1
|
Lu W, Tingting H, Kaihua L, Yuan W, Yang L, Ye L, Yuxi L, Hong Z. A TCM formula assists temozolomide in anti-melanoma therapy by suppressing the STAT3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118810. [PMID: 39255877 DOI: 10.1016/j.jep.2024.118810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Temozolomide (TMZ) is a first-line therapeutic medication for melanoma. Nonetheless, it exhibits a relatively elevated toxicity profile, and falls short in terms of both effectiveness and median survival rate. Clinical research has demonstrated that the integration of traditional Chinese medicine (TCM) with chemotherapy in the treatment of melanoma can enhance efficacy and reduce toxicity. A TCM formula (SLE) containing Lonicera japonica Thunb. and Robinia pseudoacacia L. has shown anti-melanoma properties through the inhibition of STAT3 phosphorylation. In the genesis and advancement of melanoma, the STAT3 signaling pathway is essential. AIM OF THE STUDY The aim of this study was to evaluate the effect of SLE combined with TMZ (SLE/TMZ) in inhibiting melanoma, and to explore the contribution of inhibiting the STAT3 signaling pathway in this effect. MATERIALS AND METHODS Both A375 cells and B16F10 tumor-bearing mice were used for in vitro and in vivo experiments, respectively. In vitro assays included CCK8, crystal violet staining, flow cytometry, qRT-PCR, and Western blotting. Animal experiment indicators included tumor volume, tumor weight, mouse weight, and the proportion of mouse immune cells. RESULTS SLE/TMZ inhibited the proliferation and growth of A375 cells, and also induced apoptosis. Additionally, SLE/TMZ synergistically inhibited tumor growth in the B16F10 melanoma mouse model and had immunomodulatory effects, increasing the proportion of Th, Tc, and NK cells and decreasing the proportion of MDSCs in the spleen of melanoma-bearing mice. qRT-PCR and Western blotting results confirmed that SLE/TMZ inhibited STAT3 phosphorylation and regulated its downstream factors, including Bcl2, Mcl1, CCND1, MYC, MMP2, MMP9, VEGFA, and FGF2. The inhibitory effect of SLE/TMZ on melanoma cell growth was considerably lessened when STAT3 was overexpressed at the cellular level. CONCLUSION Synergistic anti-melanoma effects of SLE/TMZ have been observed in animal and cellular models. One of the mechanisms of SLE/TMZ that underlies its anti-melanoma actions is inhibition of the STAT3 pathway. This work offers pre-clinical pharmacological backing for the advancement of SLE as a therapeutic agent to be used in conjunction with TMZ for the treatment of melanoma.
Collapse
Affiliation(s)
- Wang Lu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Huang Tingting
- Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| | - Long Kaihua
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Wang Yuan
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Liu Yang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Li Ye
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Liu Yuxi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China.
| | - Zhang Hong
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China; Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Provincial Hospital of Chinese Medicine), No.4 Xihuamen, Xi'an, 710003, China; Northwest University, No. 229 Taibai North Road, Xi'an, 710069, China.
