1
|
Zhang C, Ji Z, Xu N, Yuan J, Zeng W, Wang Y, He Q, Dong J, Zhang X, Yang D, Jiang W, Yan Y, Shang W, Chu J, Chu Q. Integrating network pharmacology and experimental validation to decipher the pharmacological mechanism of DXXK in treating diabetic kidney injury. Sci Rep 2024; 14:22319. [PMID: 39333622 PMCID: PMC11436795 DOI: 10.1038/s41598-024-73642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease that is highly susceptible to kidney injury. Di'ao XinXueKang capsules (DXXK) is a novel Chinese herbal medicine that has been used in clinical trials for the therapy of DM and kidney disease, but the underlying pharmacological mechanism remains unclear. This study aims to integrate network pharmacology, molecular docking and in vivo experiments to explore the potential mechanisms of DXXK in the treatment of diabetic kidney injury. The chemical constituents of DXXK were extracted from the ETCM and Batman-TCM databases, and then evaluated for their pharmacological activity via the Swiss ADME platform. Multiple disease databases were searched and integrated for DM-related targets. Overlapping targets were then collected to construct a protein-protein interaction (PPI) network. KEGG and GO enrichment analyses were performed based on the Metascape database, and molecular docking was performed using AutoDock Vina software. The main components in DXXK were analyzed by HPLC. The results of network pharmacology and molecular docking were validated in an animal model of DM induced by the combination of a high-fat diet (HFD) and streptozotocin (STZ). We screened and obtained 7 ingredients and identified dioscin, protodioscin, and pseudoprotodioscin as the major components of DXXK by HPLC. A total of 2,216 DM-related pathogenic genes were obtained from DrugBank, GeneCards, OMIM, and DisGeNET databases. KEGG and GO enrichment analyses indicated that the TGF-beta signaling pathway is a critical pathway associated with DM therapy. Molecular docking revealed that the ingredients in DXXK bind to the pivotal targets TGFβ1, Smad2, and Smad3. In diabetic mice, we found that DXXK alleviated diabetic symptoms, lowered blood glucose, improved insulin tolerance, and modulated lipid metabolism. Furthermore, DXXK attenuated renal lesions and fibrosis by downregulating TGFβ1, Smad2, and Smad3. Collectively, our results suggest that DXXK has the potential to regulate glucolipid metabolism in DM, and it may serve as a viable therapeutic option for renoprotection by inhibiting of the TGF-β1/Smad2/3 pathway.
Collapse
Affiliation(s)
- Chenxu Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Zhangxin Ji
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Na Xu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science and International Joint Laboratory On Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, Anhui, People's Republic of China
| | - Jingjing Yuan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
| | - Wen Zeng
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
| | - Yadong Wang
- Department of Pathology, School of Integrative Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Qing He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Jiaxing Dong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Dongmei Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Wei Jiang
- School of Nursing, Anhui Medical College, Furong Road Campus, Hefei, 230601, Anhui, People's Republic of China
| | - Yibo Yan
- Second Clinical Medical College, Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Wencui Shang
- School of Graduate, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, People's Republic of China
| | - Jun Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
- Research and Technology Center, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
- Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
| | - Quangen Chu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, People's Republic of China.
