1
|
Li C, Liu R, Xiong Z, Bao X, Liang S, Zeng H, Jin W, Gong Q, Liu L, Guo J. Ferroptosis: a potential target for the treatment of atherosclerosis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:331-344. [PMID: 38327187 PMCID: PMC10984869 DOI: 10.3724/abbs.2024016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024] Open
Abstract
Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Chengyi Li
- School of MedicineYangtze UniversityJingzhou434020China
| | - Ran Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Zhenyu Xiong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Xue Bao
- School of MedicineYangtze UniversityJingzhou434020China
| | - Sijia Liang
- Department of PharmacologyZhongshan School of MedicineSun Yat-Sen UniversityGuangzhou510120China
| | - Haotian Zeng
- Department of GastroenterologyShenzhen People’s HospitalThe Second Clinical Medical CollegeJinan UniversityShenzhen518000China
| | - Wei Jin
- Department of Second Ward of General PediatricsSuizhou Central HospitalHubei University of MedicineSuizhou441300China
| | - Quan Gong
- School of MedicineYangtze UniversityJingzhou434020China
| | - Lian Liu
- School of MedicineYangtze UniversityJingzhou434020China
| | - Jiawei Guo
- School of MedicineYangtze UniversityJingzhou434020China
| |
Collapse
|
2
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
3
|
Insights of metal 8-hydroxylquinolinol complexes as the potential anticancer drugs. J Inorg Biochem 2023; 238:112051. [PMID: 36327497 DOI: 10.1016/j.jinorgbio.2022.112051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
8-Hydroxyquinoline and its derivatives, which belong to a well-known class of quinoline based drugs with varied biological activities, have been extensively explored for the treatments of cancer, Alzheimer's disease, neurodegenerative diseases and other life-threatening diseases. In virtue of the existence of bicyclic heterocyclic scaffold, their bidentate chelators can further bind to metal ions via O- and N-donors from 8-hydroxylquinolinol skeletons to yield a variety of metal 8-hydroxylquinolinol complexes appealing as the anticancer drugs with low toxicity, due to their better biological effects and higher anticancer activities than free 8-hydroxylquinolinol ligands and cis-diammine-dichloro-platinum. The present review summarizes the recent developments in the syntheses, crystal structures, and anticancer activities of metal 8-hydroxylquinolinol complexes, attempting to discover a correlation between their structures and anticancer activities, and to provide an evidence for their potential application perspectives. It means to offer the helpful and meaningful guidance for the researchers in the future syntheses of new and highly efficient anticancer metal 8-hydroxylquinolinol complexes based drugs.
Collapse
|
4
|
Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis. Molecules 2022; 27:molecules27207108. [PMID: 36296703 PMCID: PMC9607578 DOI: 10.3390/molecules27207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Seven styrylquinolines were synthesized in this study. Two of these styrylquinolines are new and were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, and normal cells (HaCaT). According to the results, compounds 3a and 3d showed antiproliferative activity in SW480 and SW620 cells, but their effect seemed to be caused by different mechanisms of action. Compound 3a induced apoptosis independent of ROS production, as evidenced by increased levels of caspase 3, and had an immunomodulatory effect, positively regulating the production of different immunological markers in malignant cell lines. In contrast, compound 3d generated a pro-oxidant response and inhibited the growth of cancer cells, probably by another type of cell death other than apoptosis. Molecular docking studies indicated that the most active compound, 3a, could efficiently bind to the proapoptotic human caspases-3 protein, a result that could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. The obtained results suggest that these compounds have chemopreventive potential against CRC, but more studies should be carried out to elucidate the molecular mechanisms of action of each of them in depth.