| |
Collapse
|
2
|
Li W, Zhang L, He P, Li H, Pan X, Zhang W, Xiao M, He F. Traditional uses, botany, phytochemistry, and pharmacology of Lonicerae japonicae flos and Lonicerae flos: A systematic comparative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117278. [PMID: 37972908 DOI: 10.1016/j.jep.2023.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) belong to different genera of Caprifoliaceae with analogous appearances and functions. Historically, they have been used as herbal medicines to treat various diseases with confirmed wind-heat evacuation, heat-clearing, and detoxification effects. However, the Chinese Pharmacopoeia (2005 Edition) lists LJF and LF under different categories. AIM OF THE STUDY Few studies have systematically compared the similarities and dissimilarities of LJF and LF concerning their research achievements. This systematic review and comparison of the traditional use, identification, and phytochemical and pharmacological properties of LJF and LF provides valuable insights for their further application and clinical safety. MATERIALS AND METHODS Related document information was collected from databases that included Web of Science, X-MOL, Science Direct, PubMed, and the China National Knowledge Infrastructure. RESULTS The chemical constituents and pharmacological effects of LJF and LF were similar. A total of 337 and 242 chemical constituents were isolated and identified in LJF and LF, respectively. These included volatile oils, cyclic ether terpenes, flavonoids, phenolic acids, triterpenoids, and their saponins. Additionally, LJF plants contain more iridoids and flavonoids than LF plants. The latter have a variety of triterpenoid saponins and significantly higher chlorogenic acid content than LJF plants. Pharmacological studies have shown that LJF and LF have various anti-inflammatory, antiviral, antibacterial, anti-endotoxic, antioxidant, anti-tumor, anti-platelet, myocardial protective, and hepatoprotective effects. CONCLUSIONS This review was undertaken to explore whether LJF and LF should be listed separately in the Chinese Pharmacopoeia in terms of their disease prevention and treatment strategies. Although LJF and LF showed promising effects, their action mechanisms remains unclear. Specifically, their impact on gut microbiota, gastrointestinal tract, and blood parameters requires further investigation. These studies will provide the foundation for scientific utilization and clinical/non-clinical applications of LJF and LF, and the maximum benefits from their mutual use.
Collapse
Affiliation(s)
- Wenjiao Li
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Liangqi Zhang
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Peng He
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Haiying Li
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Xue Pan
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Weilong Zhang
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Meifeng Xiao
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, PR China.
| | - Fuyuan He
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
3
|
Li M, Ding Y, Tuersong T, Chen L, Zhang ML, Li T, Feng SM, Guo Q. Let-7 family regulates HaCaT cell proliferation and apoptosis via the ΔNp63/PI3K/AKT pathway. Open Med (Wars) 2024; 19:20240925. [PMID: 38584846 PMCID: PMC10997002 DOI: 10.1515/med-2024-0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 04/09/2024] Open
Abstract
We evaluated the expression profiles of differentially expressed miRNAs (DEmiRNAs) involved in human fetal skin development via high-throughput sequencing to explore the expression difference and the regulatory role of miRNA in different stages of fetal skin development. Analysis of expression profiles of miRNAs involved collecting embryo samples via high-throughput sequencing, then bioinformatics analyses were performed to validate DEmiRNAs. A total of 363 miRNAs were differentially expressed during the early and mid-pregnancy of development, and upregulated DEmiRNAs were mainly concentrated in the let-7 family. The transfection of let-7b-5p slowed down HaCaT cell proliferation and promoted apoptosis, as evidenced by the cell counting kit-8 assay, quantitative real-time polymerase chain reaction, and flow cytometry. The double luciferin reporter assay also confirmed let-7b-5p and ΔNp63 downregulation through the combination with the 3'-untranslated region of ΔNp63. Moreover, treatment with a let-7b-5p inhibitor upregulated ΔNp63 and activated the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. The let-7b-5p caused a converse effect on HaCaT cells because of Np63 upregulation. Let-7b-5p regulates skin development by targeting ΔNp63 via PI3K-AKT signaling, contributing to future studies on skin development and clinical scar-free healing.
Collapse
Affiliation(s)
- Min Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Second Medical College, Karamay, 834000, Xinjiang, China
| | - Yi Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Tayier Tuersong
- Department of Pharmacy, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Long Chen
- Functional Center, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Mei-Lin Zhang
- Xinjiang Urumqi City Center Blood Station, Urumqi, 830000, Xinjiang, China
| | - Tian Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830000, Xinjiang, China
| | - Shu-Mei Feng
- Key Laboratory of Xinjiang Uygur Autonomous Region, Laboratory of Molecular Biology of Endemic Diseases, Urumqi, 830000, Xinjiang, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, No. 567 Suntech North Road, Shuimogou District, Urumqi, 830000, Xinjiang, China
| | - Qiong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Xinjiang Medical University, No. 567 Suntech North Road, Shuimogou District, Urumqi, 830000, Xinjiang, China
| |
Collapse
|
4
|
Dao Y, Yu J, Yang M, Han J, Fan C, Pang X. DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. Int J Mol Sci 2023; 24:15081. [PMID: 37894762 PMCID: PMC10606453 DOI: 10.3390/ijms242015081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Lonicerae Japonicae Flos (LJF) has been globally applied as an herbal medicine and tea. A number of reports recently revealed fungal and mycotoxin contamination in medicinal herbs. It is essential to analyze the fungal community in LJF to provide an early warning for supervision. In this study, the fungal community in LJF samples was identified through DNA metabarcoding. A total of 18 LJF samples were collected and divided based on the collection areas and processing methods. The results indicated that Ascomycota was the dominant phylum. At the genus level, Rhizopus was the most abundant, followed by Erysiphe and Fusarium. Ten pathogenic fungi were detected among the 41 identified species. Moreover, Rhizopus, Fusarium, and Aspergillus had lower relative abundances in LJF samples under oven drying than under other processing methods. This work is expected to provide comprehensive knowledge of the fungal community in LJF and a theoretical reference for enhanced processing methods in practical manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohui Pang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (Y.D.); (J.Y.); (M.Y.); (J.H.); (C.F.)
