1
|
Culletta G, Buttari B, Arese M, Brogi S, Almerico AM, Saso L, Tutone M. Natural products as non-covalent and covalent modulators of the KEAP1/NRF2 pathway exerting antioxidant effects. Eur J Med Chem 2024; 270:116355. [PMID: 38555855 DOI: 10.1016/j.ejmech.2024.116355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
By controlling several antioxidant and detoxifying genes at the transcriptional level, including NAD(P)H quinone oxidoreductase 1 (NQO1), multidrug resistance-associated proteins (MRPs), UDP-glucuronosyltransferase (UGT), glutamate-cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits, glutathione S-transferase (GST), sulfiredoxin1 (SRXN1), and heme-oxygenase-1 (HMOX1), the KEAP1/NRF2 pathway plays a crucial role in the oxidative stress response. Accordingly, the discovery of modulators of this pathway, activating cellular signaling through NRF2, and targeting the antioxidant response element (ARE) genes is pivotal for the development of effective antioxidant agents. In this context, natural products could represent promising drug candidates for supplementation to provide antioxidant capacity to human cells. In recent decades, by coupling in silico and experimental methods, several natural products have been characterized to exert antioxidant effects by targeting the KEAP1/NRF2 pathway. In this review article, we analyze several natural products that were investigated experimentally and in silico for their ability to modulate KEAP1/NRF2 by non-covalent and covalent mechanisms. These latter represent the two main sections of this article. For each class of inhibitors, we reviewed their antioxidant effects and potential therapeutic applications, and where possible, we analyzed the structure-activity relationship (SAR). Moreover, the main computational techniques used for the most promising identified compounds are detailed in this survey, providing an updated view on the development of natural products as antioxidant agents.
Collapse
Affiliation(s)
- Giulia Culletta
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Marzia Arese
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy; Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P.Le Aldo Moro 5, 00185, Rome, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
2
|
Ghanem A, Ali MA, Elkady MA, Abdel Mageed SS, El Hassab MA, El-Ashrey MK, Mohammed OA, Doghish AS. Rumex vesicarius L. boosts the effectiveness of sorafenib in triple-negative breast cancer by downregulating BCl2, mTOR, and JNK, and upregulating p21 expression. Pathol Res Pract 2023; 250:154807. [PMID: 37696244 DOI: 10.1016/j.prp.2023.154807] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) is characterized by poor prognosis, rapid progression, serious clinical behavior, an elevated risk of metastasis, and resistance to standard treatments. Traditional medicine practitioners value Rumex vesicarius L. (RMV) for a variety of reasons, including the plant's antioxidant capabilities. Our study's goals were to ascertain the efficacy of RMV alone and in combination with sorafenib (SOR) against the aggressive TNBC cell line (MDA-MB-231) and use in vitro and in silico analysis to deduce the fundamental mechanism of action. METHODS In the current study, molecular operating environment (MOE, 2019.0102) software was used for performing molecular docking. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay was used to determine the cytotoxicity of RMV, SOR or RMV/SOR combination against the TNBC cell line MDA-MB-231 cells. The effects of RMV, SOR, and RMV and SOR combining on mRNAs expressions of the target genes including mTOR, p21, JNK, and BCl2 were evaluated. In TNBC cells, the relative expressions of mRNAs of the genes were examined by using real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS In our experiments, we discovered that both RMV extracts alone and in combination with SOR considerably reduced cancer cell proliferation (IC50 = 0.83 and 0.19 μM, respectively). Additionally, the expression of the tumor suppressor gene p21 was elevated whereas the expression of the invasion and anti-apoptosis genes BCl2, mTOR, and JNK were significantly decreased after treatment with RMV and SOR. Based on in silico analysis, it was found that RMV extract contains bioactive chemicals with a high affinity for inhibiting JNK and VEGFR-2. CONCLUSION In conclusion, in vitro and in silico investigations show that the RMV extract improves the anticancer efficiency of SOR through molecular processes involving the downregulation of mTOR, BCl2, and JNK1 and overexpression of p21 tumor suppressor gene. Finally, we suggest conducting additional in vivo investigations on RMV and its bioactive components to verify their potential in cancer therapy.
