1
|
Yang R, Fu X, Li L, Wei Z, Zhou A, Wu H. Identification and Characterization of Chemical Compounds in Compound Shougong Powder by UHPLC-Q-TOF/MS E Combined With Multiple Data Processing Techniques. J Sep Sci 2025; 48:e70069. [PMID: 39740116 DOI: 10.1002/jssc.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Compound Shougong Powder (CSP) is a traditional Chinese medicine (TCM) preparation recognized for its efficacy in reducing swelling and relieving pain. It is primarily used clinically for the treatment of malignant tumors. However, research on the chemical compounds present in CSP remains limited. In this study, we employed ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MSE) combined with multiple data processing techniques to comprehensively characterize the chemical compounds in CSP. This included a multiple-point screening mass defect filtering (MDF), an enhanced method based on conventional MDF and boundary theory that creates a polygonal filtering zone by connecting numerous endpoints (n ≥ 5) to filter target components. Additional techniques utilized were extracted ion chromatogram (EIC), neutral loss filtering (NLF), diagnostic fragment ion filtering (DFIF), and direct identification methods considering retention time, fragmentation behavior, and reference standards. First, UHPLC-Q-TOF/MSE was applied for comprehensive profiling of CSP's chemical compounds. Then, R language combined with MZmine was used for data preprocessing, enabling the construction of an ion information list to extract valid data. Eventually, through these multiple data processing techniques, a total of 116 chemical compounds in CSP were identified, including 34 flavonoids, 38 saponins, seven stilbenes, six anthraquinones, 12 organic acids, 13 terpenoids, and six others. In summary, this study elucidates the chemical composition of CSP, contributing to the discovery of potential active ingredients for CSP. Additionally, the established strategy provided a powerful guide for the chemical characterization of TCM.
Collapse
Affiliation(s)
- Rui Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaojie Fu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lanying Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ziqi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
2
|
Chen C, Zheng T, Chen Y, Li Z, Wu H. A systematic evaluation of quenching, extraction and analysis procedures for metabolomics study of the mechanism of QYSLD intervention in A549 cells. Anal Bioanal Chem 2024; 416:6621-6638. [PMID: 39467912 DOI: 10.1007/s00216-024-05563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
The preparation of cellular metabolomics samples and how to achieve comprehensive coverage of different polar metabolites in cell samples in the analysis pose a challenge for cellular metabolomics. In this study, we optimized a metabolomics protocol based on ultra-high-performance liquid chromatography high-resolution mass spectrometry (UPLC/HRMS) for the extraction and detection of metabolites in A549 cells and exploration of the intervention effect of Qi-Yu-San-Long decoction (QYSLD) on A549 cells. The results indicate that the lowest level of ATP leakage was observed when A549 cells were quenched under liquid nitrogen. MeOH/chloroform/H2O (1:2:1) extraction yielded more chromatographic peaks and excellent reproducibility, and the relative extraction efficiency of most target metabolites was also high. And we optimized the chromatographic separation conditions in both HILIC and RPLC modes, enabling comprehensive detection and analysis of metabolites with varying polarities. Then, we applied the optimized method to UPLC-Q-TOF/MS-based metabolomics of A549 cells to study the mechanism of QYSLD intervention in non-small cell lung cancer (NSCLC). The CCK-8, EdU staining, and cell cycle assay showed that QYSLD inhibited the proliferation of A549 cells by interfering with the cell cycle and blocking them in the G1 phase. A total of 36 differential metabolites associated with the antitumor effects of QYSLD on NSCLC were identified, mainly involving nicotinate and nicotinamide metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. And western blotting confirmed that the change in 1-methylnicotinamide levels after QYSLD intervention was associated with the inhibition of nicotinamide N-methyltransferase expression in A549 cells.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Meishan Road No.103, Hefei, 230038, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei, 230031, China.
