1
|
Trebesova H, Orlandi V, Boggia R, Grilli M. Anxiety and Metabolic Disorders: The Role of Botanicals. Curr Issues Mol Biol 2023; 45:1037-1053. [PMID: 36826013 PMCID: PMC9954866 DOI: 10.3390/cimb45020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Anxiety and anxiety-related disorders are becoming more evident every day, affecting an increasing number of people around the world. Metabolic disorders are often associated with anxiety. Furthermore, anxiety branches into metabolic disorders by playing multiple roles as a cofactor, symptom, and comorbidity. Taken together, these considerations open the possibility of integrating the therapy of metabolic disorders with specific drugs for anxiety control. However, anxiolytic compounds often cause disabling effects in patients. The main goal could be to combine therapeutic protocols with compounds capable of reducing side effects while performing multiple beneficial effects. In this article we propose a group of bioactive ingredients called botanicals as a healthy supplement for the treatment of metabolic disorders related to anxiety.
Collapse
Affiliation(s)
- Hanna Trebesova
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Valentina Orlandi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
- Correspondence: ; Tel.: +39-010-353-520-21
| |
Collapse
|
2
|
Donno D, Turrini F, Boggia R, Guido M, Gamba G, Mellano MG, Riondato I, Beccaro GL. Vitis vinifera L. Pruning Waste for Bud-Preparations as Source of Phenolic Compounds–Traditional and Innovative Extraction Techniques to Produce New Natural Products. PLANTS 2021; 10:plants10112233. [PMID: 34834596 PMCID: PMC8624332 DOI: 10.3390/plants10112233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/21/2023]
Abstract
Herbal products are now considered among the most important sources of phenolic compounds: the FINNOVER project aimed at the creation and development of sustainable supply chains to extract and use natural biologically active agents. Vitis vinifera is one of the most utilised herbal products derived from buds and sprouts as polyphenolic food supplements for its homeostatic and astringent properties. This research was aimed to describe the antioxidant capacity and the phytochemical composition of V. vinifera herbal products by the application of spectroscopic and chromatographic fingerprints considering phenolics as potential markers to significantly differentiate traditional preparations (macerates) from innovative extracts obtained by an ultrasound extraction from V. vinifera buds. Two different commercial products were also considered. Flavonols were the most abundant class in ultrasound extracts (45%), while phenolic acids were the most important class in traditional macerates (49%) and commercial bud-preparations (about 50%). This study may support the potential use of V. vinifera bud-products (starting from pruning byproducts) as food supplements to integrate human diet with good amounts of phenolics. Finally, the use of different extraction methods on the same plant material could be an important development to produce innovative herbal products with a phytochemical composition similar to traditional preparations.
Collapse
Affiliation(s)
- Dario Donno
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
- Correspondence:
| | - Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (F.T.); (R.B.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (F.T.); (R.B.)
| | | | - Giovanni Gamba
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| | - Maria Gabriella Mellano
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| | - Isidoro Riondato
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| | - Gabriele Loris Beccaro
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco, Italy; (G.G.); (M.G.M.); (I.R.); (G.L.B.)
| |
Collapse
|
3
|
Ye X, Zhao X, Sun Y, Zhang M, Feng S, Zhou A, Wu W, Ma S, Liu S. The underlying molecular conservation and diversification of dioecious flower and leaf buds provide insights into the development, dormancy breaking, flowering, and sex association of willows. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:651-664. [PMID: 34488151 DOI: 10.1016/j.plaphy.2021.08.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/07/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
As harbingers of bursting growth, flower buds and leaf buds generally show similar surface morphologies but different structural and functional changes. Dioecious plants further generate four types of Female/Male Flower/Leaf Buds (FFB, FLB, MFB, and MLB), showing a complex regulation. However, little is known about their underlying molecular mechanisms. Here, we exemplify the woody dioecious Salix linearistipularis to investigate their morphological characteristics and potential molecular mechanisms by combining cytological, physiological, phenological, and transcriptomic datasets. First, FFB and MFB have simultaneous development dynamics and so do FLB and MLB. Interestingly, FLB and MLB show very similar expression profiles preparing for photosynthesis and stress-tolerance, whereas FFB and MFB show great similarities but also striking sexual differences. Comparing flower buds and leaf buds after their revival from dormancy shows different cold- and vernalization-responsive genes (e.g. SliVRN1, SliAGL19, and SliAGL24), implying different programming processes for dormancy breaking between the buds. Moreover, except SliAP3, the expression of ABCDE model genes is consistent with their roles in the buds, suggesting a conserved mechanism of flower development between dioecious Salix and hermaphrodite Arabidopsis. Finally, considering sex-associated genes (e.g. SliCLE25, SliTPS21, and SliARR9) on Salix chromosomes and other reports, we hypothesize a dynamic model of sex determination on chromosomes 15 and 19 in the last ancestor of Salix and Populus but evolutionarily on 15 in Salix after their divergence. Together, our study provides new insights into the molecular mechanisms of dioecious four-type buds by showing the genes involved in their development, dormancy breaking, flowering, and sexual association.
Collapse
Affiliation(s)
- Xiaoxue Ye
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China; Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Yajun Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China; Qiqihar Eco-environmental Monitoring Center of Heilongjiang Province, Qiqihar, 161005, China.
| | - Meijiao Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shuang Feng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Aimin Zhou
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| | - Shurong Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Turrini F, Donno D, Beccaro GL, Pittaluga A, Grilli M, Zunin P, Boggia R. Bud-Derivatives, a Novel Source of Polyphenols and How Different Extraction Processes Affect Their Composition. Foods 2020; 9:E1343. [PMID: 32977484 PMCID: PMC7598208 DOI: 10.3390/foods9101343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022] Open
Abstract
The use of herbal food supplements, as a concentrate form of vegetable extracts, increased so much over the past years to count them among the relevant sources of dietetic polyphenols. Bud-derivatives are a category of botanicals perceived as a "new entry" in this sector since they are still poorly studied. Due to the lack of a manufacturing process specification, very different products can be found on the market in terms of their polyphenolic profile depending on the experimental conditions of manufacturing. In this research two different manufacturing processes, using two different protocols, and eight species (Carpinus betulus L., Cornus mas L., Ficus carica L., Fraxinus excelsior L., Larix decidua Mill., Pinus montana Mill., Quercus petraea (Matt.) Liebl., Tilia tomentosa Moench), commonly used to produce bud-derivatives, have been considered as a case study. An untargeted spectroscopic fingerprint of the extracts, coupled to chemometrics, provide to be a useful tool to identify these botanicals. The targeted phytochemical fingerprint by HPLC provided a screening of the main bud-derivatives polyphenolic classes highlighting a high variability depending on both method and protocol used. Nevertheless, ultrasonic extraction proved to be less sensitive to the different extraction protocols than conventional maceration regarding the extract polyphenolic profile.
Collapse
Affiliation(s)
- Federica Turrini
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Dario Donno
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy; (D.D.); (G.L.B.)
| | - Gabriele Loris Beccaro
- Department of Agriculture, Forestry and Food Science, University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy; (D.D.); (G.L.B.)
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Paola Zunin
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (A.P.); (M.G.); (P.Z.); (R.B.)
| |
Collapse
|