Collapse
Affiliation(s)
- Aml Ghanem
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Elkady
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt
| | - Mohamed K El-Ashrey
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), SouthSinai, Ras Sudr 46612, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
3
|
Ge H, Li J, Xu Y, Xie J, Karim N, Yan F, Mo J, Chen W. Ameliorative effect of Fructus Gardeniae against lipotoxicity associated hepatocytes injury through activating Nrf2 signaling pathway. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Yang Y, Hassan SH, Awasthi MK, Gajendran B, Sharma M, Ji MK, Salama ES. The recent progress on the bioactive compounds from algal biomass for human health applications. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
5
|
Deng T, Xu X, Fu J, Xu Y, Qu W, Pi J, Wang H. Application of ARE-reporter systems in drug discovery and safety assessment. Toxicol Appl Pharmacol 2022; 454:116243. [PMID: 36115658 DOI: 10.1016/j.taap.2022.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The human body is continuously exposed to xenobiotics and internal or external oxidants. The health risk assessment of exogenous chemicals remains a complex and challenging issue. Alternative toxicological test methods have become an essential strategy for health risk assessment. As a core regulator of constitutive and inducible expression of antioxidant response element (ARE)-dependent genes, nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in maintaining cellular redox homeostasis. Consistent with the properties of Nrf2-mediated antioxidant response, Nrf2-ARE activity is a direct indicator of oxidative stress and thus has been used to identify and characterize oxidative stressors and redox modulators. To screen and distinguish chemicals or environmental insults that affect the cellular antioxidant activity and/or induce oxidative stress, various in vitro cell models expressing distinct ARE reporters with high-throughput and high-content properties have been developed. These ARE-reporter systems are currently widely applied in drug discovery and safety assessment. In the present review, we provide an overview of the basic structures and applications of various ARE-reporter systems employed for discovering Nrf2-ARE modulators and characterizing oxidative stressors.
Collapse
Affiliation(s)
- Tianqi Deng
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoge Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Xu
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China
| | - Weidong Qu
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Huihui Wang
- Laboratory of Chronic Disease and Environmental Genomics, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
6
|
Malik S, Kaur K, Prasad S, Jha NK, Kumar V. A perspective review on medicinal plant resources for their antimutagenic potentials. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62014-62029. [PMID: 34431051 DOI: 10.1007/s11356-021-16057-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Mutagens present in the environment manifest toxic effects and are considered as serious threat for human health and healthcare. Recent reports reveal that medicinal plant resources are being explored for identifying potent antimutagenic as well as cancer preventing agents. There is mounting evidence that cancer and other mutation-related diseases can be prevented with the use of medicinal pant resources including crude extracts, active fractions, phytochemicals, and pure phytomolecules. These medicinal plant resources possessing antimutagenic potentials have been shown to target molecular mechanisms underlying the mutagenic impacts. Technological advents and high-throughput screening/activity methods have revolutionized this field, though several potent plants and their active principles have been reported as effective antimutagens. The translational success rate needs to be improved, but the trends are encouraging. In this review, we present the current understandings and updates on various mutagens in the environment, toxicities related/attributed to them, the resultant mutations (and cancer), and how medicinal plants come to the rescue. A perspective review has been presented on whether and how medicinal plant resources can be an effective approach for addressing mutagens in the environment. An account of medicinal plant resources used as antimutagenic agents has been given along with the underlying mechanism of action and their therapeutic potential in various models of cancer. Recent success stories, current challenges, and future prospects are discussed.
Collapse
Affiliation(s)
- Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India
| | - Shilpa Prasad
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Savitribai Phule Pune University, Ganeshkhind, Pune, 411016, India.