Collapse
|
5
|
|
6
|
Wang T, Song Y, Xu H, Liu Y, He H, Zhou M, Jin C, Yang M, Ai Z, Su D. Study on the mechanism of reducing biofilm toxicity and increasing antioxidant activity in vinegar processing phytomedicines containing pentacyclic triterpenoid saponins. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115112. [PMID: 35181486 DOI: 10.1016/j.jep.2022.115112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/29/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pentacyclic triterpenoid saponin (PTS) is a kind of particular chemicals with various pharmacological activities, as well as surface activity, mucosal irritation and hemolysis. PTS is closely related to the exertion of efficacy or adverse reactions in plant medicines rich in this component. For the better clinical application of natural resources, how to reduce toxicity and enhance curative efficacy is an important problem which needs to be solved at present. Till now, there has been few studies directly investigating the problem. AIM OF STUDY Through comparison study of Radix Bupleuri (Chai hu) and Pulsatilla chinensis (Bai tou weng), which are typical traditional Chinese medicines containing PTS, explore the potential change rule of material basis and the mechanism of detoxification and synergistic effect of vinegar processing. MATERIALS AND METHODS Composition change rule after vinegar processing was applied by UPLC-QTOF-MS/MS coupled with principal component analysis (PCA). Based on our previous research, this paper expounded the action mechanism from the perspective of reducing biofilm toxicity and increasing antioxidant activity. Direct toxicity reducing information was obtained at the cellular level including cellular morphology, MTT assays, western blots and RT-PCR in L02 cells with overload sphingomyelin (SM). The synergistic effect was investigated through histological examinations, mesenteric hemorheology, ELISA, flow cytometry and confocal microscopy. RESULTS It was found that the structure of PTS take place a series of chemical reactions in the process of vinegar processing which enabled the more toxic components transformed into less toxic components and components with clear efficacy, so as to achieve the purpose of detoxification and synergistic effect. The results indicated that the mechanism of detoxification in vinegar processing was that vinegar processing could act on SM, cause less balance disturbance to sphingomyelin/ceramide (SM/Cer), inhibit apoptosis and then alleviate toxicity. In addition, the pharmacodynamic results showed that the vinegar processing could have an obvious synergistic effect through anti-oxidant stress. CONCLUSIONS By changing the structures of the PTS, the SM/Cer disrupt was reduced and the antioxidant activity was enhanced, so as to decrease toxicity and increase efficiency in vinegar processing phytomedicines containing PTS.
Collapse
Affiliation(s)
- Tingting Wang
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Yonggui Song
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Huanhua Xu
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Yali Liu
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Hongwei He
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Mingyue Zhou
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China
| | - Chen Jin
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ming Yang
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China; Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Zhifu Ai
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China.
| | - Dan Su
- Key Laboratory of Depression Animal Model based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Impairment, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
7
|
Guk DA, Krasnovskaya OO, Beloglazkina EK. Coordination compounds of biogenic metals as cytotoxic agents in cancer therapy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the data on the structures and methods for the synthesis of compounds with anticancer activity based on biogenic metals, which can replace platinum drugs prevailing in cytotoxic therapy. The main focus is given to the comparison of the mechanisms of the cytotoxic action of these complexes, their efficacy and prospects of their use in clinical practice. This is the first systematic review of cytotoxic zinc, iron, cobalt and copper compounds. The structure – activity relationships and the mechanisms of antitumour action are formulated for each type of metal complexes.
The bibliography includes 181 references.
Collapse
|
8
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|
9
|
Litecká M, Prachařová J, Kašpárková J, Brabec V, Smolková R, Gyepes R, Obuch J, Kubíček V, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XV: Antiproliferative activity of tris(5-nitro-8-quinolinolato)gallium(III) complex with noticeable selectivity against the cancerous cells. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Gao S, Fang Y, Tu S, Chen H, Shao A. Insight into the divergent role of TRAIL in non-neoplastic neurological diseases. J Cell Mol Med 2020; 24:11070-11083. [PMID: 32827246 PMCID: PMC7576257 DOI: 10.1111/jcmm.15757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Tumour necrosis factor–related apoptosis‐inducing ligand (TRAIL) is a member of the tumour necrosis factor (TNF) superfamily which mainly induces apoptosis of tumour cells and transformed cell lines with no systemic toxicity, whereas they share high sequence homology with TNF and CD95L. These unique effects of TRAIL have made it an important molecule in oncology research. However, the research on TRAIL‐related antineoplastic agents has lagged behind and has been limited by the extensive drug resistance in cancer cells. Given the several findings showing that TRAIL is involved in immune regulation and other pleiotropic biological effects in non‐malignant cells, TRAIL and its receptors have attracted widespread attention from researchers. In the central nervous system (CNS), TRAIL is highly correlated with malignant tumours such as glioma and other non‐neoplastic disorders such as acute brain injury, CNS infection and neurodegenerative disease. Many clinical and animal studies have revealed the dual roles of TRAIL in which it causes damage by inducing cell apoptosis, and confers protection by enhancing both pro‐ and non‐apoptosis effects in different neurological disorders and at different sites or stages. Its pro‐apoptotic effect produces a pro‐survival effect that cannot be underestimated. This review extensively covers in vitro and in vivo experiments and clinical studies investigating TRAIL. It also provides a summary of the current knowledge on the TRAIL signalling pathway and its involvement in pathogenesis, diagnosis and therapeutics of CNS disorders as a basis for future research.