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
3
|
Sun S, Xia G, Pang H, Zhu J, Li L, Zang H. Phytochemical Analysis and Antioxidant Activities of Various Extracts from the Aerial Part of Anemone baicalensis Turcz.: In Vitro and In Vivo Studies. Molecules 2024; 29:4602. [PMID: 39407532 PMCID: PMC11478119 DOI: 10.3390/molecules29194602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Anemone baicalensis Turcz., a botanical species with a rich historical background in traditional medicine for detoxification and insecticidal applications, possesses a vast, yet largely unexplored, therapeutic potential. This study primarily focused on conducting a qualitative phytochemical analysis of the plant, determining the active ingredient content and antioxidant activity of various solvent extracts. The qualitative phytochemical analysis revealed the presence of 12 different types of phytochemicals within the plant. Utilizing ultraviolet-visible spectrophotometry, we identified 11 active ingredients in 4 solvent extracts. Notably, the methanol extract was found to contain high concentrations of total carbohydrate, total monoterpenoid, total phenolic, total tannin, and total triterpenoid. In the antioxidant experiment, the methanol extract demonstrated superior scavenging abilities against 1,1-diphenyl-2-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt, superoxide anion radical, and hydrogen peroxide, outperforming other extracts in chelation experiments aimed at reducing iron and metal ions. Consequently, the methanol extract was selected for further investigation. Subsequent ultrahigh-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry analysis revealed that the methanol extract contained 39 compounds, primarily phenolic compounds and triterpenoid saponins. Three stability assessments confirmed the extract's stability under high temperatures, varying pH levels, and simulated gastrointestinal processes. Additionally, oil stability testing demonstrated its antioxidant capacity in extra virgin olive oil and cold-pressed sunflower seed oil media. An oral acute toxicity experiment conducted on mice not only confirmed the absence of acute toxicity in the methanol extract but also provided a dose reference for subsequent gastric protection experiments. Notably, the methanol extract exhibited significant gastroprotective effects against ethanol-induced gastric lesions in rats, as evidenced by histopathological and biochemical analyses. Specifically, the extract reduced levels of malondialdehyde, alanine aminotransferase, and aspartate aminotransferase while increasing glutathione, nitric oxide, and catalase, indicating its gastroprotective mechanism. These findings suggest that the methanol extract from the aerial part of Anemone baicalensis could be a promising therapeutic agent for conditions associated with oxidative imbalances. They underscore the plant's potential therapeutic benefits and offer valuable insights into its antioxidant properties, thereby broadening our understanding of its medicinal potential.
Collapse
Affiliation(s)
- Shuang Sun
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
| | - Guangqing Xia
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Pang
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Junyi Zhu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Li Li
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Zang
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
4
|
Zhou K, Xie M, Liu Y, Zheng L, Pu J, Wang C. Virtual screening and network pharmacology-based synergistic coagulation mechanism identification of multiple components contained in compound Kushen Injection against hepatocellular carcinoma. J Ayurveda Integr Med 2024; 15:101055. [PMID: 39427483 PMCID: PMC11533665 DOI: 10.1016/j.jaim.2024.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 08/20/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a primary liver malignancy commonly encountered in the setting of chronic liver disease and cirrhosis. Compound Kushen Injection (CKI) has been widely used in HCC, however, the underlying mechanisms are scarce. OBJECTIVE To explore the molecular mechanisms of CKI for HCC. MATERIALS AND METHODS The chemical ingredients of CKI were reviewed from published articles and the potential targets were got from Herbal Ingredients' Targets Platform. Coagulation-related targets were from Kyoto Encyclopedia of Genes and Genomes and HCC-related targets were from Therapeutic Target Database, Gene Expression Omnibus, and The Cancer Genome Atlas. Then the CKI-Herb-Target and CKI-Herb-Target-HCC networks were built. The shared targets between CKI and HCC were used for functional enrichment through Metascape and the shared coagulation-related target was used for molecular docking and survival analysis. RESULTS A total of 23 chemical ingredients and 41 potential targets shared between CKI and HCC were obtained. The results of functional enrichment indicated that several canonical pathways of CKI mostly participated in the treatment of HCC. Furthermore, a chemical ingredient of CKI formed a stable hydrogen bond link with the ASN-189 on PLG, with a best binding energy of -4.7 kcal/mol. Finally, PLG was confirmed as the shared coagulation-related target and interrelated with the prognosis of HCC. CONCLUSION CKI probably improves HCC prognosis through PLG. Our research undoubtedly deepened the understanding of the molecular mechanism of CKI anti-HCC.