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
7
|
Saleh-E-In MM, Choi YE. Anethum sowa Roxb. ex fleming: A review on traditional uses, phytochemistry, pharmacological and toxicological activities. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:113967. [PMID: 33640440 DOI: 10.1016/j.jep.2021.113967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anethum sowa Roxb. ex Fleming (Syn. Peucedanum sowa Roxb. ex Fleming, Family: Apiaceae) is a pharmacologically important as aromatic and medicinal plant. Various parts of this plant are used in traditional medicine systems for carminative, uterine and colic pain, digestion disorder, flatulence in babies, appetite-stimulating agent and used to treat mild flue and cough. The essential oil is used for aromatherapy. It is also used as a spice for food flavouring and culinary preparations in many Asian and European countries. AIM OF THE REVIEW This review aims to provide a comprehensive and critical assessment from the reported traditional and pharmaceutical uses and pharmacological activities of the extracts, essential oil and phytoconstituents with emphasis on its therapeutic potential as well as toxicological evaluation of A. sowa. MATERIALS AND METHODS Online search engines such as SciFinder®, GoogleScholar®, ResearchGate®, Web of Science®, Scopus®, PubMed and additional data from books, proceedings and local prints were searched using relevant keywords and terminologies related to A. sowa for critical analyses. RESULTS The literature studies demonstrated that A. sowa possesses several ethnopharmacological activities, including pharmaceutical prescriptions, traditional applications, and spice in food preparations. The phytochemical investigation conducted on crude extracts has been characterized and identified various classes of compounds, including coumarins, anthraquinone, terpenoids, alkaloid, benzodioxoles, phenolics, polyphenols, phenolic and polyphenols, fatty acids, phthalides and carotenoids. The extracts and compounds from the different parts of A. sowa showed diverse in vitro and in vivo biological activities including antioxidant, antiviral, antibacterial, analgesic and anti-inflammatory, Alzheimer associating neuromodulatory, cytotoxic, anticancer, antidiabetes, insecticidal and larvicidal. CONCLUSION A. sowa is a valuable medicinal plant which is especially used in food flavouring and culinary preparations. This review summarized the pertinent information on A. sowa and its traditional and culinary uses, as well as potential pharmacological properties of essential oils, extracts and isolated compounds. The traditional uses of A. sowa are supported by in vitro/vivo pharmacological studies; however, further investigation on A. sowa should be focused on isolation and identification of more active compounds and establish the links between the traditional uses and reported pharmacological activities with active compounds, as well as structure-activity relationship and in vivo mechanistic studies before integrated into the medicine. The toxicological report confirmed its safety. Nonetheless, pharmacokinetic evaluation tests to validate its bioavailability should be encouraged.
Collapse
Affiliation(s)
- Md Moshfekus Saleh-E-In
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea
| | - Yong Eui Choi
- Division of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chunchon, 200-701, Republic of Korea.
| |
Collapse
|
8
|
Zhou F, Song Y, Liu X, Zhang C, Li F, Hu R, Huang Y, Ma W, Song K, Zhang M. Si-Wu-Tang facilitates ovarian function through improving ovarian microenvironment and angiogenesis in a mouse model of premature ovarian failure. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114431. [PMID: 34293457 DOI: 10.1016/j.jep.2021.114431] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Premature ovarian failure (POF) is a severe illness, characterized by premature menopause with a markedly decrease in ovarian function, which leads to infertility. Si-Wu-Tang (SWT), also called "the first prescription of gynecology" by medical experts in China, is widely used as the basic formula in regulating the menstrual cycle and treating infertility. However, the potential effect and underlying mechanisms of action of SWT on the treatment of POF have not yet been elucidated. PURPOSE This study aimed to explore the therapeutic effect and underlying molecular mechanism of action of SWT on the treatment of POF in C57BL/6 mice. MATERIALS AND METHODS The main compounds of SWT were identified by high-performance liquid chromatography (HPLC). POF model groups were established by a single intraperitoneal injection of cyclophosphamide (Cy, 100 mg/kg). SWT or dehydroepiandrosterone (DHEA) were administered via oral gavage for 28 consecutive days. Ovarian function and pathological changes were evaluated by hormone levels, follicular development, and changes in angiogenesis. Furthermore, statistical analyses of fertility were also performed. RESULTS Treatment with SWT significantly improved estrogen levels, the number of follicles, antioxidant defense, and microvascular formation in POF mice. Moreover, SWT significantly activated the Nrf2/HO-1 and STAT3/HIF-1α/VEGF signaling pathways to promote angiogenesis, resulting in a better fertility outcome when compared to the model group. CONCLUSIONS Our findings indicated that SWT protected ovarian function of Cy-induced POF mice by improving the antioxidant ability and promoting ovarian angiogenesis, thereby providing scientific evidence for the treatment of POF using SWT.