| |
Collapse
|
5
|
Park MN, Um ES, Rahman MA, Kim JW, Park SS, Cho Y, Song H, Son SR, Jang DS, Kim W, Shim BS, Kim KI, Jang E, Kim B, Kim Y. Leonurus japonicus Houttuyn induces reactive oxygen species-mediated apoptosis via regulation of miR-19a-3p/PTEN/PI3K/AKT in U937 and THP-1 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115129. [PMID: 35217209 DOI: 10.1016/j.jep.2022.115129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Leonurus japonicus Houttuyn is a medicinal ingredient in more than 300 prescriptions in traditional Korean medicine. It is especially important for women's health and blood-related diseases. Recent research revealed that Leonurus japonicus Houttuyn extracts have antioxidative, anticancer, analgesic, anti-inflammatory, and neuroprotective properties. AIM OF THE STUDY However, its underlying anti-cancerous mechanisms remain unclear. This study elucidated the anticancer mechanism of Leonurus japonicus Houttuyn in U937 and THP-1 cancer cells. MATERIALS AND METHODS High-performance liquid chromatography (HPLC) was used for detecting main compound of Leonurus japonicus Houttuyn, rutin. EZ-Cytox cell viability assay, Western blot analysis, live and dead cell assay, 2', 7' dichlorofluorescin diacetate (DCFDA) assay, quantitative real-time PCR (qRT-PCR) analysis, and microRNA (miR) mimic transfection assay were applied to further investigate anti-cancer efficacies and underlying mechanism in U937 and THP-1 cells. RESULTS The main compound of Leonurus japonicus Houttuyn, rutin was detected using HPLC. The cytotoxic effect of Leonurus japonicus Houttuyn was exerted in U937 and THP-1 cancer cells but not in MDBK and IEC-6 normal cells. Leonurus japonicus Houttuyn decreased mitochondria membrane potential (ΔΨm). Consistently, Leonurus japonicus Houttuyn reduced the expression of survivin and cleaved caspase-9, caspase-3, and poly (ADP-ribose) polymerase (PARP). Cell death was increased in Leonurus japonicus Houttuyn treated groups. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and CCAAT-enhancer-binding protein homologous protein (CHOP) was increased and phosphatidylinositol-3-kinase (PI3K) and Protein kinase B (AKT) were decreased by Leonurus japonicus Houttuyn. Reactive oxygen speices generation was elevated by Leonurus japonicus Houttuyn and its cytotoxicity was reversed by N-acetyl-l-cysteine (NAC) pretreatment. Moreover, onco-microRNA (miR), miR-19a-3p was suppressed by Leonurus japonicus Houttuyn and transfection of miR-19a-3p mimic reversed the regulated PTEN, p-AKT, CHOP expression, attenuating Leonurus japonicus Houttuyn induced apoptosis. CONCLUSIONS These findings indicated that Leonurus japonicus Houttuyn has anti-cancer effects by regulation of PTEN/PI3K/AKT signal pathway and ROS-related ER stress-induced apoptosis via regulation of miR-19a-3p. Leonurus japonicus Houttuyn may be an effective candidate for triggering PTEN-dependent apoptosis of cancer cells related to acute myeloid leukemia.