Collapse
Affiliation(s)
- Kejun Zhou
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Mengyi Xie
- Hepatobiliary Research Institute, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yu Liu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lei Zheng
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Juan Pu
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Cheng Wang
- Department of Pediatric Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
5
|
Chen J, Wang Y, Chen C, Song X, Shen X, Cao D, Zhao Z. Integrated network pharmacology and metabolomics reveal vascular protective effects of Ilex pubescens on thromboangiitis obliterans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155720. [PMID: 38763010 DOI: 10.1016/j.phymed.2024.155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Ilex pubescens Hook. et Arn (IP), traditionally known for its properties of promoting blood circulation, swelling and pain relief, heat clearing, and detoxification, has been used in the treatment of thromboangiitis obliterans (TAO). Despite its traditional applications, the specific mechanisms by which IP exerts its therapeutic effects on TAO remain unclear. AIM OF THE STUDY This study aims to uncover the underlying mechanisms in the therapeutic effects of IP on TAO, employing network pharmacology and metabolomic approaches. METHODS In this study, a rat TAO model was established by injecting sodium laurate through the femoral artery, followed by the oral administration of IP for 7 days. Plasma coagulation parameters were measured to assess the therapeutic effects of IP. The potential influence on the femoral artery and gastrocnemius muscle was histopathologically evaluated. Network pharmacology was employed to predict relevant targets and model pathways for TAO. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was used for the metabolic profile analysis of rat plasma. Immunohistochemistry (IHC) was used to verify the mechanisms by which IP promotes blood circulation in TAO. RESULTS The study revealed that IP improved blood biochemical function in TAO and played a significant role in vascular protection and maintaining normal blood vessels and gastrocnemius morphologies. Network pharmacology showed that IP compounds play a therapeutic role in modulating lipids and atherosclerosis. Metabolomic analysis revealed that the pathways involved in sphingolipid metabolism and steroid biosynthesis were significantly disrupted. The joint analysis showed a strong correlation between lysophosphatidylcholine and IP components, including triterpenoid and iridoid components, which support the curative action of IP through the modulation of sphingolipid metabolism. Furthermore, decreased expression levels of SPHK1/S1PR1, TNF-α, IL-1β, and IL-6 were observed in the IP-treated group, suggesting that IP exerts a protective effect on the vasculature primarily by regulating of the SPHK1/S1PR1 signaling pathway. CONCLUSION In this study, we found that IP protects the vasculature against injury and treats TAO by regulating the steady-state disturbance of the sphingolipid pathway. These findings suggest that IP promotes vasculature by modulating sphingolipid metabolism and SPHK1/S1PR1 signaling pathway and reduce levels of inflammatory factors, offering new insights into its therapeutic potential.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuanyuan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Caixin Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xianshu Song
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Shen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Di Cao
- Wannan Medical College, Wuhu 241002, China
| | - Zhongxiang Zhao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
6
|
Rong X, Wu H, Huang R, Chen C, Fu X, Yang M, Zhou A, Yang Q, Li Z. Rapid identification of chemical constituents and dynamic metabolic profile of Shenqi-Tiaoshen formula in rat plasma based on UPLC-Q-TOF/MS E. J Pharm Biomed Anal 2024; 241:115981. [PMID: 38237543 DOI: 10.1016/j.jpba.2024.115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/14/2023] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
Shenqi-Tiaoshen formula (SQTSF) is a traditional Chinese medicine (TCM) prescription that has been employed in the treatment of chronic obstructive pulmonary disease (COPD). Clinical practice has demonstrated that SQTSF is an effective prescription for stable COPD. However, owing to the complexity of TCM prescription, there is a lack of in-depth understanding of the chemical components of SQTSF and its in vivo metabolism studies. In this study, a comprehensive analytical strategy based on ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was established to identify the chemical components, the absorbed components, and the metabolites of SQTSF given by gavage in rats, and analyze their dynamic changes. As a result, 86 chemical components of SQTSF were characterized, which were mainly categorized into flavonoids, saponins, organic acids, terpenoids, etc. Among them, 13 compounds were confirmed unambiguously by reference standards. Furthermore, 20 prototype components and 46 metabolites were detected in rat plasma at different time points. It was found that one prototype component and thirteen metabolites could be detected during the entire 24 h, indicating that these compounds were slowly eliminated and thus accumulated in vivo over a prolonged duration. Interestingly, the phenomenon that three prototype components and fourteen metabolites reappeared after a period of disappearance from the plasma was found. It was also observed that different prototype components may generate the same metabolite. The metabolic processes of SQTSF in rats mainly included oxidation, reduction, hydration, demethylation, deglycosylation, methylation, acetylation, glucuronidation, glutathionylation, and associated combination reactions. Overall, the present study identified the chemical components of SQTSF and their dynamic metabolic profile in rat plasma, which provided a systematic and applicable strategy for screening and characterization of the prototype components and metabolites of TCM compound preparations.
