1
|
Xu B, Liu N, Zhou T, Chen J, Jiang L, Wu W, Fu H, Chen X, Yan H, Yang X, Luo P, Yang B, Xu Z, He Q. Schisandrin C prevents regorafenib-induced cardiotoxicity by recovering EPHA2 expression in cardiomyocytes. Toxicol Sci 2024; 202:220-235. [PMID: 39348200 DOI: 10.1093/toxsci/kfae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024] Open
Abstract
Regorafenib, an oral multikinase inhibitor of angiogenic, stromal, and oncogenic receptor tyrosine kinases, has been approved for the treatment of metastatic colorectal cancer, gastrointestinal stromal tumors, and hepatocellular carcinoma by the US Food and Drug Administration and European Medicines Agency. However, regorafenib-induced cardiotoxicity increases the risk of mortality. Despite reports that regorafenib can cause mitochondrial dysfunction in cardiomyocytes, the molecular mechanism of regorafenib-induced cardiotoxicity is much less known and there is an urgent need for intervention strategies. Here, we treated mice with vehicle or 200 mg/kg regorafenib daily for 42 d by gavage or treated cardiomyocyte lines with 8, 16, or 32 μM regorafenib, and we found that regorafenib could cause apoptosis, mitochondrial injury, and DNA damage in cardiomyocytes. Mechanistically, regorafenib can reduce the expression of EPHA2, which inhibits AKT signaling, leading to cardiomyocyte apoptosis and cardiotoxicity. In addition, we showed that recovering EPHA2 expression via plasmid-induced overexpression of EPHA2 or schisandrin C, a natural product, could prevent regorafenib-induced cardiotoxicity. These findings demonstrated that regorafenib causes cardiomyocyte apoptosis and cardiac injury by reducing the expression of EPHA2 and schisandrin C could prevent regorafenib-induced cardiotoxicity by recovering EPHA2 expression, which provides a potential management strategy for regorafenib-induced cardiotoxicity and will benefit the safe application of regorafenib in clinic.
Collapse
Affiliation(s)
- Bo Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Ning Liu
- Emergency Department, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| | - Taicheng Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Jian Chen
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Liyu Jiang
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xueqin Chen
- Department of Medical Oncology, Affiliated Hangzhou First People's Hospital, Xihu University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, P.R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, P.R. China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
2
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
3
|
Zhang BY, Yang R, Zhu WQ, Zhu CL, Chen LX, Zhao YS, Zhang Y, Wang YQ, Jiang DZ, Tang B, Zhang XM. Schisandrin B alleviates testicular inflammation and Sertoli cell apoptosis via AR-JNK pathway. Sci Rep 2024; 14:18418. [PMID: 39117695 PMCID: PMC11310458 DOI: 10.1038/s41598-024-69389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bacterial testicular inflammation is one of the important causes of male infertility. Using plant-derived compounds to overcome the side effects of antibiotics is an alternative treatment strategy for many diseases. Schizandrin B (SchB) is a bioactive compound of herbal medicine Schisandra chinensis which has multiple pharmacological effects. However its effect and the mechanism against testicular inflammation are unknown. Here we tackled these questions using models of lipopolysaccharide (LPS)-induced mice and -Sertoli cells (SCs). Histologically, SchB ameliorated the LPS-induced damages of the seminiferous epithelium and blood-testicular barrier, and reduced the production of pro-inflammatory mediators in mouse testes. Furthermore, SchB decreased the levels of pro-inflammatory mediators and inhibited the nuclear factor kB (NF-κB) and MAPK (especially JNK) signaling pathway phosphorylation in LPS-induced mSCs. The bioinformatics analysis based on receptor prediction and the molecular docking was further conducted. We targeted androgen receptor (AR) and illustrated that AR might bind with SchB in its function. Further experiments indicate that the AR expression was upregulated by LPS stimulation, while SchB treatment reversed this phenomenon; similarly, the expression of the JNK-related proteins and apoptotic-related protein were also reversed after AR activator treatment. Together, SchB mitigates LPS-induced inflammation and apoptosis by inhibiting the AR-JNK pathway.
Collapse
Affiliation(s)
- Bo-Yang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chun-Ling Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lan-Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Sen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue-Qi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dao-Zhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
4
|
Yang H, Zhan X, Zhao J, Shi W, Liu T, Wei Z, Li H, Hou X, Mu W, Chen Y, Zheng C, Wang Z, Wei S, Xiao X, Bai Z. Schisandrin C enhances type I IFN response activation to reduce tumor growth and sensitize chemotherapy through antitumor immunity. Front Pharmacol 2024; 15:1369563. [PMID: 39170700 PMCID: PMC11337024 DOI: 10.3389/fphar.2024.1369563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/29/2024] [Indexed: 08/23/2024] Open
Abstract
With the advancing comprehension of immunology, an increasing number of immunotherapies are being explored and implemented in the field of cancer treatment. The cGAS-STING pathway, a crucial element of the innate immune response, has been identified as pivotal in cancer immunotherapy. We evaluated the antitumor effects of Schisandra chinensis lignan component Schisandrin C (SC) in 4T1 and MC38 tumor-bearing mice, and studied the enhancing effects of SC on the cGAS-STING pathway and antitumor immunity through RNA sequencing, qRT-PCR, and flow cytometry. Our findings revealed that SC significantly inhibited tumor growth in models of both breast and colon cancer. This suppression of tumor growth was attributed to the activation of type I IFN response and the augmented presence of T cells and NK cells within the tumor. Additionally, SC markedly promoted the cGAS-STING pathway activation induced by cisplatin. In comparison to cisplatin monotherapy, the combined treatment of SC and cisplatin exhibited a greater inhibitory effect on tumor growth. The amplified chemotherapeutic efficacy was associated with an enhanced type I IFN response and strengthened antitumor immunity. SC was shown to reduce tumor growth and increase chemotherapy sensitivity by enhancing the type I IFN response activation and boosting antitumor immunity, which enriched the research into the antitumor immunity of S. chinensis and laid a theoretical basis for its application in combating breast and colon cancer.
Collapse
Affiliation(s)
- Huijie Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Jia Zhao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Pharmacy, North Sichuan Medical College, Nanchong, China
| | - Wei Shi
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Liu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, China
| | - Ziying Wei
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenqing Mu
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyuan Chen
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Congyang Zheng
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhongxia Wang
- Department of Nutrition, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- National Key Laboratory of Kidney Diseases, Beijing, China
| |
Collapse
|
5
|
Wang Y, Yang Y, Li C, Liu Y, Fan S, Yan Y, Tian T, Li J, Wang Y, Qin H, Zhang B, Lu W, Xu P. Analysis of Lignan Content and Rhizosphere Microbial Diversity of Schisandra chinensis (Turcz.) Baill. Resources. Life (Basel) 2024; 14:946. [PMID: 39202688 PMCID: PMC11355859 DOI: 10.3390/life14080946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Genetic and environmental factors influence the growth and quality of medicinal plants. In recent years, rhizosphere microorganisms have also emerged as significant factors affecting the quality of medicinal plants. This study aimed to identify Schisandra resources with high lignan content and analyze the microbial diversity of the rhizosphere soil. High-performance liquid chromatography was used to measure the lignan content in nine Schisandra fruits. High-throughput sequencing was used to analyze the 16S rDNA sequences of rhizosphere bacteria to identify bacterial species diversity. The total lignan content of the nine Schisandra resources ranged from 9.726 mg/g to 14.031 mg/g, with ZJ27 having the highest content and ZJ25 the lowest. Among the six lignan components, Schisandrol A had the highest content, ranging from 5.133 mg/g to 6.345 mg/g, with a significant difference between ZJ25, ZJ27, and other resources (p < 0.05). Schizandrin C had the lowest content, ranging from 0.062 mg/g to 0.419 mg/g, with more significant differences among the resources. A total of 903,933 sequences were obtained from the rhizosphere soil of the nine Schisandra resources, clustered into 10,437 OTUs at a 97% similarity level. The dominant bacterial phyla were Actinobacteriota, Acidobacteriota, Proteobacteria, Chloroflexi, Gemmatimonadota, and Verrucomicrobiota. The dominant bacterial genera were Candidatus_Udaeobacter, Candidatus_Solibacter, RB41, Bradyrhizobium, Gaiella, and Arthrobacter. ZJ27 is the Schisandra resource with the highest lignan content, and the rhizosphere bacteria of Schisandra are rich in diversity. Schisandra B is negatively correlated with Bryobacter, Candidatus_Solibacter, and unnamed genera of Gaiellales.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.W.); (Y.Y.); (C.L.); (Y.L.); (S.F.); (Y.Y.); (T.T.); (J.L.); (Y.W.); (H.Q.); (B.Z.)
| | - Peilei Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China; (Y.W.); (Y.Y.); (C.L.); (Y.L.); (S.F.); (Y.Y.); (T.T.); (J.L.); (Y.W.); (H.Q.); (B.Z.)
| |
Collapse
|
6
|
Liu D, Yang K, Li T, Tang T, Wang Y, Wang W, Li J, Zhou P, Wang X, Zhao C, Guo D, Xie Y, Cheng J, Wang M, Sun J, Zhang X. The protective effects of aqueous extract of Schisandra sphenanthera against alcoholic liver disease partly through the PI3K-AKT-IKK signaling pathway. Heliyon 2024; 10:e34214. [PMID: 39091943 PMCID: PMC11292531 DOI: 10.1016/j.heliyon.2024.e34214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Purpose This study aimed to investigated the key chemical components and the effect of the aqueous extract of Schisandra sphenanthera (SSAE) on alcoholic liver disease (ALD) and the related molecular mechanism. Methods This study employed UPLC-Q-TOF-MS/MS to identify the chemical compositions in SSAE. ALD rat model was established through oral administration of white spirit. Transcriptome sequencing, weighted gene co-expression network construction analysis (WGCNA), and network pharmacology were used to predict key compositions and pathways targeted by SSAE for the treatment of ALD. Enzyme-linked immunosorbent assay (ELISA), biochemical kits, hematoxylin-eosin (HE) staining, Western blotting (WB) analysis, and immunohistochemical analysis were used to validate the mechanism of action of SSAE in treating ALD. Results Active ingredients such as schisandrin A, schisandrol A, and schisandrol B were found to regulate the PI3K/AKT/IKK signaling pathway. Compared to the model group, the SSAE group demonstrated significant improvements in cellular solidification and tissue inflammation in the liver tissues of ALD model rats. Additionally, SSAE regulated the levels of a spartate aminotransferase (AST), alanine aminotransferase (ALT), alcohol dehydrogenase (ADH), and aldehyde Dehydrogenase (ALDH) in serum (P < 0.05); Western blotting and immunohistochemical analyses showed that the expression levels of phosphorylated PI3K, AKT, IKK, NFκB, and FOXO1 proteins were significantly reduced in liver tissues (P < 0.05), whereas the expression level of Bcl-2 proteins was significantly increased (P < 0.05). Conclusion The active components of SSAE were schisandrin A, schisandrol A, and schisandrol B, which regulated the phosphorylation levels of PI3K, AKT, IKK, and NFκB and the expression of FOXO1 protein and upregulated the expression of Bcl-2 protein in the liver tissues of ALD rats. These findings indicate that SSAE acts against ALD partly through the PI3K-AKT-IKK signaling pathway. This study provided a reference for future research and treatment of ALD and the development of novel natural hepatoprotective drugs.