Collapse
Affiliation(s)
- Moon Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Eun-Sik Um
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Md Ataur Rahman
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Jeong Woo Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Se Sun Park
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Yongmin Cho
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Hangyul Song
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - So-Ri Son
- Collage of Science in Pharmacy, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Dae Sik Jang
- Collage of Science in Pharmacy, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Woojin Kim
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Kwan-Il Kim
- Division of Allergy, Immune and Respiratory System, Department of Internal Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Eungyeong Jang
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul, 05253, Republic of Korea.
| | - Youngchul Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
6
|
Park MN, Park H, Rahman MA, Kim JW, Park SS, Cho Y, Choi J, Son SR, Jang DS, Shim BS, Kim SH, Ko SG, Cheon C, Kim B. BK002 Induces miR-192-5p-Mediated Apoptosis in Castration-Resistant Prostate Cancer Cells via Modulation of PI3K/CHOP. Front Oncol 2022; 12:791365. [PMID: 35321434 PMCID: PMC8936126 DOI: 10.3389/fonc.2022.791365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
BK002 consists of Achyranthes japonica Nakai (AJN) and Melandrium firmum Rohrbach (MFR) that have been used as herbal medicines in China and Korea. AJN and MFR have been reported to have anti-inflammatory, anti-oxidative, and anti-cancer activities, although the synergistic targeting multiple anti-cancer mechanism in castration-resistant prostate cancer (CRPC) has not been well reported. However, the drug resistance and transition to the androgen-independent state of prostate cancer contributing to CRPC is not well studied. Here, we reported that BK002 exerted cytotoxicity and apoptosis in CRPC PC3 cell lines and prostate cancer DU145 cell lines examined by cytotoxicity, western blot, a LIVE/DEAD cell imaging assay, reactive oxygen species (ROS) detection, quantitative real-time polymerase chain reaction (RT-PCR), and transfection assays. The results from our investigation found that BK002 showed more cellular cytotoxicity than AJN and MFR alone, suggesting that BK002 exhibited potential cytotoxic properties. Consistently, BK002 increased DNA damage, and activated p-γH2A.X and depletion of survivin-activated ubiquitination of pro-PARP, caspase9, and caspase3. Notably, live cell imaging using confocal microscopy found that BK002 effectively increased DNA-binding red fluorescent intensity in PC3 and DU145 cells. Also, BK002 increased the anti-proliferative effect with activation of the C/EBP homologous protein (CHOP) and significantly attenuated PI3K/AKT expression. Notably, BK002-treated cells increased ROS generation and co-treatment of N-Acetyl-L-cysteine (NAC), an ROS inhibitor, significantly preventing ROS production and cellular cytotoxicity, suggesting that ROS production is essential for initiating apoptosis in PC3 and DU145 cells. In addition, we found that BK002 significantly enhanced miR-192-5p expression, and co-treatment with BK002 and miR-192-5p inhibitor significantly reduced miR-192-5p expression and cellular viability in PC3 and DU145 cells, indicating modulation of miR-192-5p mediated apoptosis. Finally, we found that BK002-mediated CHOP upregulation and PI3K downregulation were significantly reduced and restrained by miR-192-5p inhibitor respectively, suggesting that the anti-cancer effect of BK002 is associated with the miR-192-5p/PI3K/CHOP pathway. Therefore, our study reveals that a combination of AJN and MFR might be more effective than single treatment against apoptotic activities of both CRPC cells and prostate cancer cells.
Collapse
Affiliation(s)
- Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyunmin Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Woo Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Se Sun Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yongmin Cho
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - So-Ri Son
- Collage of Science in Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dae Sik Jang
- Collage of Science in Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Bum-Sang Shim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Chunhoo Cheon
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- *Correspondence: Bonglee Kim,
| |
Collapse
|
7
|
Chen YJ, Wu JY, Deng YY, Wu Y, Wang XQ, Li ASM, Wong LY, Fu XQ, Yu ZL, Liang C. Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. J Ginseng Res 2021; 46:418-425. [PMID: 35600776 PMCID: PMC9120623 DOI: 10.1016/j.jgr.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, over-activation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.