Collapse
Affiliation(s)
- Xuewen Rong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| | - Ruotong Huang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Mo Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Qinjun Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of the Application and Transformation of Traditional Chinese Medicine in the Prevention and Treatment of Major Pulmonary Diseases, Hefei 230031, China.
| |
Collapse
|
7
|
Chen C, Wu H, Fu X, Li R, Cheng H, Wang M, Zhou A, Zhang M, Li Q. A UPLC-QTOF/MS-based hepatic tissue metabolomics approach deciphers the mechanism of Huachansu tablets-based intervention against hepatocellular carcinoma. J Pharm Biomed Anal 2024; 239:115875. [PMID: 38061172 DOI: 10.1016/j.jpba.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Huachansu (HCS) tablets, classified as well-known traditional Chinese medicine (TCM) preparation, have been proved to be effective in the treatment of hepatocellular carcinoma (HCC) in clinical studies. However, the underlying mechanism of HCS tablets against HCC has not been comprehensively elucidated. In this study, a rat model of HCC was established with diethylnitrosamine (DEN) inducer. The efficacy of HCS tablets against HCC was assessed through liver histopathological examination and evaluation of biochemical indicators. A metabolomics method based on UPLC-Q-TOF/MS combined with multivariate data analysis was established to identify differential metabolites related to the inhibition effect of HCS tablets on HCC, and then the relevant metabolic pathway analysis was performed to investigate the anti-HCC mechanisms of HCS tablets. The results showed that compared to the control group, the HCC model group showed a significant increase in the values of HCC-related biochemical indicators and the number of tumor nodules, indicating the successful establishment of the HCC rat model. Upon treatment with HCS tablets, the values of HCC-related biochemical indicators decreased, liver fibrosis and nuclear deformation were also significantly alleviated. A total of 15 differential metabolites associated with the anti-tumor effect of HCS tablets on HCC were screened and annotated through hepatic tissue metabolomics studies. Analysis of metabolic pathways revealed that the therapeutic effects of HCS tablets on HCC mainly involved the pentose and glucuronate interconversions and arachidonic acid metabolism. Further western blotting corroborated that the alteration in arachidonic acid (AA) level after the intervention of HCS tablets was related to the inhibition of cPLA2α expression in rat liver tissues. In conclusion, HCS tablets exhibit a certain anti-tumor effect on HCC, and the metabolomics method based on UPLC-Q-TOF/MS combined with further verification at the biochemical level is a promising way to reveal its underlying mechanism.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China.
| | - Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Hui Cheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Meng Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qinglin Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
8
|
Zhang J, Han M, Wang S, Wu R, Zhao Q, Chen M, Yang Y, Zhang J, Meng X, Zhang Y, Wang Z. Study on the anti-mitochondrial apoptosis mechanism of Erigeron breviscapus injection based on UPLC-Q-TOF-MS metabolomics and molecular docking in rats with cerebral ischemia-reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117310. [PMID: 37827296 DOI: 10.1016/j.jep.2023.117310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Erigeron breviscapus is a common medicine of eight ethnic minorities, including Miao, Naxi, and Yi. As early as the Ming Dynasty (AD 1368-1644), Lanmao's Materia Medica of Southern Yunnan (AD 1436) recorded that the medicine is used for the treatment of "Zuo tan you huan." In modern pharmacological research, Erigeron breviscapus injection is the most commonly used preparation in the treatment of ischemic stroke caused by acute cerebral infarction, but its mechanism of action in the treatment of ischemic stroke is not well understood. AIM OF THE STUDY In this study, a metabonomics study based on ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS) was used in investigating the effect of a traditional Chinese medicine preparation Erigeron breviscapus injection on the rat model of focal cerebral ischemia-reperfusion and the affinity of its main components with the targets of mitochondrial apoptotic pathways. MATERIALS AND METHODS This study used molecular docking technology to verify the effective binding ability of main effective components of Erigeron breviscapus injection to target proteins related to mitochondrial apoptosis pathway. This study developed a metabonomics method based on the ultra-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry (UPLC Q-TOF MS) to evaluate the efficacy and study the mechanism of traditional Chinese medicine preparation. With pattern recognition analysis (principal component analysis and