Collapse
Affiliation(s)
- Ding Liu
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Taotao Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Peijie Zhou
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Chongbo Zhao
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Yundong Xie
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jiangxue Cheng
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Mei Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanx, 712046, China
- Key Laboratory of Modern Chinese Medicine Preparation, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| |
Collapse
|
7
|
Li A, Zhu Q, Li Y, Yang L, Chen Z, Zhou X, Xia Y. Improvement of nucleotide content of Cordyceps tenuipes by Schisandra chinensis: fermentation process optimization and application prospects. Arch Microbiol 2024; 206:259. [PMID: 38739151 DOI: 10.1007/s00203-024-03988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Nucleotides are important components and the main indicators for judging Cordyceps quality. In this paper, the mixed fermentation process of Schisandra chinensis and Cordyceps tenuipes was systematically studied, and it was proposed that the fermentation products aqueous extract (S-ZAE) had antioxidant activity and anti-AChE ability. Herein, the results of a single factor showed that S. chinensis, yeast extract, inoculum amount, and pH had significant effects on nucleotide synthesis. The fermentation process optimization results were 3% glucose, 0.25% KH2PO4, 2.1% yeast extract, and S. chinensis 0.49% (m/v), the optimal fermentation conditions were 25℃, inoculum 5.8% (v/v), pH 3.8, 6 d. The yield of total nucleotides in the scale-up culture was 0.64 ± 0.027 mg/mL, which was 10.6 times higher than before optimization. S-ZAE has good antioxidant and anti-AChE activities (IC50 0.50 ± 0.050 mg/mL). This fermentation method has the advantage of industrialization, and its fermentation products have the potential to become good functional foods or natural therapeutic agents.
Collapse
Affiliation(s)
- Anni Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Qiang Zhu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yuting Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lu Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Zhihao Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xiang Zhou
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yanqiu Xia
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
8
|
Luo Z, Yin F, Wang X, Kong L. Progress in approved drugs from natural product resources. Chin J Nat Med 2024; 22:195-211. [PMID: 38553188 DOI: 10.1016/s1875-5364(24)60582-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Indexed: 04/02/2024]
Abstract
Natural products (NPs) have consistently played a pivotal role in pharmaceutical research, exerting profound impacts on the treatment of human diseases. A significant proportion of approved molecular entity drugs are either directly derived from NPs or indirectly through modifications of NPs. This review presents an overview of NP drugs recently approved in China, the United States, and other countries, spanning various disease categories, including cancers, cardiovascular and cerebrovascular diseases, central nervous system disorders, and infectious diseases. The article provides a succinct introduction to the origin, activity, development process, approval details, and mechanism of action of these NP drugs.
Collapse
Affiliation(s)
- Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Zhu J, Zhong L, Song Y, Ding H, Xin W, Xu G, Fang L. Exploring the effect of Wuzhi capsule on the pharmacokinetics of regorafenib and its main metabolites in rat plasma using liquid chromatography-tandem mass spectrometry. J Sep Sci 2024; 47:e2300923. [PMID: 38466147 DOI: 10.1002/jssc.202300923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024]
Abstract
Regorafenib is a small-molecule tyrosine kinase inhibitor with severe hepatotoxicity. It undergoes metabolism mainly by CYP3A4 to generate active metabolites regorafenib-N-oxide (M2) and N-desmethyl-regorafenib-N-oxide (M5). Wuzhi capsule (WZC) is an herbal preparation derived from Schisandra sphenanthera and is potentially used to prevent regorafenib-induced hepatotoxicity. This study aims to explore the effect of WZC on the pharmacokinetics of regorafenib in rats. An efficient and sensitive liquid chromatography-tandem mass spectrometry method was developed to quantitatively determine regorafenib and its main metabolites in rat plasma. The proposed method was applied to the pharmacokinetic study of regorafenib in rats, with or without WZC. Coadministration of regorafenib with WZC resulted in a prolonged mean residence time (MRT) of the parent drug but had no statistically significant difference in other pharmacokinetic parameters. While for the main metabolites of regorafenib, WZC decreased the area under the curve and maximum concentration (Cmax ), delayed the time to reach Cmax , and prolonged the MRT of M2 and M5. These results indicate that WZC delayed and inhibited the metabolism of regorafenib to M2 and M5 by suppressing CYP3A4. Our study provides implications for the rational use of the WZC-regorafenib combination in clinical practice.
Collapse
Affiliation(s)
- Junfeng Zhu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Like Zhong
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Yu Song
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Haiying Ding
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Wenxiu Xin
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Gaoqi Xu
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, Hangzhou, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
10
|
Ding Y, Zhao D, Wang T, Xu Z, Fu Y, Tao L. Medicinal patterns of vines used in Chinese herbal medicine: a quantitative study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117184. [PMID: 37827301 DOI: 10.1016/j.jep.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical characteristics of twinning, climbing vine plants conceptually take shape to interlink the meridians and collaterals system throughout the human body by expelling climatic evils (e.g., wind, dampness). Thus, vines have displayed great medicinal properties in traditional Chinese medicine (TCM). AIM OF THE STUDY Although some popular vine species have been intensively investigated, the comparable features and medicinal specifications among a vast collection of taxonomic groups based on data visualization methods are relatively lacking in attention. Moreover, the translatability of vines from ancient ethnomedical evidence to modern medical system has not been well established. This review tends to quantitatively summarize the strength of vines in healthcare from the perspectives of medicinal part, traditional function, clinical spectrum, phytochemistry divergence, pharmacological attributes, toxicity as well as the progress of proprietary drug development. MATERIALS AND METHODS Medicinal vines were retrieved from databases of drug standards and curated catalogues. Synonyms of plant origin across different datasets were normalized by accepted scientific names in the World Flora Online. The distribution patterns and rank of plant origin, medicinal parts, traditional functions and target conditions, as well as the correlation between phytochemical composition and clinical applications were analyzed and visualized. RESULTS A total of 121 crude drugs from 36 families, 77 genera, 133 species of vines were obtained and analyzed. The Fabaceae, Menispermaceae and Rubiaceae were the highest ranked families of medicinal vines. Not surprisingly, stem was the most dominant medical part. Moreover, "eliminate wind" displayed a hub node in the traditional function co-occurrence network. In addition to joint impediment disorders, these vines particularly displayed a wide range of therapeutic modalities toward conditions from various organ systems. Chemotaxonomic properties-oriented phytochemical analysis was performed and the chemical diversity among medicinal vines complementarily determined a certain group of therapeutic domains. Particularly, the anti-inflammatory effect and antiarthritic effect were highlighted for treating rheumatic diseases. Using integral animal models and cultured cells, modern pharmacological actions of medicinal vines have been largely observed and validated according to their traditional ethnopharmacology. Furthermore, a small proportion of vine species are well-known toxic plants. Successful drug development pipelines in rheumatic, cardiovascular, liver, malignant and infectious diseases have offered the capacity to generate new treatment options that are being sought out from vine plants. CONCLUSIONS Medicinal vines are rich sources of Chinese Material Medica (CMM) and good fit for a variety of clinical manifestations beyond arthritis and rheumatic diseases. In addition to stem, other parts are also popular for both medicines and dietary supplements. Vine plants provide extensive biologically relevant chemical space for developing value-creating drugs. Thus, our analysis can be useful for further motivating and strengthening the preclinical and clinical research of vine-derived remedies.
Collapse
Affiliation(s)
- Yanlin Ding
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dingping Zhao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tingye Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhenyu Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Fu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
11
|
Jiang Z, Liu L, Su H, Cao Y, Ma Z, Gao Y, Huang D. Curcumin and analogues in mitigating liver injury and disease consequences: From molecular mechanisms to clinical perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155234. [PMID: 38042008 DOI: 10.1016/j.phymed.2023.155234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Liver injury is a prevalent global health concern, impacting a substantial number of individuals and leading to elevated mortality rates and socioeconomic burdens. Traditional primary treatment options encounter resource constraints and high costs, prompting exploration of alternative adjunct therapies, such as phytotherapy. Curcumin demonstrates significant therapeutic potential across various medical conditions, particularly emerging as a promising candidate for liver injury treatment. PURPOSE This study aims to provide current evidence maps of curcumin and its analogs in the context of liver injury, covering aspects of biosafety, toxicology, and clinical trials. Importantly, it seeks to summarize the intricate mechanisms modulated by curcumin. METHODS We conducted a comprehensive search of MEDLINE, Web of Science, and Embase up to July 2023. Titles and abstracts were reviewed to identify studies that met our eligibility criteria. The screening process involved three authors independently assessing the potential of curcumin mitigating liver injury and its disease consequences by reviewing titles, abstracts, and full texts. RESULTS Curcumin and its analogs have demonstrated low toxicity in vitro and in vivo. However, the limited bioavailability has hindered their advanced use in liver injury. This limitation can potentially be addressed by nano-curcumin and emerging drug delivery systems. Curcumin plays a role in alleviating liver injury by modulating the antioxidant system, as well as cellular and molecular pathways. The specific mechanisms involve multiple pathways, such as NF-κB, p38/MAPK, and JAK2/STAT3, and the pro-apoptosis Bcl-2/Bax/caspase-3 axis in damaged cells. Additionally, curcumin targets nutritional metabolism, regulating the substance in liver cells and tissues. The microenvironment associated with liver injury, like extracellular matrix and immune cells and factors, is also regulated by curcumin. Initial evaluation of curcumin and its analogs through 12 clinical trials demonstrates their potential application in liver injury. CONCLUSION Curcumin emerges as a promising phytomedicine for liver injury owing to its effectiveness in hepatoprotection and low toxicity profile. Nevertheless, in-depth investigations are warranted to unravel the complex mechanisms through which curcumin influences liver tissues and overall physiological milieu. Moreover, extensive clinical trials are essential to determine optimal curcumin dosage forms, maximizing its benefits and achieving favorable clinical outcomes.
Collapse
Affiliation(s)
- Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhongkai Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujie Gao
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Rani J, Dhull SB, Rose PK, Kidwai MK. Drug-induced liver injury and anti-hepatotoxic effect of herbal compounds: a metabolic mechanism perspective. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155142. [PMID: 37913641 DOI: 10.1016/j.phymed.2023.155142] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the most challenging and thought-provoking liver problem for hepatologists owing to unregulated medication usage in medical practices, nutritional supplements, and botanicals. Due to underreporting, analysis, and identification issues, clinically evaluated medication hepatotoxicity is prevalent yet hard to quantify. PURPOSE This review's primary objective is to thoroughly compare pharmaceutical drugs and herbal compounds that have undergone clinical trials, focusing on their metabolic mechanisms contributing to the onset of liver illnesses and their hepatoprotective effects. METHODS The data was gathered from several online sources, such as PubMed, Scopus, Google Scholar, and Web of Science, using appropriate keywords. RESULTS The prevalence of conventional and herbal medicine is rising. A comprehensive understanding of the metabolic mechanism is necessary to mitigate the hepatotoxicity induced by drugs and facilitate the incorporation or substitution of herbal medicine instead of pharmaceuticals. Moreover, pre-clinical pharmacological research has the potential to facilitate the development of natural products as therapeutic agents, displaying promising possibilities for their eventual clinical implementation. CONCLUSIONS Acetaminophen, isoniazid, rifampicin, diclofenac, and pyrogallol have been identified as the most often reported synthetic drugs that produce hepatotoxicity by oxidative stress, inflammation, apoptosis, and fibrosis during the last several decades. Due to their ability to downregulate many factors (such as cytokines) and activate several enzyme/enzyme systems, herbal substances (such as Gingko biloba extract, curcumin, resveratrol, and silymarin) provide superior protection against harmful mechanisms which induce hepatotoxicity with fewer adverse effects than their synthetic counterparts.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Mohd Kashif Kidwai
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| |
Collapse
|
13
|
Lin W, Liu Y, Zhang S, Xu S, Qiu Q, Wang C, Liu D, Shen C, Xu M, Shi M, Xiao Y, Chen G, Xu H, Liang L. Schisandrin treatment suppresses the proliferation, migration, invasion, and inflammatory responses of fibroblast-like synoviocytes from rheumatoid arthritis patients and attenuates synovial inflammation and joint destruction in CIA mice. Int Immunopharmacol 2023; 122:110502. [PMID: 37390648 DOI: 10.1016/j.intimp.2023.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/30/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease causing joint dysfunction. As disease-modifying anti-rheumatic drugs (DMARDs) have poor efficacy in 20% to 25% of RA patients, additional novel RA medications are urgently needed. Schisandrin (SCH) has multiple therapeutic effects. However, whether SCH is effective against RA remains unknown. PURPOSE To investigate how SCH affects the abnormal behaviours of RA fibroblast-like synoviocytes (FLSs) and further elucidate the underlying mechanism of SCH in RA FLSs and collagen-induced arthritis (CIA) mice. METHODS Cell Counting Kit-8 (CCK8) assays were used to characterize cell viability. EdU assays were performed to assess cell proliferation. Annexin V-APC/PI assays were used to determine apoptosis. Transwell chamber assays were used to measure cell migration and invasion in vitro. RT-qPCR was used to assess proinflammatory cytokine and MMP mRNA expression. Western blotting was used to detect protein expression. RNA sequencing was performed to explore the potential downstream targets of SCH. CIA model mice were used to assess the treatment efficacy of SCH in vivo. RESULTS Treatments with SCH (50, 100, and 200 μΜ) inhibited RA FLSs proliferation, migration, invasion, and TNF-α-induced IL-6, IL-8, and CCL2 expression in a dose-dependent manner but did not affect RA FLSs viability or apoptosis. RNA sequencing and Reactome enrichment analysis indicated that SREBF1 might be the downstream target in SCH treatment. Furthermore, knockdown of SREBF1 exerted effects similar to those of SCH in inhibiting RA FLSs proliferation, migration, invasion, and TNF-α-induced expression of IL-6, IL-8, and CCL2. Both SCH treatment and SREBF1 knockdown decreased activation of the PI3K/AKT and NF-κB signalling pathways. Moreover, SCH ameliorated joint inflammation and cartilage and bone destruction in CIA model mice. CONCLUSION SCH controls the pathogenic behaviours of RA FLSs by targeting SREBF1-mediated activation of the PI3K/AKT and NF-κB signalling pathways. Our data suggest that SCH inhibits FLS-mediated synovial inflammation and joint damage and that SCH might have therapeutic potential for RA.