Collapse
|
8
|
Wang YP, Fu XQ, Yin CL, Chou JY, Liu YX, Bai JX, Chen YJ, Wu Y, Wu JY, Wang XQ, Liu B, Yu ZL. A traditional Chinese medicine formula inhibits tumor growth in mice and regulates the miR-34b/c-Met/β-catenin pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113065. [PMID: 32505839 DOI: 10.1016/j.jep.2020.113065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/07/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Si-Jun-Zi-Tang (SJZT) is a traditional Chinese medicine formula used to treat chronic and debilitating diseases including melanoma. SJZT-based therapies have achieved good clinical outcomes in melanoma management. However, the pharmacological basis of SJZT for its clinical use in melanoma treatment is not fully understood. AIM OF THE STUDY To investigate the anti-melanoma effects and mechanism of action of an ethanolic extract of SJZT. MATERIALS AND METHODS SJZT was extracted using 50% ethanol. A murine B16 melanoma-bearing mouse model was employed to investigate the anti-melanoma effects of SJZT. microRNA (miRNA) and mRNA levels were examined by RT-qPCR, and protein levels were measured by Western blotting. RESULTS SJZT significantly inhibited B16 tumor growth in mice. Mechanistic investigations revealed that SJZT elevated miR-34b (a tumor suppressing miRNA), and lowered c-Met (a miR-34b target gene) and β-catenin (a downstream molecule of c-Met signaling) expression levels in the B16 tumors. CONCLUSIONS In this study we found, for the first time, that SJZT exerts anti-melanoma effects and regulates the miR-34b/c-Met/β-catenin pathway in a melanoma mouse model. Our findings provide pharmacological justifications for the clinical use of SJZT in treating melanoma.
Collapse
Affiliation(s)
- Ya-Ping Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Yu-Xi Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jing-Xuan Bai
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jia-Ying Wu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiao-Qi Wang
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Bin Liu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhi-Ling Yu
- Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; Jane Clare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
9
|
Aranha ESP, da Silva EL, Mesquita FP, de Sousa LB, da Silva FMA, Rocha WC, Lima ES, Koolen HHF, de Moraes MEA, Montenegro RC, de Vasconcellos MC. 22β-hydroxytingenone reduces proliferation and invasion of human melanoma cells. Toxicol In Vitro 2020; 66:104879. [PMID: 32360863 DOI: 10.1016/j.tiv.2020.104879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/13/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
Abstract
Melanoma is a skin cancer with high invasive potential and high lethality. Considering that quinonemethide triterpenes are described as promising anticancer agents, the aim of this study was to evaluate the effect of 22β-hydroxytingenone (22-HTG) against human melanoma cells. Alamar blue assay was performed in order to evaluate its cytotoxic effect. Thus, subtoxic concentrations (1.0, 2.0, and 2.5 μM) were used to evaluate the effect of this compound on proliferation, migration, metabolism, and invasion. IC50 value against SK-MEL-28 cell line was 4.35, 3.72, and 3.29 μM after 24, 48, and 72 h of incubation, respectively. 22-HTG reduced proliferation, migration and invasion by melanoma cells, with decreased activity of metalloproteinases (MMP-2 and MMP-9). Futhermore, 22-HTG decreased expression of lactate dehydrogenase (LDHA), an enzyme associated with cell metabolism. Howerver, the small reduction in LDHA enzyme activity must have occurred by the cytotoxic effect of 22-HTG. According to the results, 22-HTG interferes with important characteristics of cancer, with anti-proliferative, and anti-invasive effect against melanoma cells. The data suggest that 22-HTG is an effective substance against melanoma cells and it should be considered as a potential anticancer agent.
Collapse
Affiliation(s)
- Elenn Suzany Pereira Aranha
- Faculty of Pharmaceutical Sciences, Post Graduate Program in Biodiversity and Biotechnology of the Amazon (Bionorte), Federal University of Amazonas, Manaus, Amazonas, Brazil.
| | - Emerson Lucena da Silva
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Felipe Pantoja Mesquita
- Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas, Coari, Amazonas, Brazil
| | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Amazon, Brazil
| | | | | | | | | |
Collapse
|