| |
Collapse
|
2
|
Zeng Q, Wen BB, Liu X, Luo YY, Hu ZG, Huang L, Zhang XH, Huang XT, Zhou TT, Sang XX, Luo YY, Xiong DY, Luo ZQ, Liu W, Tang SY. NBR1-p62-Nrf2 mediates the anti-pulmonary fibrosis effects of protodioscin. Chin Med 2024; 19:60. [PMID: 38589903 PMCID: PMC11003024 DOI: 10.1186/s13020-024-00930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/31/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a persistent disease of the lung interstitium for which there is no efficacious pharmacological therapy. Protodioscin, a steroidal saponin, possesses diverse pharmacological properties; however, its function in pulmonary fibrosis is yet to be established. Hence, in this investigation, it was attempted to figure out the anti-pulmonary fibrosis influences of protodioscin and its pharmacological properties related to oxidative stress. METHODS A mouse lung fibrosis model was generated using tracheal injections of bleomycin, followed by intraperitoneal injection of different concentrations of protodioscin, and the levels of oxidative stress and fibrosis were detected in the lungs. Multiple fibroblasts were treated with TGF-β to induce their transition to myofibroblasts. It was attempted to quantify myofibroblast markers' expression levels and reactive oxygen species levels as well as Nrf2 activation after co-incubation of TGF-β with fibroblasts and different concentrations of protodioscin. The influence of protodioscin on the expression and phosphorylation of p62, which is associated with Nrf2 activation, were detected, and p62 related genes were predicted by STRING database. The effects of Nrf2 inhibitor or silencing of the Nrf2, p62 and NBR1 genes, respectively, on the activation of Nrf2 by protodioscin were examined. The associations between p62, NBR1, and Keap1 in the activation of Nrf2 by protodioscin was demonstrated using a co-IP assay. Nrf2 inhibitor were used when protodioscin was treated in mice with pulmonary fibrosis and lung tissue fibrosis and oxidative stress levels were detected. RESULTS In vivo, protodioscin decreased the levels of fibrosis markers and oxidative stress markers and activated Nrf2 in mice with pulmonary fibrosis, and these effects were inhibited by Nrf2 inhibitor. In vitro, protodioscin decreased the levels of myofibroblast markers and oxidative stress markers during myofibroblast transition and promoted Nrf2 downstream gene expression, with reversal of these effects after Nrf2, p62 and NBR1 genes were silenced or Nrf2 inhibitors were used, respectively. Protodioscin promoted the binding of NBR1 to p62 and Keap1, thereby reducing Keap1-Nrf2 binding. CONCLUSION The NBR1-p62-Nrf2 axis is targeted by protodioscin to reduce oxidative stress and inhibit pulmonary fibrosis.
Collapse
Affiliation(s)
- Qian Zeng
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Bin-Bin Wen
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xin Liu
- The Orthopedics Hospital of Traditional Chinese Medicine Zhuzhou City, Zhuzhou, Hunan, China
| | - Yong-Yu Luo
- Guiyang Second People's Hospital, Guiyang, Guizhou, China
| | - Zhen-Gang Hu
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Huang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Hua Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Xiao-Ting Huang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ting-Ting Zhou
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Xiao-Xue Sang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yu-Yang Luo
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Da-Yan Xiong
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Zi-Qiang Luo
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wei Liu
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Si-Yuan Tang
- Xiangya Nursing School, Central South University, 172 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Zhang SZ, Liang PP, Feng YN, Yin GL, Sun FC, Ma CQ, Zhang FX. Therapeutic potential and research progress of diosgenin for lipid metabolism diseases. Drug Dev Res 2022; 83:1725-1738. [PMID: 36126194 DOI: 10.1002/ddr.21991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/07/2022]
Abstract
Diosgenin, a steroidal saponin, is a natural product found in many plants. Diosgenin has a wide range of pharmacological activities, and has been used to treat cancer, nervous system diseases, inflammation, and infections. Numerous studies have shown that diosgenin has potential therapeutic value for lipid metabolism diseases via various pathways and mechanisms, such as controlling lipid synthesis, absorption, and inhibition of oxidative stress. These mechanisms and pathways have provided ideas for researchers to develop related drugs. In this review, we focus on data from animal and clinical studies, summarizing the toxicity of diosgenin, its pharmacological mechanism, recent research advances, and the related mechanisms of diosgenin as a drug for the treatment of lipid metabolism, especially in obesity, hyperlipidemia, nonalcoholic fatty liver disease, atherosclerosis, and diabetes. This systematic review will briefly describe the advantages of diosgenin as a potential therapeutic drug and seek to enhance our understanding of the pharmacological mechanism, recipe-construction, and the development of novel therapeutics against lipid metabolism diseases.