Collapse
Affiliation(s)
- Wei Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Yingli Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Siqi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Qian Qiu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Cuicui Wang
- Department of Rheumatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong China
| | - Di Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Chuyu Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Meilin Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Maohua Shi
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China
| | - Guoqiang Chen
- Department of Rheumatology, The First People's Hospital of Foshan, Foshan, Guangdong China.
| | - Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China.
| | - Liuqin Liang
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong China.
| |
Collapse
|
14
|
Kim JS, Jegal KH, Park HR, Choi BR, Kim JK, Ku SK. A Mixture of Fermented Schizandrae Fructus Pomace and Hoveniae Semen cum Fructus Extracts Synergistically Protects against Oxidative Stress-Mediated Liver Injury. Antioxidants (Basel) 2023; 12:1556. [PMID: 37627551 PMCID: PMC10451536 DOI: 10.3390/antiox12081556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Schizandrae Fructus (SF) and Hoveniae Semen cum Fructus (HSCF) have long been used as medicinal herbs for treating various diseases in Asian traditional medicine. In the current study, we investigated the protective effect of fermented SF pomace and HSCF extract 1:1 (w:w) combination mixture (MSH) against carbon tetrachloride (CCl4)-induced acute liver injury mice. After MSH (50-200 mg/kg) oral administration for 7 consecutive days, animals were injected intraperitoneally with CCl4 (0.5 mL/kg). Histopathological observation revealed that administration of MSH synergistically decreased the degeneration of hepatocytes and the infiltration of inflammatory cells induced by CCl4. Moreover, MSH administration reduced the activities of alanine aminotransferase, aspartate aminotransferase, and γ-glutamyl transpeptidase in serum, and mitigated apoptotic cell death in hepatic parenchyma. In addition, MSH alleviated CCl4-mediated lipid peroxidation by restoring endogenous antioxidants capacities including glutathione contents, superoxide dismutase, and catalase activities. In vitro assessments using tert-butyl hydroperoxide-induced oxidative stress in HepG2 cells revealed that MSH protects hepatocytes by lowering ROS generation and lipid peroxidation via upregulating the transcriptional activity of nuclear factor erythroid-2-related factor 2 and the expression of antioxidant genes. Furthermore, MSH synergistically attenuated the expression of proinflammatory cytokines in CCl4-injured liver and lipopolysaccharide-stimulated RAW 264.7 cells. Taken together, these findings suggest that MSH has the potential to prevent acute liver damage by effectively suppressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jang-Soo Kim
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| | - Kyung-Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea;
| | - Hye-Rim Park
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Beom-Rak Choi
- Nutracore Co., Ltd., Suwon-si 16514, Republic of Korea;
| | - Jae-Kwang Kim
- Department of Physiology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan-si 38610, Republic of Korea; (J.-S.K.); (H.-R.P.)
| |
Collapse
|
15
|
Zhao J, Xu G, Hou X, Mu W, Yang H, Shi W, Wen J, Liu T, Wu Z, Bai J, Zhang P, Wang Z, Xiao X, Zou W, Bai Z, Zhan X. Schisandrin C enhances cGAS-STING pathway activation and inhibits HBV replication. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116427. [PMID: 37001770 DOI: 10.1016/j.jep.2023.116427] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/19/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra Chinensis (Turcz.) Baill. is a long-term used traditional Chinese medicine with the functions of tonifying the kidney and calming the heart, tonifying qi and engendering fluid. It can be used to treat insomnia and dreaminess, spermatorrhea, coughs, as well as liver and kidney deficiency of Yin or Yang Syndrome. Modern pharmacological studies have shown that Schisandra Chinensis regulates host immunity and exhibits anti-cancer, antiviral and liver-protecting effects. However, the specific mechanism by which Schisandra Chinensis modulates antiviral immunity is unknown. AIM OF THE STUDY We sought to explore the therapeutic effect of the active components of Schisandra Chinensis on anti-viral immunity and further investigate the underlying mechanism. MATERIALS AND METHODS Immunoblotting, quantitative real-time PCR, enzyme-linked immunosorbent assay, immunofluorescence, and immunoprecipitation were used to investigate the effect of schisandrin C (SC), one of the most abundant and biologically active components of Schisandra Chinensis, on the activation of cGAS-STING signaling pathway and the underlying mechanism. In addition, CMA-mediated STING activation and hydrodynamic injection-mediated HBV-replicating mouse model were used to investigate the effect of SC on the activation of STING signaling pathway and its antiviral effect in vivo. RESULTS SC promoted cGAS-STING pathway activation, accompanied by increased production of interferon β (IFN β) and downstream gene expression. Moreover, SC also exerted anti-HBV effects, reducing HBeAg, HBcAg, HBsAg, and HBV DNA levels in hydrodynamic injection-mediated HBV-replicating mouse model and elevating the production of IFN β and expression of interferon-stimulated genes (IFIT1, ISG15, and CXCL10). Mechanistically, SC could facilitate the interaction between TANK-binding kinase 1 (TBK1) and STING, which is important for IRF3 phosphorylation and production of IFN β. CONCLUSIONS Our study confirmed that SC enhances cGAS-STING pathway activation and inhibits HBV replication, as well as provides clues for chronic hepatitis B and other infectious diseases treated by SC.
Collapse
Affiliation(s)
- Jia Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Guang Xu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xiaorong Hou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wenqing Mu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Huijie Yang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei Shi
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Tingting Liu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Zhixin Wu
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jun Bai
- Department of Neurosurgery, General Hospital of Chinese People Liberty Army, Beijing, 100853, China
| | - Ping Zhang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100039, China
| | - Zhongxia Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhaofang Bai
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China; China Military Institute of Chinese Materia, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China.
| |
Collapse
|
16
|
Yan H, Wu W, Hu Y, Li J, Xu J, Chen X, Xu Z, Yang X, Yang B, He Q, Luo P. Regorafenib inhibits EphA2 phosphorylation and leads to liver damage via the ERK/MDM2/p53 axis. Nat Commun 2023; 14:2756. [PMID: 37179400 PMCID: PMC10182995 DOI: 10.1038/s41467-023-38430-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The hepatotoxicity of regorafenib is one of the most noteworthy concerns for patients, however the mechanism is poorly understood. Hence, there is a lack of effective intervention strategies. Here, by comparing the target with sorafenib, we show that regorafenib-induced liver injury is mainly due to its nontherapeutic target Eph receptor A2 (EphA2). EphA2 deficiency attenuated liver damage and cell apoptosis under regorafenib treatment in male mice. Mechanistically, regorafenib inhibits EphA2 Ser897 phosphorylation and reduces ubiquitination of p53 by altering the intracellular localization of mouse double minute 2 (MDM2) by affecting the extracellular signal-regulated kinase (ERK)/MDM2 axis. Meanwhile, we found that schisandrin C, which can upregulate the phosphorylation of EphA2 at Ser897 also has protective effect against the toxicity in vivo. Collectively, our findings identify the inhibition of EphA2 Ser897 phosphorylation as a key cause of regorafenib-induced hepatotoxicity, and chemical activation of EphA2 Ser897 represents a potential therapeutic strategy to prevent regorafenib-induced hepatotoxicity.
Collapse
Affiliation(s)
- Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentong Wu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhuai Hu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Jinjin Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiangxin Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueqin Chen
- Department of Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, 310002, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310018, China.
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 310002, China.
| |
Collapse
|
17
|
Liao J, Lu Q, Li Z, Li J, Zhao Q, Li J. Acetaminophen-induced liver injury: Molecular mechanism and treatments from natural products. Front Pharmacol 2023; 14:1122632. [PMID: 37050900 PMCID: PMC10083499 DOI: 10.3389/fphar.2023.1122632] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Acetaminophen (APAP) is a widely used analgesic and antipyretic over-the-counter medicine worldwide. Hepatotoxicity caused by APAP overdose is one of the leading causes of acute liver failure (ALF) in the US and in some parts of Europe, limiting its clinical application. Excessive APAP metabolism depletes glutathione and increases N-acetyl-p-benzoquinoneimide (NAPQI) levels, leading to oxidative stress, DNA damage, and cell necrosis in the liver, which in turn leads to liver damage. Studies have shown that natural products such as polyphenols, terpenes, anthraquinones, and sulforaphane can activate the hepatocyte antioxidant defense system with Nrf2 as the core player, reduce oxidative stress damage, and protect the liver. As the key enzyme metabolizing APAP into NAPQI, cytochrome P450 enzymes are also considered to be intriguing target for the treatment of APAP-induced liver injury. Here, we systematically review the hepatoprotective activity and molecular mechanisms of the natural products that are found to counteract the hepatotoxicity caused by APAP, providing reference information for future preclinical and clinical trials of such natural products.
Collapse
Affiliation(s)
- Jiaqing Liao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qiuxia Lu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Zhiqi Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Jintao Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Pharmacy, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| | - Jian Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
- *Correspondence: Qi Zhao, ; Jian Li,
| |
Collapse
|
18
|
Hu JN, Wang YM, Zhang H, Li HP, Wang Z, Han M, Ren S, Tang S, Jiang S, Li W. Schisandra B, a representative lignan from Schisandra chinensis, improves cisplatin-induced toxicity: An in vitro study. Phytother Res 2023; 37:658-671. [PMID: 36223243 DOI: 10.1002/ptr.7644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Schisandrin B (Scheme B) is the most abundant and active lignan monomer isolated from Schisandra chinensis. At present, most reports focus on its cardioprotective and hepatoprotective effects, however, the related reports on gastrointestinal protective effects are still limited. The study aims to evaluate the protective effect of Scheme B on cisplatin-induced rat intestinal crypt epithelial (IEC-6) cell injury and the possible molecular mechanisms. The results showed that Scheme B at 2.5, 5 and 10 μM could inhibit dose-dependently the reduction of cell activity induced by cisplatin exposure at 1 μM, decrease the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), while increasing glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) to alleviate oxidative stress injury in IEC-6 cell lines. Meanwhile, Scheme B could relieve cisplatin-induced apoptosis by regulating PI3K/AKT and the downstream caspase signaling pathway. The results from flow cytometry analysis and mitochondrial membrane potential (MMP) staining also demonstrated the anti-apoptosis effect of Scheme B. Furthermore, Scheme B was found to reduce the inflammation associated with cell damage by evaluating the protein expressions of the nuclear factor-kappa B (NF-κB) signaling pathway. Importantly, Wnt/β-catenin, as a functional signaling pathway that drives intestinal self-recovery, was also in part regulated by Scheme B. In conclusion, Scheme B might alleviate cisplatin-induced IEC-6 cell damage by inhibiting oxidative stress, apoptosis, inflammation, and repairing intestinal barrier function. The present research provides a strong evidence that Scheme B may be a useful modulator in cisplatin-induced intestinal toxicity.