Collapse
Affiliation(s)
- Fanru Zhou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Xia Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Chu Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wenwen Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Kunkun Song
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Mingmin Zhang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Kokotkiewicz A, Badura A, Tabaczyńska Ż, Lorenc A, Buciński A, Luczkiewicz M. Optimization of Distillation Conditions for Improved Recovery of Phthalides from Celery (Apium graveolens L.) Seeds. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/137612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
10
|
Wu JZ, Li YJ, Huang GR, Xu B, Zhou F, Liu RP, Gao F, Ge JD, Cai YJ, Zheng Q, Li XJ. Mechanisms exploration of Angelicae Sinensis Radix and Ligusticum Chuanxiong Rhizoma herb-pair for liver fibrosis prevention based on network pharmacology and experimental pharmacologylogy. Chin J Nat Med 2021; 19:241-254. [PMID: 33875165 DOI: 10.1016/s1875-5364(21)60026-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 02/08/2023]
Abstract
Angelicae Sinensis Radix (Danggui) and Ligusticum Chuanxiong Rhizoma (Chuan Xiong) herb-pair (DC) have been frequently used in Traditional Chinese medicine (TCM) prescriptions for hundreds of years to prevent vascular diseases and alleviate pain. However, the mechanism of DC herb-pair in the prevention of liver fibrosis development was still unclear. In the present study, the effects and mechanisms of DC herb-pair on liver fibrosis were examined using network pharmacology and mouse fibrotic model. Based on the network pharmacological analysis of 13 bioactive ingredients found in DC, a total of 46 targets and 71 pathways related to anti-fibrosis effects were obtained, which was associated with mitogen-activated protein kinase (MAPK) signal pathway, hepatic inflammation and fibrotic response. Furthermore, this hypothesis was verified using carbon tetrachloride (CCl4)-induced fibrosis model. Measurement of liver functional enzyme activities and histopathological examination showed that DC dramatically reduced bile acid levels, inflammatory cell infiltration and collagen deposition caused by CCl4. The increased expression of liver fibrosis markers, such as collagen 1, fibronectin, α-smooth muscle actin (α-SMA) and transforming growth factor-β (TGF-β), and inflammatory factors, such as chemokine (C-C motif) ligand 2 (MCP-1), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 in fibrotic mice were significantly downregulated by DC herb-pair through regulation of extracellular signal-regulated kinase 1/2 (ERK1/2)-protein kinase B (AKT) signaling pathways. Collectively, these results suggest that DC prevents the development of liver fibrosis by inhibiting collagen deposition, decreasing inflammatory reactions and bile acid accumulation, which provides insights into the mechanisms of herb-pair in improving liver fibrosis.
Collapse
Affiliation(s)
- Jian-Zhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ya-Jing Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guang-Rui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun-De Ge
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ya-Jie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Jiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
11
|
Direct Keap1-kelch inhibitors as potential drug candidates for oxidative stress-orchestrated diseases: A review on In silico perspective. Pharmacol Res 2021; 167:105577. [PMID: 33774182 DOI: 10.1016/j.phrs.2021.105577] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
The recent outcry in the search for direct keap1 inhibitors requires a quicker and more effective drug discovery process which is an inherent property of the Computer Aided Drug Discovery (CADD) to bring drug candidates into the clinic for patient's use. This Keap1 (negative regulator of ARE master activator) is emerging as a therapeutic strategy to combat oxidative stress-orchestrated diseases. The advances in computer algorithm and compound databases require that we highlight the functionalities that this technology possesses that can be exploited to target Keap1-Nrf2 PPI. Therefore, in this review, we uncover the in silico approaches that had been exploited towards the identification of keap1 inhibition in the light of appropriate fitting with relevant amino acid residues, we found 3 and 16 other compounds that perfectly fit keap1 kelch pocket/domain. Our goal is to harness the parameters that could orchestrate keap1 surface druggability by utilizing hotspot regions for virtual fragment screening and identification of hotspot residues.