Collapse
Affiliation(s)
- Shi-Zhao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Peng-Peng Liang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ya-Nan Feng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Guo-Liang Yin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng-Cui Sun
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chao-Qun Ma
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Feng-Xia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
4
|
Ren C, Bao X, Lu X, Du W, Wang X, Wei J, Li L, Li X, Lin X, Zhang Q, Ma B. Complanatoside A targeting NOX4 blocks renal fibrosis in diabetic mice by suppressing NLRP3 inflammasome activation and autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154310. [PMID: 35843189 DOI: 10.1016/j.phymed.2022.154310] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is an important cause of end-stage renal disease. Complanatoside A (CA), an active component from Semen Astragali Complanati, has been reported to be a potential candidate for the treatment of kidney diseases. However, the underlying mechanisms and protective effects of CA in DN remain unclear. PURPOSE In this paper, the effects and the mechanism of CA against ameliorating DN were investigated in vivo and in vitro. STUDY DESIGN Here, a high-fat diet/streptozotocin-induced diabetic model and TGF-β1-induced HK-2 cells were used to explore the protective effects and mechanisms of CA on DN in vivo and in vitro. METHODS Major biochemical indexes, Histopathological morphology, and Immunohistochemistry have explored the therapeutic effect of CA on DN. Subsequently, TGF-β1-induced HK-2 cells were utilized to investigate the anti-renal fibrosis effect of CA. Finally, the mechanism of CA against renal fibrosis was studied via western blotting, immunofluorescence, transfection, and molecular docking. RESULTS The results showed that CA attenuated glomerular hypertrophy, collagen matrix deposition, and tubular interstitial fibrosis in diabetic mice. Moreover, the activation of TGF-β1-inducible epithelial-mesenchymal transition (EMT) was hindered by CA treatment in HK-2 cells. Mechanistically, the data suggested that upregulated NOX4 during diabetes and TGF-β1 in HK-2 cells was prominently diminished after CA treatment. Furthermore, CA exposure inhibited NLRP3 inflammasome activation and downstream inflammation gene expression such as IL-18 and IL-1β in vivo and vitro. These findings indicated that CA obstructed the EMT to protect renal tubular epithelial cells against fibrosis via blocking NLRP3 activation, which was associated with inhibiting NOX4. Besides, the markedly raised autophagy levels in the diabetic model characterized by increasing LC3II/LC3I and Beclin1 were reversed after CA treatment, which is also a pivotal mechanism against renal fibrosis. More importantly, specific NOX4 overexpressed in HK-2 cells abolished that CA exposure blocked TGF-β1-induced-EMT, ROS generation, NLRP3, and autophagy activation. Meanwhile, the inhibition of cell migration, ROS generation, autophagy, and renal inflammation after CA treatment was more pronounced in NOX4-deficient HK-2 cells. CONCLUSION Our findings provided evidence that CA might be a potential therapeutic agent for DN by ameliorating NLRP3 inflammasome and autophagy activation via targeting NOX4 inhibition.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xuanzhao Lu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Wei Du
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China
| | - Xiaoxuan Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jingxun Wei
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Li
- Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, China
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Lin
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
5
|
Xue X, Jin R, Jiao Q, Li X, Li P, Shen G, Shi S, Huang Z, Zhang S, Dai Y. Differentiation of Three Asparagus Species by UHPLC-MS/MS based molecular networking identification and chemical profile analysis. J Pharm Biomed Anal 2022; 219:114863. [DOI: 10.1016/j.jpba.2022.114863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|
6
|
Salvia spinosa L. Protects against Diabetes-Induced Nephropathy by Attenuation of Mitochondrial Oxidative Damage in Mice. Adv Pharmacol Pharm Sci 2022; 2021:4657514. [PMID: 34988461 PMCID: PMC8720605 DOI: 10.1155/2021/4657514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Mitochondrial oxidative damage is a crucial factor in the pathogenesis of diabetic nephropathy (DN), which is among the most prevalent problems of diabetes, and there hasn't been an effective treatment for DN yet. This study planned to investigate the effects of Salvia spinosa L. on mitochondrial function along with its protection against streptozotocin-induced nephropathy in diabetic mice. After the injection of streptozotocin (STZ) and verification of the establishment of diabetes, mice (n = 30) were randomly divided into the following groups: control group, diabetic-control, S. spinosa-treated diabetic (50, 100, and 200 mg/kg), and metformin-treated diabetic group (500 mg/kg). After four weeks of treatment, the mice were weighed. Blood and kidney tissues were examined for biochemical and histological evaluation. Hematoxylin and eosin staining was used for evaluating renal pathologic damage. Oxidative damage in the kidney was assessed by the evaluation of lipid peroxidation and glutathione oxidation. Furthermore, differential centrifugation was used to obtain the isolated mitochondria, and mitochondrial toxicity endpoints (mitochondrial function and mitochondrial oxidative markers) were determined in them. S. spinosa remarkably reduced the blood urea and creatinine concentrations, and also normalized kidney weight/body weight coefficient in the diabetic mice. S. spinosa ameliorated the incidence of glomerular and tubular pathological changes in histological analyses. Moreover, the oxidative and mitochondrial damages were notably attenuated in renal tissues of S. spinosa-treated mice. These results indicate that the methanolic extract of S. spinosa modulates the nephropathy in the diabetic mice by the amelioration of oxidatively induced mitochondrial damage and provides a reliable scientific base, suggesting S. spinosa as a promising alternative remedy against DN.