Collapse
Affiliation(s)
- Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huaijun Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Su D, Liao Z, Feng B, Wang T, Shan B, Zeng Q, Song J, Song Y. Pulsatilla chinensis saponins cause liver injury through interfering ceramide/sphingomyelin balance that promotes lipid metabolism dysregulation and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 76:153265. [PMID: 32575028 DOI: 10.1016/j.phymed.2020.153265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/24/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND P. chinensis saponins (PRS) are pentacyclic triterpenoid bioactive constituents from Pulsatilla chinensis (Bunge) Regel. In our previous study, PRS caused chronic liver injury (CLI) with the significant changes of lipid metabolites including sphingomyelin (SM) in serum after long-term administration. The SM in the hepatocytes membrane plays an indispensable role in maintaining cell membrane stability and regulating the extracellular and intracellular signal transduction. However, it is still unknown the pathway related to SM and the mechanism of CLI on hepatocyte. PURPOSE The purpose of this study was to explore the hepatotoxicity mechanism of PRS in vivo and in vitro, to reveal the action of mechanism of SM and the pathway related to liver injury. METHODS SD rats were orally administered with PRS for 240 days and liver injury was evaluated by histological examinations. Metabolomics analysis was used to explore the liver metabolic pathway affected by PRS, and the expressions of related proteins were evaluated by western blots. To discover and elucidate the underlying mechanisms of metabolites changes induced by PRS at the cellular level, cellular morphology, MTT assays, western blots and cell membrane potential measurements were carried out using LO2 cells. Furthermore, the roles of SM and cholesterol (Chol) in hepatocyte injury were investigated individually in overload Chol and SM groups. Sphingolipid metabolic pathway related with ceramide/sphingomyelin (Cer/SM) balance was explored using cellular lipidomics and RT-PCR. RESULTS PRS gradually damaged the rat's liver in a time-dependent manner. The analysis of liver metabolism profiles showed that lipids metabolites were changed, including sphingolipid, bile acid, linoleic acid and fatty acid. We found that PRS induced apoptosis by interfering with bile acid-mediated sphingolipid metabolic pathway and Cer/SM balance in CLI. In in vitro experiments, PRS led to the increase of LDH leakage, depolarized cell membrane potential and caused cell membrane toxicity. Furthermore, PRS inducedG0/G1 phase cell cycle arrest in LO2 cells, simultaneously activated cellular extrinsic and intrinsic apoptosis pathways. PRS acted on SM and interfered with Cer/SM balance, which promote lipid metabolism dysregulation and apoptosis. CONCLUSION PRS acted on SM to interfere Cer/SM balance on LO2 cell. Both in vivo and in vitro, PRS induced Cer/SM imbalance which promoted lipid metabolism disorder and apoptosis. Apoptosis and lipids changes gradually damaged the rats liver, and ultimately developed into CLI.
Collapse
Affiliation(s)
- Dan Su
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China.
| | - Zhou Liao
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Binwei Feng
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Tingting Wang
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Baixi Shan
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Qiang Zeng
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| | - Jiagui Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing100191, China
| | - Yonggui Song
- College of Pharmacy, Laboratory Animal Science and Technology Center, Jiangxi University ofTraditional Chinese Medicine, 1688 Meiling Road, Nanchang330006, China
| |
Collapse
|
12
|
Wu YJ, Su TR, Chang CI, Chen CR, Hung KF, Liu C. (+)-Bornyl p-Coumarate Extracted from Stem of Piper betle Induced Apoptosis and Autophagy in Melanoma Cells. Int J Mol Sci 2020; 21:ijms21103737. [PMID: 32466337 PMCID: PMC7279146 DOI: 10.3390/ijms21103737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/27/2022] Open
Abstract
(+)-Bornyl p-coumarate is an active substance that is abundant in the Piper betle stem and has been shown to possess bioactivity against bacteria and a strong antioxidative effect. In the current study, we examined the actions of (+)-bornyl p-coumarate against A2058 and A375 melanoma cells. The inhibition effects of (+)-bornyl p-coumarate on these cell lines were assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the underlying mechanisms were identified by immunostaining, flow cytometry and western blotting of proteins associated with apoptosis and autophagy. Our results demonstrated that (+)-bornyl p-coumarate inhibited melanoma cell proliferation and caused loss of mitochondrial membrane potential, demonstrating treatment induced apoptosis. In addition, western blotting revealed that the process is mediated by caspase-dependent pathways, release of cytochrome C, activation of pro-apoptotic proteins (Bax, Bad and caspase-3/-9) and suppression of anti-apoptotic proteins (Bcl-2, Bcl-xl and Mcl-1). Also, the upregulated expressions of p-PERK, p-eIF2α, ATF4 and CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CHOP) after treatment indicated that (+)-bornyl p-coumarate caused apoptosis via endoplasmic reticulum (ER) stress. Moreover, increased expressions of beclin-1, Atg3, Atg5, p62, LC3-I and LC3-II proteins and suppression by autophagic inhibitor 3-methyladenine (3-MA), indicated that (+)-bornyl p-coumarate triggered autophagy in the melanoma cells. In conclusion, our findings demonstrated that (+)-bornyl p-coumarate suppressed human melanoma cell growth and should be further investigated with regards to its potential use as a chemotherapy drug for the treatment of human melanoma.