Collapse
|
12
|
Zhan X, Li J, Zhou T. Targeting Nrf2-Mediated Oxidative Stress Response Signaling Pathways as New Therapeutic Strategy for Pituitary Adenomas. Front Pharmacol 2021; 12:565748. [PMID: 33841137 PMCID: PMC8024532 DOI: 10.3389/fphar.2021.565748] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress and oxidative damage are the common pathophysiological characteristics in pituitary adenomas (PAs), which have been confirmed with many omics studies in PA tissues and cell/animal experimental studies. Nuclear factor erythroid 2 p45-related factor 2 (Nrf2), the core of oxidative stress response, is an oxidative stress sensor. Nrf2 is synthesized and regulated by multiple factors, including Keap1, ERK1/2, ERK5, JNK1/2, p38 MAPK, PKC, PI3K/AKT, and ER stress, in the cytoplasm. Under the oxidative stress status, Nrf2 quickly translocates from cytoplasm into the nucleus and binds to antioxidant response element /electrophile responsive element to initiate the expressions of antioxidant genes, phases I and II metabolizing enzymes, phase III detoxifying genes, chaperone/stress response genes, and ubiquitination/proteasomal degradation proteins. Many Nrf2 or Keap1 inhibitors have been reported as potential anticancer agents for different cancers. However, Nrf2 inhibitors have not been studied as potential anticancer agents for PAs. We recommend the emphasis on in-depth studies of Nrf2 signaling and potential therapeutic agents targeting Nrf2 signaling pathways as new therapeutic strategies for PAs. Also, the use of Nrf2 inhibitors targeting Nrf2 signaling in combination with ERK inhibitors plus p38 activators or JNK activators targeting MAPK signaling pathways, or drugs targeting mitochondrial dysfunction pathway might produce better anti-tumor effects on PAs. This perspective article reviews the advances in oxidative stress and Nrf2-mediated oxidative stress response signaling pathways in pituitary tumorigenesis, and the potential of targeting Nrf2 signaling pathways as a new therapeutic strategy for PAs.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Cancer Hospital of Shandong First Medical University, Jinan, China.,Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiajia Li
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tian Zhou
- Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Akram M, Riaz M, Wadood AWC, Hazrat A, Mukhtiar M, Ahmad Zakki S, Daniyal M, Shariati MA, Said Khan F, Zainab R. Medicinal plants with anti-mutagenic potential. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1749527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Abdul Wadood Chishti Wadood
- University College of Conventional Medicine, Department of Eastern Medicine, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Muhammad Mukhtiar
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | | | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey, Kazakhstan
| | - Fahad Said Khan
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Rida Zainab
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| |
Collapse
|
14
|
Euxanthone Ameliorates Sevoflurane-Induced Neurotoxicity in Neonatal Mice. J Mol Neurosci 2019; 68:275-286. [DOI: 10.1007/s12031-019-01303-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/15/2019] [Indexed: 01/05/2023]
|
15
|
Ando T, Nagumo M, Ninomiya M, Tanaka K, Linhardt RJ, Koketsu M. Synthesis of coumarin derivatives and their cytoprotective effects on t -BHP-induced oxidative damage in HepG2 cells. Bioorg Med Chem Lett 2018; 28:2422-2425. [DOI: 10.1016/j.bmcl.2018.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/02/2018] [Accepted: 06/11/2018] [Indexed: 02/08/2023]
|