Collapse
Affiliation(s)
- Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yi-Ming Wang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Hao Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Hui-Ping Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Mei Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Shuang Jiang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
| |
Collapse
|
19
|
Gennaiou K, Kelesidis A, Kourgiantaki M, Zografos AL. Combining the best of both worlds: radical-based divergent total synthesis. Beilstein J Org Chem 2023; 19:1-26. [PMID: 36686041 PMCID: PMC9830495 DOI: 10.3762/bjoc.19.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023] Open
Abstract
A mature science, combining the art of the total synthesis of complex natural structures and the practicality of delivering highly diverged lead compounds for biological screening, is the constant aim of the organic chemistry community. Delivering natural lead compounds became easier during the last two decades, with the evolution of green chemistry and the concepts of atom economy and protecting-group-free synthesis dominating the field of total synthesis. In this new era, total synthesis is moving towards natural efficacy by utilizing both the biosynthetic knowledge of divergent synthesis and the latest developments in radical chemistry. This contemporary review highlights recent total syntheses that incorporate the best of both worlds.
Collapse
Affiliation(s)
- Kyriaki Gennaiou
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Antonios Kelesidis
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Maria Kourgiantaki
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| | - Alexandros L Zografos
- Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, Thessaloniki, 54124, Greece
| |
Collapse
|
20
|
Banerjee A, Sriramulu S, Catanzaro R, He F, Chabria Y, Balakrishnan B, Hari S, Ayala A, Muñoz M, Pathak S, Marotta F. Natural Compounds as Integrative Therapy for Liver Protection against Inflammatory and Carcinogenic Mechanisms: From Induction to Molecular Biology Advancement. Curr Mol Med 2023; 23:216-231. [PMID: 35297348 DOI: 10.2174/1566524022666220316102310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 10/20/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
The liver is exposed to several harmful substances that bear the potential to cause excessive liver damage ranging from hepatitis and non-alcoholic fatty liver disease to extreme cases of liver cirrhosis and hepatocellular carcinoma. Liver ailments have been effectively treated from very old times with Chinese medicinal herbal formulations and later also applied by controlled trials in Japan. However, these traditional practices have been hardly well characterized in the past till in the last decades when more qualified studies have been carried out. Modern advances have given rise to specific molecular targets which are specifically good candidates for affecting the intricate mechanisms that play a role at the molecular level. These therapeutic regimens that mainly affect the progression of the disease by inhibiting the gene expression levels or by blocking essential molecular pathways or releasing cytokines may prove to play a vital role in minimizing the tissue damage. This review, therefore, tries to throw light upon the variation in the therapies for the treatment of benign and malignant liver disease from ancient times to the current date. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of benign chronic liver diseases as well as prevention and treatment of HCC is still warranted.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Roberto Catanzaro
- Dept of Clinical and Experimental Medicine, Section of Gastroenterology, University of Catania, Catania, Italy
| | - Fang He
- Dept of Nutrition, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yashna Chabria
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | | | - Sruthi Hari
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antonio Ayala
- Biochemistry and Clinical Biochemistry Department, Faculty of Pharmacy, University of Seville, Spain
| | - Mario Muñoz
- Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Francesco Marotta
- ReGenera R&D International for Aging Intervention, Milano, Italy and Vitality and Longevity Medical Science Commission, FEMTEC World Federation
| |
Collapse
|
21
|
Chilvery S, Yelne A, Khurana A, Saifi MA, Bansod S, Anchi P, Godugu C. Acetaminophen induced hepatotoxicity: An overview of the promising protective effects of natural products and herbal formulations. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154510. [PMID: 36332383 DOI: 10.1016/j.phymed.2022.154510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/06/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The liver plays an important role in regulating the metabolic processes and is the most frequently targeted organ by toxic chemicals. Acetaminophen (APAP) is a well-known anti-allergic, anti-pyretic, non-steroidal anti-inflammatory drug (NSAID), which upon overdose leads to hepatotoxicity, the major adverse event of this over-the-counter drug. PURPOSE APAP overdose induced acute liver injury is the second most common cause that often requires liver transplantation worldwide, for which N-acetyl cysteine is the only synthetic drug clinically approved as an antidote. So, it was felt that there is a need for the novel therapeutic approach for the treatment of liver diseases with less adverse effects. This review provides detailed analysis of the different plant extracts; phytochemicals and herbal formulations for the amelioration of APAP-induced liver injury. METHOD The data was collected using different online resources including PubMed, ScienceDirect, Google Scholar, Springer, and Web of Science using keywords given below. RESULTS Over the past decades various reports have revealed that plant-based approaches may be a better treatment choice for the APAP-induced hepatotoxicity in pre-clinical experimental conditions. Moreover, herbal compounds provide several advantages over the synthetic drugs with fewer side effects, easy availability and less cost for the treatment of life-threatening diseases. CONCLUSION The current review summarizes the hepatoprotective effects and therapeutic mechanisms of various plant extracts, active phytoconstituents and herbal formulations with potential application against APAP induced hepatotoxicity as the numbers of hepatoprotective natural products are more without clinical relativity. Further, pre-clinical pharmacological research will contribute to the designing of natural products as medicines with encouraging prospects for clinical application.
Collapse
Affiliation(s)
- Shrilekha Chilvery
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Yelne
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Amit Khurana
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Mohd Aslam Saifi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Sapana Bansod
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
22
|
Zhao J, Ding K, Hou M, Li Y, Hou X, Dai W, Li Z, Zhao J, Liu W, Bai Z. Schisandra chinensis essential oil attenuates acetaminophen-induced liver injury through alleviating oxidative stress and activating autophagy. PHARMACEUTICAL BIOLOGY 2022; 60:958-967. [PMID: 35588406 PMCID: PMC9122381 DOI: 10.1080/13880209.2022.2067569] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) essential oil (SCEO) composition is rich in lignans that are believed to perform protective effects in the liver. OBJECTIVE This study investigates the effects of SCEO in the treatment of acetaminophen (APAP)-induced liver injury in mice. MATERIALS AND METHODS C57BL/6 mice (n = 56) were randomly divided into seven groups: normal; APAP (300 mg/kg); APAP plus bicyclol (200 mg/kg); APAP plus SCEO (0.25, 0.5, 1, 2 g/kg). Serum biochemical parameters for liver function, inflammatory factors, and antioxidant activities were determined. The protein expression levels of Nrf2, GCLC, GCLM, HO-1, p62, and LC3 were assessed by western blotting. Nrf2, GCLC, HO-1, p62, and LC3 mRNA were detected by real-time PCR. RESULTS Compared to APAP overdose, SCEO (2 g/kg) pre-treatment reduced the serum levels of AST (79.4%), ALT (84.6%), TNF-α (57.3%), and IL-6 (53.0%). In addition, SCEO (2 g/kg) markedly suppressed cytochrome P450 2E1 (CYP2E1) (15.4%) and attenuated the exhaustion of GSH (43.6%) and SOD (16.8%), and the accumulation of MDA (22.6%) in the liver, to inhibit the occurrence of oxidative stress. Moreover, hepatic tissues from our experiment revealed that SCEO pre-treatment mitigated liver injury caused by oxidative stress by increasing Nrf2, HO-1, and GCL. Additionally, SCEO activated autophagy, which upregulated hepatic LC3-II and decreased p62 in APAP overdose mice (p < 0.05). DISCUSSION AND CONCLUSIONS Our evidence demonstrated that SCEO protects hepatocytes from APAP-induced liver injury in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.
Collapse
Affiliation(s)
- Jing Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Kaixin Ding
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Manting Hou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuanhua Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaorong Hou
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhiyong Li
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wenlong Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhaofang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
23
|
Jangra A, Verma M, Kumar D, Chandrika C, Rachamalla M, Dey A, Dua K, Jha SK, Ojha S, Alexiou A, Kumar D, Jha NK. Targeting Endoplasmic Reticulum Stress using Natural Products in Neurological Disorders. Neurosci Biobehav Rev 2022; 141:104818. [DOI: 10.1016/j.neubiorev.2022.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 10/16/2022]
|
24
|
Qiang TY, Liu JS, Dong YQ, Mu XL, Chen Y, Luo HM, Zhang BG, Liu HT. Identification, Molecular Cloning, and Functional Characterization of a Coniferyl Alcohol Acyltransferase Involved in the Biosynthesis of Dibenzocyclooctadiene Lignans in Schisandra chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:881342. [PMID: 35812978 PMCID: PMC9260284 DOI: 10.3389/fpls.2022.881342] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Schisandra chinensis owes its therapeutic efficacy to the dibenzocyclooctadiene lignans, which are limited to the Schisandraceae family and whose biosynthetic pathway has not been elucidated. Coniferyl alcohol is the synthetic precursor of various types of lignans and can be acetylated to form coniferyl acetate by coniferyl alcohol acyltransferase (CFAT), which belongs to the BAHD acyltransferase family. This catalytic reaction is important because it is the first committed step of the hypothetical biosynthetic pathway in which coniferyl alcohol gives rise to dibenzocyclooctadiene lignans. However, the gene encoding CFAT in S. chinensis has not been identified. In this study, firstly we identified 37 ScBAHD genes from the transcriptome datasets of S. chinensis. According to bioinformatics, phylogenetic, and expression profile analyses, 1 BAHD gene, named ScBAHD1, was cloned from S. chinensis. The heterologous expression in Escherichia coli and in vitro activity assays revealed that the recombinant enzyme of ScBAHD1 exhibits acetyltransferase activity with coniferyl alcohol and some other alcohol substrates by using acetyl-CoA as the acetyl donor, which indicates ScBAHD1 functions as ScCFAT. Subcellular localization analysis showed that ScCFAT is mainly located in the cytoplasm. In addition, we generated a three-dimensional (3D) structure of ScCFAT by homology modeling and explored the conformational interaction between protein and ligands by molecular docking simulations. Overall, this study identified the first enzyme with catalytic activity from the Schisandraceae family and laid foundations for future investigations to complete the biosynthetic pathway of dibenzocyclooctadiene lignans.
