W, Yang X, Xiu F, Xu H, Ying X, Stien D. An isoindole alkaloid from Portulaca oleracea L. Nat Prod Res 2017; 32:2431-2436. [DOI: 10.1080/14786419.2017.1419226] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mingyue Jiang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Wenjie Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xu Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fen Xiu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Haoran Xu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Didier Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, Banyuls-sur-Mer, France
| |
Collapse
|
19
|
Chemical constituents and bioactive potential of Portulaca pilosa L vs. Portulaca oleracea L. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1862-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Biomolecular Characterization of Putative Antidiabetic Herbal Extracts. PLoS One 2016; 11:e0148109. [PMID: 26820984 PMCID: PMC4731058 DOI: 10.1371/journal.pone.0148109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.
Collapse
|
21
|
Zeng L, Yan J, Luo L, Zhang D. Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes. Food Funct 2015; 6:2008-16. [DOI: 10.1039/c5fo00362h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes (e.g.HMGR) are assayedin vitro.
Collapse
Affiliation(s)
- Liang Zeng
- College of Food Science
- Southwest University
- Chongqing
- China
- TAETEA Group Postdoctoral Research Station
| | - Jingna Yan
- College of Food Science
- Southwest University
- Chongqing
- China
| | - Liyong Luo
- College of Food Science
- Southwest University
- Chongqing
- China
| | - Dongying Zhang
- College of Longrun Pu-erh Tea
- Yunnan Agricultural University
- Kunming
- China
- TAETEA Group Postdoctoral Research Station
| |
Collapse
|