Collapse
|
7
|
Ren C, Zhou X, Bao X, Zhang J, Tang J, Zhu Z, Zhang N, Bai Y, Xi Y, Zhang Q, Ma B. Dioscorea zingiberensis ameliorates diabetic nephropathy by inhibiting NLRP3 inflammasome and curbing the expression of p66Shc in high-fat diet/streptozotocin-induced diabetic mice. J Pharm Pharmacol 2021; 73:1218-1229. [PMID: 34061184 DOI: 10.1093/jpp/rgab053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a severe diabetic complication. Dioscorea zingiberensis (DZ) possesses excellent pharmacological properties with lower toxicity. The purpose of this study was to investigate the efficacy and mechanism of DZ in DN. METHODS DN was established by the high-fat diet combining intraperitoneal injection of streptozotocin in mice. The DZ (125 and 250 mg/kg/day) were intragastrical administered for 8 consecutive weeks. After treatment, blood, urine and kidney tissue were collected for biological detection, renal morphology, fibrosis and molecular mechanism research, respectively. KEY FINDINGS This study has shown that DZ significantly ameliorated kidney hypertrophy, renal structural damage and abnormal function of the kidney indicators (creatinine, urinary protein and blood urea nitrogen). Further molecular mechanism data suggested that the NLRP3/Cleaved-caspase-1 signal pathway was remarkably activated in DN, and DZ treatment reversed these changes, which indicated that it effectively attenuated inflammatory response caused by hyperglycaemia. In addition, DN inhibits hyperglycaemia-induced activation of oxidative stress by suppressing the expression of p66Shc proteins. CONCLUSIONS DZ could efficiently suppress oxidative stress and inflammatory responses to postpone the development of DN, and its mechanism might be related to inhibition of NLRP3 and p66Shc activities. Thus, DZ could be developed into a new therapeutic agent for DN.
Collapse
Affiliation(s)
- Chaoxing Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowei Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Xiaowen Bao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jie Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Jun Tang
- Jiangsu Huanghe Pharmaceutical Co., Ltd, Yancheng, People's Republic of China
| | - Zhiming Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Nan Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
- School of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Yu Bai
- Department of Biological Sciences, University of Toronto Scarborough, ON, Canada
| | - Youli Xi
- Department of Pharmacy, Nanjing Drum Tower Hospital, Nanjing, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Parama D, Boruah M, Yachna K, Rana V, Banik K, Harsha C, Thakur KK, Dutta U, Arya A, Mao X, Ahn KS, Kunnumakkara AB. Diosgenin, a steroidal saponin, and its analogs: Effective therapies against different chronic diseases. Life Sci 2020; 260:118182. [PMID: 32781063 DOI: 10.1016/j.lfs.2020.118182] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic diseases are a major cause of mortality worldwide, and despite the recent development in treatment modalities, synthetic drugs have continued to show toxic side effects and development of chemoresistance, thereby limiting their application. The use of phytochemicals has gained attention as they show minimal side effects. Diosgenin is one such phytochemical which has gained importance for its efficacy against the life-threatening diseases, such as cardiovascular diseases, cancer, nervous system disorders, asthma, arthritis, diabetes, and many more. AIM To evaluate the literature available on the potential of diosgenin and its analogs in modulating different molecular targets leading to the prevention and treatment of chronic diseases. METHOD A detailed literature search has been carried out on PubMed for gathering information related to the sources, biosynthesis, physicochemical properties, biological activities, pharmacokinetics, bioavailability and toxicity of diosgenin and its analogs. KEY FINDINGS The literature search resulted in many in vitro, in vivo and clinical trials that reported the efficacy of diosgenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK, etc., which play a crucial role in the development of most of the diseases. Reports have also revealed the safety of the compound and the adaptation of nanotechnological approaches for enhancing its bioavailability and pharmacokinetic properties. SIGNIFICANCE Thus, the review summarizes the efficacy of diosgenin and its analogs for developing as a potent drug against several chronic diseases.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Monikongkona Boruah
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Kumari Yachna