Collapse
Affiliation(s)
- Yu-Jen Wu
- Department of Beauty Science, Meiho University, Pingtung 91202, Taiwan;
- Department of Food and Nutrition, Meiho University, Pingtung 91202, Taiwan
| | - Tzu-Rong Su
- Antai Medical Care Corporation, Antai Tian-Sheng Memorial Hospital, Pingtung 92842, Taiwan;
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chiy-Rong Chen
- Department of Life Science, National Taitung University, Taitung 95002, Taiwan;
| | - Kuo-Feng Hung
- Yu Jun Biotechnology Co., Ltd., Kaoshiung 91363, Taiwan;
| | - Cheng Liu
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaoshiung 82144, Taiwan
- Department of Health Beauty, Shu-Zen Junior College of Medicine and Management, Kaoshiung 82144, Taiwan
- Correspondence: ; Tel.: +886-8-779-9821 (ext. 8398)
| |
Collapse
|
13
|
Litecká M, Hreusová M, Kašpárková J, Gyepes R, Smolková R, Obuch J, David T, Potočňák I. Low-dimensional compounds containing bioactive ligands. Part XIV: High selective antiproliferative activity of tris(5-chloro-8-quinolinolato)gallium(III) complex against human cancer cell lines. Bioorg Med Chem Lett 2020; 30:127206. [PMID: 32354569 DOI: 10.1016/j.bmcl.2020.127206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 01/17/2023]
Abstract
Four gallium(III) complexes, [Ga(ClQ)3]⋅MeOH (1 - MeOH), [Ga(ClQ)3] (1), [Ga(BrQ)3] (2), [Ga(dIQ)3] (3) and [Ga(CQ)3] (4), were prepared (H-ClQ = 5-chloro-8-quinolinol, H-BrQ = 7-bromo-8-quinolinol, H-dIQ = 5,7-diiodo-8-quinolinol, H-CQ = 5-chloro-7-iodo-8-quinolinol) and characterised by elemental analysis, IR and NMR spectroscopy. Single crystal structure analysis of 1 - MeOH confirmed that the complex has a molecular structure with gallium(III) metal ion coordinated in mer-fashion by N- and O-donor atoms of three ClQ ligands. Stability of all complexes in DMSO was proved by 1H NMR spectroscopy. The in vitro antiproliferative activity of 1 was evaluated against the A2780, MBA-MB-231 and HCT116 cell lines. Complex 1 displays higher antiproliferative activity (IC50 values in the range 2.1-6 μm) compared to the ClQ ligand and cisplatin; and a significant selective antiproliferative potency (IC50 = 136 μm, for normal MRC5pd30 cell line). Radical scavenging experiments revealed that complex 1 exhibits the highest antioxidant activity of the prepared complexes as well as the ligands.
Collapse
Affiliation(s)
- Miroslava Litecká
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia
| | - Monika Hreusová
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Kašpárková
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic
| | - Romana Smolková
- Department of Ecology, Faculty of Humanities and Natural Sciences, University of Prešov, Ulica 17. novembra 1, 081 16 Prešov, Slovakia
| | - Jakub Obuch
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 40 Prague 2, Czech Republic
| | - Tomáš David
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Ivan Potočňák
- Department of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 040 01 Košice, Slovakia.
| |
Collapse
|