Collapse
Affiliation(s)
- Ting-Yan Qiang
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiu-Shi Liu
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Qing Dong
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin-Lu Mu
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Chen
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong-Mei Luo
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ben-Gang Zhang
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hai-Tao Liu
- Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Xue W, Cui D, Qiu Y. Research Progress of Pyroptosis in Alzheimer's Disease. Front Mol Neurosci 2022; 15:872471. [PMID: 35782390 PMCID: PMC9244792 DOI: 10.3389/fnmol.2022.872471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a disease characterized by insidious and progressive neurodegeneration, with clinical syndromes of memory and visuospatial skills damage. The pathogenic mechanism of AD is complex in which neural inflammation and neuron death play important roles. Pyroptosis, an inflammatory programmed cell death, has been reported to be involved in neuron death. Pyroptosis is executed by the protein family of gasdermins which punch pores on plasma membrane when activated by the upstream signals including the activation of NLRP3 and caspases, and subsequently triggers the inflammatory cascades featured by the release of interleukin (IL) -1β and IL-18. Herein, we summarized the current research on the roles of neuron pyroptosis in AD, aiming to provide a comprehensive view of the molecular mechanisms underlying AD pathogenesis and potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Weiyue Xue
- Department of Physical Education, Hunan University, Changsha, China
| | - Di Cui
- Department of Physical Education, Hunan University, Changsha, China
| | - Ye Qiu
- Department of Biology, Hunan University, Changsha, China
| |
Collapse
|
26
|
Cheng L, Wang T, Gao Z, Wu W, Cao Y, Wang L, Zhang Q. Study on the Protective Effect of Schizandrin B against Acetaminophen-Induced Cytotoxicity in Human Hepatocyte. Biol Pharm Bull 2022; 45:596-604. [DOI: 10.1248/bpb.b21-00965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ling Cheng
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Tingting Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine
| | - Zhiling Gao
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Wenkai Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yezhi Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Linghu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Qi Zhang
- Institute of Surgery, Anhui Academy of Chinese Medicine
| |
Collapse
|
27
|
Cui Y, Ma Y, Li Y, Song H, Dong Z. Influence of schisantherin A on the pharmacokinetics of lenvatinib in rats and its potential mechanism. J Gastrointest Oncol 2022; 13:802-811. [PMID: 35557593 PMCID: PMC9086034 DOI: 10.21037/jgo-22-174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Lenvatinib (LEN) is approved as first-line therapy for advanced hepatocellular carcinoma (HCC). Schisantherin A (STA) can exert hepatoprotective and anti-tumor effects. The clinical combination of LEN and STA is very common, especially for patients with advanced HCC, but the effect of STA on the pharmacokinetics of LEN is unclear. This study aimed to investigate the effects of STA on the pharmacokinetics of LEN in rats and explore its potential mechanism. METHODS Male Sprague-Dawley (SD) rats were orally administered different doses of STA or vehicle control for 7 consecutive days, and 1.2 mg/kg of LEN was given on day 7. The messenger RNA (mRNA) and protein expression levels in the intestines and liver were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. RESULTS It was revealed that STA increased the oral bioavailability of LEN. The area under the curve from time 0 to infinity (AUC0-∞) and maximum plasma concentration (Cmax) of LEN after co-administration with STA (20 mg/kg) increased by 54.3% (3,396.73±989.35 vs. 5,240.03±815.49 µg/L/h) and 54.8% (490.64±124.20 vs. 759.66±152.75 µg/L), respectively. The clearance decreased from 0.38±0.12 to 0.23±0.04 L/h/kg, and the apparent volume of distribution (Vz) decreased from 10.83±3.19 to 6.35±1.38 L/kg in the presence of 20 mg/kg STA. In addition, the expression of P-glycoprotein (P-gp) mRNA and protein in the intestines was markedly decreased. CONCLUSIONS This study showed that STA increased the bioavailability of LEN, probably due to inhibition of P-gp in the intestine, thereby increasing systemic absorption of LEN. Thus, there is an interaction between the two drugs, and careful monitoring must be conducted when they are used in combination.
Collapse
Affiliation(s)
- Yanjun Cui
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yinling Ma
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Haojing Song
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
28
|
Yang K, Qiu J, Huang Z, Yu Z, Wang W, Hu H, You Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114759. [PMID: 34678416 DOI: 10.1016/j.jep.2021.114759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (called bei-wuweizi in Chinese, S. chinensis) and Schisandra sphenanthera (called nan-wuweizi in Chinese, S. sphenanthera) are two highly similar plants in the Magnoliaceae family. Their dried ripe fruits are commonly used as traditional Chinese medicine in the treatment of coughs, palpitation, spermatorrhea, and insomnia. They also are traditionally used as tonics in Russia, Japan, and Korea. AIM OF THE REVIEW S. chinensis and S. sphenanthera are similar in appearance, traditional applications, ingredient compositions, and therapeutic effects. This review, therefore, aims to provide a systematic insight into the botanical background, ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicology of S. chinensis and S. sphenanthera, and to explore and present the similarities and differences between S. chinensis and S. sphenanthera. MATERIALS AND METHODS A comprehensive literature search regarding S. chinensis and S. sphenanthera was collected by using electronic databases including PubMed, SciFinder, Science Direct, Web of Science, CNKI, and the online ethnobotanical database. RESULTS In the 2020 Edition of Chinese Pharmacopoeia (ChP), there were 100 prescriptions containing S. chinensis, while only 11 contained S. sphenanthera. Totally, 306 and 238 compounds have been isolated and identified from S. chinensis and S. sphenanthera, respectively. Among these compounds, lignans, triterpenoids, essential oils, phenolic acid, flavonoids, phytosterols are the major composition. Through investigation of pharmacological activities, S. chinensis and S. sphenanthera have similar therapeutic effects including hepatoprotection, neuroprotection, cardioprotection, anticancer, antioxidation, anti-inflammation, and hypoglycemic effect. Besides, S. chinensis turns out to have more effects including reproductive regulation and immunomodulatory, antimicrobial, antitussive and antiasthmatic, anti-fatigue, antiarthritic, and bone remodeling effects. Both S. chinensis and S. sphenanthera have inhibitory effects on CYP3A and P-gp, which can mediate metabolism or efflux of substrates, and therefore interact with many drugs. CONCLUSIONS S. chinensis and S. sphenanthera have great similarities. Dibenzocyclooctadiene lignans are regarded to contribute to most of the bioactivities. Schisandrin A-C, schisandrol A-B, and schisantherin A, existing in both S. chinensis and S. sphenanthera but differing in the amount, are the main active components, which may contribute to the similarities and differences. Study corresponding to the traditional use is needed to reveal the deep connotation of the use of S. chinensis and S. sphenanthera as traditional Chinese medicine. In addition, a joint study of S. chinensis and S. sphenanthera can better show the difference between them, which can provide a reference for clinical application. It is worth mentioning that the inhibition of S. chinensis and S. sphenanthera on CYP3A and P-gp may lead to undesirable drug-drug interactions.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Jing Qiu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Wenjun Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
29
|
Huang S, Zhang D, Li Y, Fan H, Liu Y, Huang W, Deng C, Wang W, Song X. Schisandra sphenanthera: A Comprehensive Review of its Botany, Phytochemistry, Pharmacology, and Clinical Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1577-1622. [PMID: 34559620 DOI: 10.1142/s0192415x21500749] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schisandra sphenanthera Rehd. et Wils (S. sphenanthera) is a single species of Schisandra genus, Magnoliaceae family, and it is a famous medicinal herb mostly growing in southern China, China Taiwan and Vietnam. S. sphenanthera is usually used for the treatments of hepatitis, Alzheimer's disease, renal transplantation, osteoporosis, and insomnia. In present studies, approximately 310 natural constituents have been isolated from S. sphenanthera, including lignans, triterpenes, volatile oils, and polysaccharides, which were mainly obtained from the fruits and stems of S. sphenanthera. Pharmocological studies have shown that the extracts and monomeric compounds of S. sphenanthera possessed wide-range bioactivities, such as antitumor, anti-oxidant, anti-inflammatory, osteoblastic, immune regulation, neuroprotective, kidney protection, hepatoprotective, and antiviral activities. However, resource availability, quality control measures, in-depth in vivo pharmacological study, and clinical application are still insufficient and deserve further studies. This review systematically summarized literatures on the botany, phytochemistry, pharmacology, development utilization, and clinical application of S. sphenanthera, in hopes of provide a useful reference for researchers for further studies of this plant.
Collapse
Affiliation(s)
- Shiqi Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Hao Fan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Yuanyuan Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| |
Collapse
|
30
|
Wang Q, Liu L, Guan H, Zhou Y, Li Q. Schizandrin A ameliorates cognitive functions via modulating microglial polarisation in Alzheimer's disease mice. PHARMACEUTICAL BIOLOGY 2021; 59:860-867. [PMID: 34214019 PMCID: PMC8259827 DOI: 10.1080/13880209.2021.1941132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/30/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Schizandrin A (Sch A) is a major phytochemical from Schisandra chinensis (Turcz.) Baill. (Schisandraceae), which exerts a neuroprotective effect in Alzheimer's disease (AD). OBJECTIVE To investigate the mechanism of Sch A in AD. MATERIALS AND METHODS AD group: APP/PS1 transgenic mice served as AD models; AD + SCH group: APP/PS1 received 2 mg/kg Sch A by intragastric administration; WT: C57BL/6 mice were used as control. For in vitro assay, mouse microglial BV2 cells were treated with 0.5 µg/mL lipopolysaccharide or combined with 10 μmol/L Sch A for 24 h. The cognitive function and apoptosis in the mice was estimated. Microglial polarisation in the mice and cells was analysed. RESULTS Sch A treatment effectively improved spatial learning and memory ability and suppressed apoptosis in the brain tissues of APP/PS1 mice. APP/PS1 mice exhibited an increase in the levels of Aβ1-42 (2367.9 ± 431.1 pg/mg) and Aβ1-40 (1753.3 ± 253.4 pg/mg), which was abolished by Sch A treatment. Moreover, Sch A treatment repressed the proportions of iNOS+/Iba-1+ cells and IL-6 expression, while enhanced the proportions of Arg-1+/Iba-1+ cells and IL-10 expression in APP/PS1 mice. In vitro, Sch A treatment reduced the proportions of CD16/32+ cells, iNOS expression and IL-6 levels (25.7 ± 5.3 pg/mL) repressed M1 polarisation, and enhanced the proportions of CD206 cells, Arg-1 expression and IL-10 levels (75.9 ± 12.8 pg/mL) in BV2 cells. CONCLUSIONS This research confirms the neuroprotective effect of Sch A in AD, suggesting that Sch A may become a potential anti-AD agent.
Collapse
Affiliation(s)
- Qi Wang
- Teaching and Research Department of Basic Theory of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Li Liu
- Department of Cardiovascular Diseases, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Huibo Guan
- Teaching and Research Department of Basic Theory of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yanyan Zhou
- Teaching and Research Department of Basic Theory of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Quan Li
- Hospital Office, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
31
|
Sung YY, Yuk HJ, Kim DS. Saengmaeksan, a traditional herbal formulation consisting of Panax ginseng, ameliorates hyperuricemia by inhibiting xanthine oxidase activity and enhancing urate excretion in rats. J Ginseng Res 2021; 45:565-574. [PMID: 34803426 PMCID: PMC8587482 DOI: 10.1016/j.jgr.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 10/27/2022] Open
Abstract
Background Saengmaeksan (SMS) is a traditional Korean medicine composed of three herbs, Panax ginseng, Schisandra chinensis, and Liriope platyphylla. SMS is used to treat respiratory and cardiovascular disorders. However, whether SMS exerts antihyperuricemic effects is unknown. Methods Effects of the SMS extract in water (SMS-W) and 30% ethanol (SMS-E) were studied in a rat model of potassium oxonate-induced hyperuricemia. Uric acid concentrations and xanthine oxidase (XO) activities were evaluated in the serum, urine, and hepatic tissue. Using renal histopathology to assess kidney function and uric acid excretion, we investigated serum creatinine and blood urea nitrogen concentrations, as well as protein levels of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), and organic anion transporter 1 (OAT1). The effects of SMS on in vitro XO activity and uric acid uptake were also evaluated. The components of SMS were identified using Ultra Performance Liquid Chromatography (UPLC). Results SMS-E reduced serum uric acid and creatinine concentrations, and elevated urine uric acid excretion. SMS-E lowered XO activities in both the serum and liver, and downregulated the expression of renal URAT1 and GLUT9 proteins. SMS-E reduced renal inflammation and IL-1β levels in both the serum and kidneys. SMS-E inhibited both in vitro XO activity and urate uptake in URAT1-expressing oocytes. Using UPLC, 25 ginsenosides were identified, all of which were present in higher levels in SMS-E than in SMS-W. Conclusion SMS-E exhibited antihyperuricemic effects by regulating XO activity and renal urate transporters, providing the first evidence of its applicability in the treatment of hyperuricemia and gout.