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Ma B, Zhu Z, Zhang J, Ren C, Zhang Q. Aucubin alleviates diabetic nephropathy by inhibiting NF-κB activation and inducing SIRT1/SIRT3-FOXO3a signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Zhang ZZ, Qin XH, Zhang J. MicroRNA-183 inhibition exerts suppressive effects on diabetic retinopathy by inactivating BTG1-mediated PI3K/Akt/VEGF signaling pathway. Am J Physiol Endocrinol Metab 2019; 316:E1050-E1060. [PMID: 30835506 DOI: 10.1152/ajpendo.00444.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy (DR) is a serious diabetic complication caused by both environmental and genetic factors. Molecular mechanisms of DR may lead to the discovery of reliable prognostic indicators. The current study aimed to clarify the mechanism of microRNA-183 (miR-183) in DR in relation to the PI3K/Akt/VEGF signaling pathway. Microarray-based gene expression profiling of DR was used to identify the differentially expressed genes. Sprague-Dawley rats were used for the establishment of DR models, and then miR-183 was altered by mimic or inhibitor or BTG1 was downregulated by siRNA to explore the regulatory mechanism of miR-183 in DR. Furthermore, the expression of miR-183, CD34, endothelial nitric oxide synthase (eNOS), BTG1 and the PI3K/Akt/VEGF signaling pathway-related genes as well as reactive oxygen species (ROS) level was determined, and the relationship between miR-183 and BTG1 was also verified. Cell growth, cell apoptosis, and angiogenesis were determined. Microarray analysis revealed the involvement of miR-183 in DR via the PI3K/Akt/VEGF signaling pathway by targeting BTG1. Upregulated miR-183 and downregulated BTG1 were observed in retinal tissues of DR rats. miR-183 overexpression activated the PI3K/Akt/VEGF signaling pathway, upregulated CD34, eNOS, and ROS, and inhibited BTG1. BTG1 was confirmed as a target gene of miR-183. miR-183 overexpression or BTG1 knockdown promoted cell growth and tube formation while it suppressed cell apoptosis of vascular endothelial cells in DR rats. In this study, we demonstrated that miR-183 silencing inhibiting cell growth and tube formation in vascular endothelial cells of DR rats via the PI3K/Akt/VEGF signaling pathway by upregulating BTG1.
Collapse
Affiliation(s)
- Zhen-Zhen Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| | - Xiu-Hong Qin
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University , Dalian , People's Republic of China
| | - Jing Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , People's Republic of China
| |
Collapse
|
11
|
Wang X, Qin A, Xiao F, Olatunji OJ, Zhang S, Pan D, Han W, Wang D, Ni Y. N 6 -(2-hydroxyethyl)-adenosine from Cordyceps cicadae protects against diabetic kidney disease via alleviation of oxidative stress and inflammation. J Food Biochem 2018; 43:e12727. [PMID: 31353654 DOI: 10.1111/jfbc.12727] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
This study investigated the kidney-protective ability of N6 -(2-hydroxyethyl)-adenosine (HEA) in alloxan-induced diabetic rats. Diabetes was induced in the rats by the administration of alloxan monohydrate (150 mg/kg, i.p) and treated with HEA for 6 weeks. Diabetic rats displayed marked increase in blood glucose, serum creatinine (Scr), and blood urea nitrogen (BUN), in addition to high excretion of urinary protein and albumin. Furthermore, diabetic rats showed decreased renal levels of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and increased malondialdehyde (MDA) as well as renal concentrations of pro-inflammatory mediators (TNF-α, IL-6, IL-1β, and TGF-β1). Treatment of diabetic rats with HEA (20 and 40 mg/kg) significantly increased the renal antioxidant level, reduced the levels of blood glucose, Scr, BUN, urinary protein, albumin, and pro-inflammatory mediators in a dose-dependent fashion. Histological evaluation of the kidney of diabetic rats indicated that HEA also ameliorated glomerular and tubular changes. PRACTICAL APPLICATIONS: HEA is a bioactive constituent isolated from Cordyceps cicadae and has been shown to possess antihyperglycemic, kidney protective, antioxidant, and antiinflammatory effects in diabetic rats. HEA stimulated the antioxidant enzymes' activities in the kidney tissues as well as reduced pro-inflammatory mediators, indicating its antidiabetic and renoprotective effects in diabetic models. The results showed that HEA attenuated oxidative stress and inflammation in kidney tissues.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Aiqiong Qin
- Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Fang Xiao
- Department of Gerontology, The Second Hospital of Shandong University, Jinan, China
| | - Opeyemi J Olatunji
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Shuyuan Zhang
- Department of Dermatology, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Dong Pan
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Weizhe Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daoqing Wang
- Department of Rehabilitation, The Second Hospital of Shandong University, Jinan, China
| | - Yihong Ni
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|