Collapse
Affiliation(s)
- Yoon-Young Sung
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Heung Joo Yuk
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Seon Kim
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Gao Y, Shi W, Yao H, Ai Y, Li R, Wang Z, Liu T, Dai W, Xiao X, Zhao J, Niu M, Bai Z. An Integrative Pharmacology Based Analysis of Refined Liuweiwuling Against Liver Injury: A Novel Component Combination and Hepaprotective Mechanism. Front Pharmacol 2021; 12:747010. [PMID: 34630116 PMCID: PMC8493075 DOI: 10.3389/fphar.2021.747010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Liver disease is a major cause of illness and death worldwide. In China, liver diseases, primarily alcoholic and nonalcoholic fatty liver disease, and viral hepatitis, affect approximately 300 million people, resulting in a major impact on the global burden of liver diseases. The use of Liuweiwuling (LWWL), a traditional Chinese medicine formula, approved by the Chinese Food and Drug Administration for decreasing aminotransferase levels induced by different liver diseases. Our previous study indicated a part of the material basis and mechanisms of LWWL in the treatment of hepatic fibrosis. However, knowledge of the materials and molecular mechanisms of LWWL in the treatment of liver diseases remains limited. Using pharmacokinetic and network pharmacology methods, this study demonstrated that the active components of LWWL were involved in the treatment mechanism against liver diseases and exerted anti-apoptosis and anti-inflammatory effects. Furthermore, esculetin, luteolin, schisandrin A and schisandrin B may play an important role by exerting anti-inflammatory and hepatoprotective effects in vitro. Esculeti and luteolin dose-dependently inhibited H2O2-induced cell apoptosis, and luteolin also inhibited the NF-κB signaling pathway in bone marrow-derived macrophages. schisandrin A and B inhibited the release of ROS in acetaminophen (APAP)-induced acute liver injury in vitro. Moreover, LWWL active ingredients protect against APAP-induced acute liver injury in mice. The four active ingredients may inhibit oxidative stress or inflammation to exert hepatoprotective effect. In conclusion, our results showed that the novel component combination of LWWL can protect against APAP-induced acute liver injury by inhibiting cell apoptosis and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
- Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wei Shi
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hongyu Yao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yongqiang Ai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Department of Infectious Disease Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhilei Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Tingting Liu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wenzhang Dai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Jun Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ming Niu
- Department of Poisoning Treatment, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.,China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Feng Y, Li H, Chen C, Lin H, Xu G, Li H, Wang C, Chen J, Sun J. Study on the Hepatoprotection of Schisandra chinensis Caulis Polysaccharides in Nonalcoholic Fatty Liver Disease in Rats Based on Metabolomics. Front Pharmacol 2021; 12:727636. [PMID: 34621168 PMCID: PMC8490749 DOI: 10.3389/fphar.2021.727636] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to investigate the hepatoprotection of Schisandra chinensis Caulis polysaccharides (SCPs) in the nonalcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD) in rats. A total of 30 Wistar rats were randomly divided into the control group (CON), model group (MOD), and Schisandra chinensis caulis polysaccharide (SCP) group. Except for those in the CON group, the other rats were fed with high-fat diet for 4 weeks to establish an NAFLD model. From the 5th week, rats in the SCP group were given SCP solution (100 mg kg-1) by gavage for 6 weeks, and those in the CON and MOD groups were given an equal volume of distilled water in the same way. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) levels in serum, the malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities in the liver tissue were detected. The small molecular metabolites in the blood of rats were determined by the metabolomics method of ultra-high-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS) combined with multivariate analysis. The enrichment analysis and pathway analysis of the different metabolites were carried out. The therapeutic mechanism of SCP in NAFLD rats was verified by western blot. The results showed that the levels of AST, ALT, TG, TC, and LDL-C in the serum of rats in the SCP group were significantly lower, and the levels of HDL-C were significantly higher than those in the MOD group. The screening and analysis of the metabolic pathways showed that SCP could alleviate the development of NAFLD by regulating the expression of UDP-glucose pyrophosphorylase (UGP2), UDP-glucose 6-dehydrogenase (UGDH), acetyl CoA carboxylase (ACC), and fatty acid synthase (FAS) in the liver of NAFLD rats. This study may provide a theoretical basis for the development and utilization of SCP.
Collapse
Affiliation(s)
- Yanbo Feng
- College of Pharmacy, Beihua University, Jilin, China
| | - Han Li
- College of Pharmacy, Beihua University, Jilin, China
| | - Cong Chen
- College of Pharmacy, Beihua University, Jilin, China
| | - Hao Lin
- College of Pharmacy, Beihua University, Jilin, China
| | - Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, China
| | - He Li
- College of Pharmacy, Beihua University, Jilin, China
| | - Chunmei Wang
- College of Pharmacy, Beihua University, Jilin, China
| | | | - Jinghui Sun
- College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
34
|
Tan Y, Chen L. Sustained false-positive results for hepatitis A virus immunoglobulin M: A case report and literature review. Open Med (Wars) 2021; 16:1311-1317. [PMID: 34568578 PMCID: PMC8424969 DOI: 10.1515/med-2021-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatitis A virus immunoglobulin M (HAV-IgM) is often used to diagnose acute hepatitis A virus (HAV) infection serologically. However, false-positive test results can interfere with the diagnosis. A 56-year-old woman was readmitted to the hospital owing to abnormal liver function tests for the last 18 months. She had been diagnosed with acute HAV and was hospitalized in isolation based on a positive HAV-IgM test 18 months ago. Regular follow-up after discharge showed abnormal liver function and an elevated level of antinuclear antibodies and immunoglobulin G. For the last 15 days, the patient had fatigue, decreased appetite, and yellow urine, signaling recrudescence. Liver function tests were also abnormal. Liver biopsy revealed histological changes consistent with typical autoimmune hepatitis. After 2 months of methylprednisolone treatment, liver function returned to normal, and HAV-IgM turned negative. The diagnosis of acute HAV in nonendemic areas requires a comprehensive analysis of epidemic history, clinical characteristics, etiology, etc.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang 212003, China
| | - Li Chen
- Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang 212003, China
| |
Collapse
|
35
|
Li J, Zhang J, Xu X, Fang W, Qu S, Jin F, Zhou J, Han X, Raza HK, Li X, Mao Y. Hugan tablets for the treatment of RUCAM based drug-induced liver injury: a propensity score matching analysis using a nationwide database. Expert Rev Clin Pharmacol 2021; 14:1543-1550. [PMID: 34521298 DOI: 10.1080/17512433.2021.1981859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drug-induced liver injury (DILI) is a major clinical challenge with no specific therapeutic drugs available. It is crucial to develop new agents to improve the clinical outcome of patients with DILI. This study evaluated the efficacy and safety of Hugan tablets in DILI patients using a nationwide database. RESEARCH DESIGN AND METHODS We analyzed the clinical data of DILI patients from a nationwide DILI database (www.hepatox.org). Patients who received oral Hugan tablets for DILI were defined as the Hugan group, and those who received no treatment for DILI were defined as the control group. RESULTS There were 111 cases in the Hugan group and 512 cases in the control group. One-to-one propensity score matching created 111 matched pairs. The normalization rates of alanine aminotransferase and aspartate aminotransferase in the Hugan group were significantly higher than those in the control group (50.45% vs. 26.13%, p ≤ .0002 and 67.57% vs. 41.75%, p ≤ .0001). There were no differences in the incidence of renal function impairment or blood abnormality between the two groups. CONCLUSIONS Hugan tablets are safe and effective in DILI treatment. Large-scale randomized controlled studies are needed to explore the effects of Hugan tablets on DILI induced by different offending drugs. TRIAL REGISTRATION The study protocol was posted on ClinicalTrials.gov with NCT number: NCT02407964.
Collapse
Affiliation(s)
- Jing Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Zhang
- Department of Medicine and Biostatistics, Unimed Scientific Inc, Wuxi, China
| | - Xiaorong Xu
- Department of Hepatology, Bozhou Huatuo Hospital of Traditional Chinese Medicine, Bozhou, China
| | - Weidong Fang
- Department of Infectious Diseases, Huangshan City People's Hospital, Huangshan, China
| | - Shilin Qu
- Department of Tuberculosis, Jingzhou Chest Hospital, Jingzhou, China
| | - Feng Jin
- Department of Thoracic Surgery, Shandong Provincial Chest Hospital, Jinan, China
| | - Jie Zhou
- Department of Extrapulmonary Tuberculosis, Tianjin Tuberculosis Control Center, Tianjin, China
| | - Xian Han
- Department of Medicine and Biostatistics, Unimed Scientific Inc, Wuxi, China
| | - Hafiz Khuram Raza
- Department of Medicine and Biostatistics, Unimed Scientific Inc, Wuxi, China
| | - Xiaoyun Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Gao X, Xu Y. Therapeutic Effects of Natural Compounds and Small Molecule Inhibitors Targeting Endoplasmic Reticulum Stress in Alzheimer's Disease. Front Cell Dev Biol 2021; 9:745011. [PMID: 34540853 PMCID: PMC8440892 DOI: 10.3389/fcell.2021.745011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease, characterized by progressive cognitive impairment and memory loss. So far, the pathogenesis of AD has not been fully understood. Research have shown that endoplasmic reticulum (ER) stress and unfolded protein response (UPR) participate in the occurrence and development of AD. Furthermore, various studies, both in vivo and in vitro, have shown that targeting ER stress and ER stress-mediated apoptosis contribute to the recovery of AD. Thus, targeting ER stress and ER stress-mediated apoptosis may be effective for treating AD. In this review, the molecular mechanism of ER stress and ER stress-mediated apoptosis, as well as the therapeutic effects of some natural compounds and small molecule inhibitors targeting ER stress and ER stress-mediated apoptosis in AD will be introduced.
Collapse
Affiliation(s)
- Xun Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| | - Yuanyuan Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
37
|
Lin H, Zhang X, Wang D, Liu J, Yuan L, Liu J, Wang C, Sun J, Chen J, Li H, Jing S. Anwulignan Ameliorates the Intestinal Ischemia/Reperfusion. J Pharmacol Exp Ther 2021; 378:222-234. [PMID: 34131018 DOI: 10.1124/jpet.121.000587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 11/22/2022] Open
Abstract
Anwulignan is one of the monomer compounds in the lignans from Schisandra sphenanthera In this study, we observed the effect of anwulignan on intestinal ischemia/reperfusion (II/R) injury in male Sprague-Dawley rats and explored the underlying mechanisms. The results showed that pretreatment with oral anwulignan could significantly increase the mesenteric blood microcirculatory flow velocity; relieve the congestion and pathologic injury of jejunum; enhance the autonomic tension of jejunum smooth muscle and its reactivity to acetylcholine; increase the activities of superoxide dismutase, catalase, glutathione S-transferase, and choline acetyltransferase; increase the contents of acetylcholine and glutathione in the serum or jejunal tissue; decrease the activities of myeloperoxidase, protein kinase C, and nicotinamide adenine dinucleotide phosphate oxidase; reduce the contents of malondialdehyde, 8-hydroxy-2-deoxyguanosine, nicotinamide adenine, reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-6, and IL-1β; increase the expression levels of muscarinic receptor 3, PI3K, phosphorylation protein kinase B, p-GSK3β Ser9, Nrf2, p-Nrf2, heme oxygenase (decycling) 1, and b-cell lymphoma 2 in the jejunal tissue; and decrease the expression levels of p-GSK3β Tyr216, kelch-like ECH-associated protein 1, Bax, and cleaved caspase-3, suggesting that anwulignan can ameliorate II/R-induced jejunal tissue injury in rats and that the mechanism may be related to its activating the PI3K/protein kinase B pathway and then regulating the Nrf2/Anti-oxidative Response Element signaling pathway and the expression of apoptosis-related proteins to play antioxidant and antiapoptotic roles. SIGNIFICANCE STATEMENT: Anwulignan can significantly reduce jejunal tissue injury and the production of inflammatory factors in rats with intestinal ischemia-reperfusion injury, improve the antioxidant capacity, and reduce the apoptosis of jejunal tissue, and it has the effect of significantly improving intestinal ischemia-reperfusion injury in rats, suggesting that anwulignan may be used as a potential drug for the prevention and treatment of intestinal ischemia-reperfusion injury or a resource for the development of health food.
Collapse
Affiliation(s)
- Huijiao Lin
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Xinyun Zhang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Dan Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiawei Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Liwei Yuan
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jiale Liu
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - He Li
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| | - Shu Jing
- Department of Pharmacology, College of Pharmacy (Hu.L., X.Z., Jiaw.L., L.Y., C.W., J.S., J.C., He.L.); College of Basic Medicine (D.W.), Beihua University, Jilin City, China; Jilin City Central Hospital, Jilin City, China (Jial.L.); and Affiliated Hospital of Beihua University, Jilin City, China (S.J.)
| |
Collapse
|
38
|
Miao Z, Lai Y, Zhao Y, Chen L, Zhou J, Li C, Wang Y. Protective Property of Scutellarin Against Liver Injury Induced by Carbon Tetrachloride in Mice. Front Pharmacol 2021; 12:710692. [PMID: 34421606 PMCID: PMC8374867 DOI: 10.3389/fphar.2021.710692] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Liver injury is a clinical disorder caused by toxins, drugs, and alcohol stimulation without effective therapeutic approaches thus far. Scutellarin (SCU), isolated from the edible herb Erigeron breviscapus (Vant.) Hand. -Mazz. showed potential hepatoprotective effects, but the mechanisms remain unknown. In this study, transcriptomics combined with nontargeted metabolomics and 16S rRNA amplicon sequencing were performed to elucidate the functional mechanisms of SCU in carbon tetrachloride (CCl4)–induced liver injury in mice. The results showed that SCU exerted potential hepatoprotective effects against CCl4-induced liver injury by repressing CYP2E1 and IκBα/NF-κB signaling pathways, modulating the gut microbiota (especially enriching Lactobacillus), and regulating the endogenous metabolites involved in lipid metabolism and bile acid homeostasis. SCU originates from a functional food that appears to be a promising agent to guard against liver injury.
Collapse
Affiliation(s)
- Zhimin Miao
- College of Pharmacy, Dali University, Dali, China
| | - Yong Lai
- College of Pharmacy, Dali University, Dali, China
| | | | - Lingmin Chen
- College of Pharmacy, Dali University, Dali, China
| | - Jianeng Zhou
- College of Pharmacy, Dali University, Dali, China
| | - Chunyan Li
- College of Pharmacy, Dali University, Dali, China
| | - Yan Wang
- College of Pharmacy, Dali University, Dali, China
| |
Collapse
|
39
|
Effects of Syo-seiryu-to and Its Constituent Crude Drugs on Phorbol Ester-Induced Up-Regulation of IL-33 and Histamine H1 Receptor mRNAs in Swiss 3T3 and HeLa Cells. ALLERGIES 2021. [DOI: 10.3390/allergies1030015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Syo-seiryu-to (SST) is a traditional herbal medicine that has been used clinically to treat allergic rhinitis (AR) in Japan. SST improves acute symptoms, such as sneezing and rhinorrhea, as well as chronic symptoms, such as nasal obstruction, in patients with AR. However, its therapeutic mechanisms remain unknown. We examined the effects of SST and eight constituent crude drugs on phorbol 12-myristate-13-acetate (PMA)-induced gene up-regulation of IL-33 and histamine H1 receptor (H1R), which are responsible for the pathogenesis of AR. We found that SST and its crude drugs, except for Pinellia tuber, significantly and dose-dependently suppressed PMA-induced both IL-33 and H1R mRNA up-regulation in vitro. The half-maximal inhibitory concentration values of the seven crude drugs to inhibit PMA-induced IL-33 mRNA up-regulation were correlated with those related to H1R mRNA up-regulation, suggesting that they act on a common signal molecule. These results suggest that SST improves nasal congestion that is induced by IL-33-related eosinophil infiltration and inhibits sneezing and rhinorrhea that are induced by H1R-mediated histamine signaling in the nasal mucosa of AR patients through its inhibition of a common molecule in the gene expression pathways of IL-33 and H1R. The results could explain the advantages of traditional herbal medicine, in which mixing various crude drugs not only acts on a common target to enhance its pharmacological action, similar to the effect of a high concentration of a single crude extract but also has the benefit of reducing the side effects of each crude drug.
Collapse
|
40
|
Fu R, Wang XN, Guo CH, Li Y, Ding CY, Li YJ, Dong ZJ. Wuzhi capsule increased systemic exposure to methotrexate by inhibiting the expression of OAT1/3 and P-gp. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:845. [PMID: 34164479 PMCID: PMC8184478 DOI: 10.21037/atm-21-1303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Methotrexate (MTX) is an important anticancer agent and immunosuppressant with a narrow therapeutic window. Wuzhi capsule (WZC) is an extract of Schisandra which is widely used to treat liver diseases. Co-administration of MTX and WZC is common in the clinical setting, but research on the interaction between WZC and MTX is limited. This study aimed to investigate the effects of WZC on the pharmacokinetics of MTX in rats and to explore the role of membrane transport proteins OAT1/3 and P-gp in the interaction of these drugs. Methods Plasma MTX concentration was detected by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), and the messenger RNA (mRNA) and protein expression of OAT1/3 and P-gp was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analyses, respectively. Results The study results revealed that co-administration of WZC decreased the CLz/F and Vz/F of MTX, increased the Cmax and area under the curve [(AUC)0–24 h] of MTX, and inhibited OAT1/3 expression in the kidney and P-gp expression in the small intestine. Conclusions The findings suggested that there is a drug interaction between WZC and MTX and that OAT1/3 in the kidney and P-gp in the small intestine may be the main targets mediating the drug interaction, and attention should be paid when they are used in combination.
Collapse
Affiliation(s)
- Ran Fu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Xiao-Nan Wang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Cai-Hui Guo
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Cong-Yang Ding
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ya-Jing Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhan-Jun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
41
|
Lu J, Chen C, Gai R, Qiu H, Wu Y, He Q, Yang X. Protective effects and possible mechanisms of Centella asiatica (L.) urban extract against acute and chronic liver injury: Evidence from in vivo and in vitro studies. Phytother Res 2021; 35:2785-2796. [PMID: 33462870 DOI: 10.1002/ptr.7024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 11/10/2022]
Abstract
Drug-induced liver injury (DILI) has become a significant health care problem worldwide. Centella asiatica (L.) urban was traditionally used to prevent or treat various diseases, yet whether it works on hepatic injury remains unclear. In this study, multiple experimental models with different damage degrees and types of liver injury have been established to evaluate the hepatoprotective effects of an n-butanol extract of Centella asiatica (CA-BU). Our results revealed that CA-BU improved hepatocyte L02 cells survival from H2 O2 -induced oxidative damage in a concentration-dependent manner. We further verified the hepatoprotective effects of CA-BU in mice models of acetaminophen-induced acute liver injury (one of the most common DILIs clinically) and CCl4 -induced acute chemical liver injury, and a rat model of chronic alcoholic steatohepatitis. Furthermore, network pharmacology approaches were performed to explore the underlying mechanisms, and we predicted AKT1, EGFR, VEGFA, and STAT3 as the potential therapeutic targets. In follow-up studies, we will focus on targets verification and provide a deeper insight into the mechanisms of CA-BU against liver damage. Finally, we hope that these findings will provide new ideas and insights for the treatment of acute or chronic liver injury in the clinic.
Collapse
Affiliation(s)
- Jiabin Lu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chao Chen
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Renhua Gai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huacheng Qiu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Wu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Xie X, Wang X, Shi X, Zhang Y, Laster KV, Liu K, Dong Z, Kim DJ. Anwulignan is a novel JAK1 inhibitor that suppresses non-small cell lung cancer growth. J Cell Mol Med 2021; 25:2645-2654. [PMID: 33523587 PMCID: PMC7933975 DOI: 10.1111/jcmm.16289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Anwulignan is a monomer compound derived from Schisandra sphenanthera lignans. It has been reported to possess a spectrum of pharmacological activities, including anti-bacterial, anti-inflammatory, anticancer and hepatoprotective properties. However, its anticancer capacity and molecular mechanism(s) against non-small cell lung cancer (NSCLC) have not been fully elucidated. Anwulignan significantly inhibited cell growth and increased G1-phase cell cycle arrest in NSCLC cells. Anwulignan strongly attenuates the JAK1/STAT3 signalling pathway by directly targeting JAK1 protein kinase activity in vitro. The anticancer activity by Anwulignan is dependent upon the JAK1 protein expression. Remarkably, Anwulignan strongly inhibited tumour growth in vivo. In conclusion, Anwulignan is a novel JAK1 inhibitor that may have therapeutic implications for NSCLC management.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China
| | - Xiangyu Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China
| | - Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China
| | - Yuanyuan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, HA, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, HA, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China.,The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, HA, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, HA, China.,International joint research center of cancer chemoprevention, Zhengzhou, China
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, HA, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, HA, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, HA, China
| |
Collapse
|
43
|
Wu Z, Liang D, Xu M, Liu Y, Xie H. A Comparative Pharmacokinetic Study of Schisandrol B After Oral Administration of Schisandrol B Monomer and Schisandra chinensis Extract. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916666191114122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Schisandra chinensis Turcz. (Baill.) is a perennial deciduous woody vine
plant, which is beneficial to all systems of the body.
Objective:
The goals of the present study were to compare the pharmacokinetics of schisandrol B in
rats after the oral administration of schisandrol B monomer (10 mg/kg) and S. chinensis extract (equivalent
to 10 mg/kg schisandrol B) and to explore interactions among the components in S. chinensis
extract.
Methods:
Twelve Sprague-Dawley rats of SPF grade were randomly divided into the monomer and
S.chinensis extract groups. Plasma samples were extracted with methyl tert-butyl ether, and chromatographic
separation was performed on an Agilent ZORBAX Eclipse XDB-C18 (4.6 × 150 mm, 5 μm)
column with the mobile phase consisting of methanol (containing 0.1% formic acid)-water (containing
0.1% formic acid and 5 mmol ammonium acetate). This analysis was achieved by multiple reaction
monitoring modes in an electrospray interface.
Results:
The seven lignans had a good linear relationship within the determination range (r>0.9950);
the intra- and inter-day precision was <12.08% and accuracy was 88.64%-111.61%. The pharmacokinetic
parameters (T1/2, Tmax, MRT0-∞, CL, AUC0-t, and AUC0-∞) of schisandrol B showed significant
differences between the two groups (P<0.05).
Conclusion:
The validated method has been successfully applied to the pharmacokinetics of schisandrin,
schisandrol B, schisandrin A, schisandrin B, schisandrin C, schisanhenol, and schisantherin A.
The pharmacokinetic differences indicate that other components in the extract may increase the absorption
of schisandrol B, decrease the rate of elimination, and improve the bioavailability of schisandrol B.
Collapse
Affiliation(s)
- Zijing Wu
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Dahu Liang
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Maodi Xu
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| | - Yanhao Liu
- Department of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Haitang Xie
- Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
44
|
Huang Z, Lumb JP. Mimicking oxidative radical cyclizations of lignan biosynthesis using redox-neutral photocatalysis. Nat Chem 2020; 13:24-32. [PMID: 33349693 DOI: 10.1038/s41557-020-00603-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/06/2020] [Indexed: 01/02/2023]
Abstract
Oxidative cyclizations create many unique chemical structures that are characteristic of biologically active natural products. Many of these reactions are catalysed by 'non-canonical' or 'thwarted' iron oxygenases and appear to involve long-lived radicals. Mimicking these biosynthetic transformations with chemical equivalents has been a long-standing goal of synthetic chemists but the fleeting nature of radicals, particularly under oxidizing conditions, makes this challenging. Here we use redox-neutral photocatalysis to generate radicals that are likely to be involved in the biosynthesis of lignan natural products. We present the total syntheses of highly oxidized dibenzocyclooctadienes, which feature densely fused, polycyclic frameworks that originate from a common radical progenitor. We show that multiple factors control the fate of the proposed biosynthetic radicals, as they select between 5- or 11-membered ring cyclizations and a number of different terminating events. Our syntheses create new opportunities to explore the medicinal properties of these natural products, while shedding light on their biosynthetic origin.
Collapse
Affiliation(s)
- Zheng Huang
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev 2020; 64:101192. [PMID: 33059089 DOI: 10.1016/j.arr.2020.101192] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and it is characterised by progressive deterioration in cognitive and memory abilities, which can severely influence the elderly population's daily living abilities. Although researchers have made great efforts in the field of AD, there are still no well-established strategies to prevent and treat this disease. Therefore, better clarification of the molecular mechanisms associated with the onset and progression of AD is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Currently, it is generally believed that neuroinflammation plays a key role in the pathogenesis of AD. Inflammasome, a multiprotein complex, is involved in the innate immune system, and it can mediate inflammatory responses and pyroptosis, which lead to neurodegeneration. Among the various types of inflammasomes, the NLRP3 inflammasome is the most characterised in neurodegenerative diseases, especially in AD. The activation of the NLRP3 inflammasome causes the generation of caspase-1-mediated interleukin (IL)-1β and IL-18 in microglia cells, where neuroinflammation is involved in the development and progression of AD. Thus, the NLRP3 inflammasome is likely to be a crucial therapeutic molecular target for AD via regulating neuroinflammation. In this review, we summarise the current knowledge on the role and regulatory mechanisms of the NLRP3 inflammasome in the pathogenic mechanisms of AD. We also focus on a series of potential therapeutic treatments targeting NLRP3 inflammasome for AD. Further clarification of the regulatory mechanisms of the NLRP3 inflammasome in AD may provide more useful clues to develop novel AD treatment strategies.
Collapse
|
46
|
Gu M, Song H, Li Y, Jiang Y, Zhang Y, Tang Z, Ji G, Huang C. Extract of Schisandra chinensis fruit protects against metabolic dysfunction in high-fat diet induced obese mice via FXR activation. Phytother Res 2020; 34:3063-3077. [PMID: 32583938 DOI: 10.1002/ptr.6743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 12/24/2022]
Abstract
Schisandra chinensis fruit has been shown to restore carbohydrate- and lipid-metabolic disorders and has anti-hepatotoxicity and anti-hepatitis activities. However, the molecular targets mediating the pharmacological properties of S. chinensis fruit have not been clarified. Here, we assayed the effects of S. chinensis fruit ethanol extract (SCE) on farnesoid X receptor (FXR) transactivity. The pharmacological effects of SCE (1 g/100 g diet) were assessed in high-fat diet (HFD)-fed C57BL/6 mice and ob/ob mice. The FXR and Fgf15 signalling pathways were evaluated by FXR silencing, ELISA, Western blot and RT-PCR analyses. The results showed that SCE treatment increased FXR transcription activity and improved obesity, hypercholesteremia and fatty liver in HFD-fed mice, while it had limited effects on ob/ob mice. Our study suggests that SCE treatment may improve HFD-induced metabolic disorders through pharmacological activation of FXR/Fgf15 signalling, and such beneficial effects of SCE may require leptin participation.
Collapse
Affiliation(s)
- Ming Gu
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiping Li
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Jiang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yali Zhang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Tang
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseas`onghua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Yuchong Z, Xinyun Z, Yao W, Huijiao L, Chunyan Y, Shu J, Wenyue Z, Chunmei W, Jinghui S, He L, Jianguang C. Anwulignan Alleviates Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20962679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute liver injury is a serious threat to human health. Complementary therapy including a traditional Chinese herb has been used for the prevention and treatment of liver injuries. Schisandrae sphenantherae fructus (Schisandra) is the mature dry fruit of Schisandra sphenanthera Rehd. et Wils. Wuzhi capsule, a preparation containing Schisandra and its main component anwulignan, is used to treat hepatitis and hepatic insufficiency caused by viruses and drugs in the clinic. However, to date, there has been little study to reveal the effect of anwulignan in the protection of the liver. Therefore, in this study, we hypothesized that anwulignan could protect carbon tetrachloride (CCl4)-induced acute liver injury in mice. Anwulignan was shown to reduce significantly the liver index, decrease liver histopathological injury, decrease the serum level of aspartate aminotransferase and alanine aminotransferase, increase the activities of superoxide dismutase (SOD) and glutathione peroxidase, reduce liver malondialdehyde content, and downregulate the expression levels of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α in the liver tissue, as well as the protein expression levels of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), RIPK3, and phosphorylated mixed lineage kinase domain-like protein. All these results suggest that anwulignan can alleviate the CCl4-induced acute liver injury in mice, which may be related to its antioxidant, anti-inflammation, and inhibition of liver cell necroptosis effects.
Collapse
Affiliation(s)
- Zhang Yuchong
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Zhang Xinyun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wang Yao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Lin Huijiao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Yu Chunyan
- Department of Pathology, Medical College, Beihua University, Jilin, China
| | - Jing Shu
- Department of General Surgery, Affiliated Hospital of Beihua University, Jilin, China
| | - Zhuang Wenyue
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Wang Chunmei
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Sun Jinghui
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Li He
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Chen Jianguang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| |
Collapse
|
48
|
Song L, Piao Z, Yao L, Zhang L, Lu Y. Schisandrin ameliorates cognitive deficits, endoplasmic reticulum stress and neuroinflammation in streptozotocin (STZ)-induced Alzheimer's disease rats. Exp Anim 2020; 69:363-373. [PMID: 32336744 PMCID: PMC7445059 DOI: 10.1538/expanim.19-0146] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Schisandrin, an active component extracted from Schisandra chinensis (Turcz.) Baill has
been reported to alleviate the cognitive impairment in neurodegenerative disorder like
Alzheimer’s disease (AD). However, the mechanism by which schisandrin regulates the
cognitive decline is still unclear. In our study, intracerebroventricular injection of
streptozotocin (STZ) was employed to establish AD model in male Wistar rats, and indicated
dose of schisandrin was further administered. The Morris water maze test was performed to
evaluate the ability of learning and memory in rats with schisandrin treatment. The
results indicated that schisandrin improved the capacity of cognition in STZ-induced rats.
The contents of pro-inflammatory cytokines in brain tissue were determined by ELISA, and
the expressions of these cytokines were assessed by western-blot and immunohistochemistry.
The results showed that treatment of schisandrin significantly reduced the production of
inflammation mediators including tumor necrosis factor-α, interleukin-1β and
interleukin-6. Further study suggested a remarkable decrease in the expressions of ER
stress maker proteins like C/EBP-homologous protein, glucose-regulated protein 78 and
cleaved caspase-12 in the presence of schisandrin, meanwhile the up-regulation of sirtuin
1 (SIRT1) was also observed in the same group. Additionally, the results of western-blot
and EMSA demonstrated that schisandrin inhibited NF-κB signaling in the brain of
STZ-induced rats. In conclusion, schisandrin ameliorated STZ-induced cognitive
dysfunction, ER stress and neuroinflammation which may be associated with up-regulation of
SIRT1. Our study provides novel mechanisms for the neuroprotective effect of schisandrin
in AD treatment.
Collapse
Affiliation(s)
- Lin Song
- School of Life Sciences, Huizhou University, 46 Yanda Avenue, Huizhou, Guangdong 516007, P.R. China
| | - Zhongyuan Piao
- Department of Neurology, Huizhou Third People's Hospital, Huizhou Hospital of Guangzhou Medical University, 1 Xuebei Street, Huizhou, Guangdong 516002, P.R. China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Harbin, Heilongjiang 150001, P.R. China
| | - Limei Zhang
- Department of Obstetrics and Gynecology, Huizhou Third People's Hospital, Huizhou Hospital of Guangzhou Medical University, 1 Xuebei Street, Huizhou, Guangdong 516002, P.R. China
| | - Yichan Lu
- Department of Chinese Medicine, Dalian Maternity and Child Health Care Hospital, 321 Jiefang Road, Dalian, Liaoning 116033, People's Republic of China
| |
Collapse
|
49
|
Zhang X, Jing S, Lin H, Sun W, Jiang W, Yu C, Sun J, Wang C, Chen J, Li H. Anti-fatigue effect of anwulignan via the NRF2 and PGC-1α signaling pathway in mice. Food Funct 2020; 10:7755-7766. [PMID: 31696200 DOI: 10.1039/c9fo01182j] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To examine the anti-fatigue function of anwulignan from Schisandra and its underlying mechanism. METHODS After an excessive fatigue mouse model was created, anwulignan was administered to the mice, and its effect on exercise tolerance was studied by the weight-bearing swimming test, rotarod test, grip strength test, and tail suspension test. The biochemical indicators closely related to fatigue, including blood urea nitrogen (BUN), lactic acid (LD), lactate dehydrogenase (LDH), and creatine kinase (CK) in the serum; liver glycogen (LG) in the liver tissue; muscle glycogen (MG); inorganic phosphate (Pi) and Annexin V in the gastrocnemius; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities; malondialdehyde (MDA), catalase (CAT), and thiobarbituric acid reactive substances (TBARS); and the 8-hydroxy-2-deoxyguanosine (8-OHdG) and reactive oxygen species (ROS) content in both serum and the gastrocnemius were detected. Morphological changes were also observed. The anti-fatigue-related proteins of the NRF2/ARE, Bcl2, and PGC-1α pathways in the gastrocnemius of the mice were detected by western blot. RESULTS Anwulignan significantly increased the exercise tolerance by decreasing BUN, LD, LDH, CK, Pi, MDA, TBARS, 8-OHdG, ROS, and Annexin V levels and increasing LG, MG, SOD, CAT, and GSH-Px levels, significantly upregulated the expression of NRF2 and Bcl2 proteins, which are anti-oxidation and anti-apoptosis regulators, and also activated the p38MAPK-PGC-1α pathway. CONCLUSION Anwulignan can increase exercise tolerance and relieve fatigue in an excessive fatigue mouse model. The underlying mechanism may be through its regulatory effect on the NRF2 and PGC-1α signaling pathway. This study will provide scientific data for anwulignan to be developed as a novel and efficient component in anti-oxidant or anti-fatigue health food.
Collapse
Affiliation(s)
- Xinyun Zhang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin 132013, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Systematic Elucidation of the Potential Mechanism of Erzhi Pill against Drug-Induced Liver Injury via Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:6219432. [PMID: 31998398 PMCID: PMC6970004 DOI: 10.1155/2020/6219432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022]
Abstract
Objective The purpose of this work was to investigate the bioactive compounds, core genes, and pharmacological mechanisms and to provide a further research orientation of Erzhi pill (EZP) on drug-induced liver injury (DILI). Methods At first, we collected information of bioactive compounds of EZP from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and previous studies. And then, the targets related to bioactive compounds and DILI were obtained from 4 public databases. At last, Cytoscape was used to establish a visual network. Moreover, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and network analysis were performed to investigate potential mechanism of EZP against DILI. Results A total of 23 bioactive compounds and 89 major proteins of EZP were screened out as potential players against DILI. Association for bioactive compounds, core targets, and related pathways was analyzed, implying that core targets related to these pathways are ALB, AKT1, MAPK1, EGFR, SRC, MAPK8, IGF1, CASP3, HSP90AA1, and MMP9, and potential mechanisms of EZP acting on DILI are closely related to negative regulation of apoptosis process, improvement of lipid metabolism, and positive regulation of liver regeneration process. Conclusion This study demonstrated the multicompound, multitarget, and multichannel characteristics of EZP, which provided a novel approach for further research the mechanism of EZP in the treatment of DILI.
Collapse
|