partial least squares-discriminate analysis) of urinary metabolites, a clear separation of focal cerebral ischemia-reperfusion model group and healthy control group was achieved. RESULTS Erigeron breviscapus injection can significantly reduce the area of cerebral infarction, improve tissue morphological lesion in rats, and can increase the number of Nissl bodies. It may be a promoting factor by inhibiting hippocampal nerve cell apoptosis and Bax protein expression and by exerting effects against ischemia reperfusion after the induction of apoptosis. Thus, it plays a role in brain protection. Moreover, it can considerably promote the recovery of neurological deficiency signs in advance. Meanwhile, Erigeron breviscapus decreased malondialdehyde content and T-NOS activity. Its curative effect from strong to weak order: low dose > high dose > medium dose. The representative components of Erigeron breviscapus have good affinity with the active sites of mitochondrial apoptosis-related proteins. Metabolomics found that the potential biomarkers regulated by breviscapine are kynurequinolinic acid, succinylornithine, and leucine proline. It is speculated that it may participate in TRP-kynurequinolinic acid and succinylornithine-urea cycle-NO metabolic pathways. CONCLUSIONS This paper revealed the potential biomarkers and metabolic pathways regulated by Erigeron breviscapus. It was speculated that the mechanism is related to its inhibition of mitochondrion-mediated apoptosis. Erigeron breviscapus could restore the metabolic profiles of the model animals to normal animal levels. The mechanism may be related to the potential biomarkers of quinolinic acid, succinylornithine, and leucine proline and the metabolic pathways involved. However, the exact mechanism by which Erigeron breviscapus inhibits mitochondrion-mediated apoptosis remains to be further explored.
Collapse
Affiliation(s)
- Jingwen Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengtian Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shu Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Heze University, Heze, 274015, China
| | - Ruixia Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qipeng Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Meihua Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yongmao Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yi Zhang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Zhang Wang
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Fu X, Zheng T, Li Z, Wu H. Metabolic profiling of Qi-Yu-San-Long decoction in rat feces by ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with a post-targeted screening strategy. Biomed Chromatogr 2023; 37:e5748. [PMID: 37750002 DOI: 10.1002/bmc.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/03/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Research into traditional Chinese medicine metabolism in feces is one of the key avenues to understanding the fate of traditional Chinese medicines in vivo. In this study, we used ultraperformance liquid chromatography-quadrupole time-of-flight MS in combination with a post-targeted screening strategy to identify the prototype components and metabolites in rat feces after oral administration. Based on our group's previous research, the component database of Qi-Yu-San-Long decoction (QYSLD) was established. Prototype components were screened from the fecal samples based on summarized chromatographic and MS behaviors. According to the chemical structure characteristics of related compounds, the possible metabolic pathways were inferred, and the metabolites related to QYSLD were predicted. We extracted ion chromatograms by predicting the m/z values of metabolite excimer ions and identified related metabolites based on their retention time and fragmentation behavior. A total of 93 QYSLD-related xenobiotics were confirmed or tentatively identified in rat fecal samples, and the results indicated that the main metabolic pathways of QYSLD were hydrolysis, deglycosylation, oxidation, reduction, decarboxylation, methylation and acetylation. This study presents a rapid method for identifying the prototype components and metabolites, and offers valuable insights into the biotransformation profiling of QYSLD in rat feces.
Collapse
Affiliation(s)
- Xiaojie Fu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula and Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Xia Q, Yu L, Song J, Sun Z. The role of acupuncture in women with advanced reproductive age undergoing in vitro fertilization-embryo transfer: A randomized controlled trial and follicular fluid metabolomics study. Medicine (Baltimore) 2023; 102:e34768. [PMID: 37682195 PMCID: PMC10489312 DOI: 10.1097/md.0000000000034768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/25/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The objective of this study was to determine the efficacy of acupuncture on the outcome of in vitro fertilization (IVF) in elderly infertile patients with kidney qi deficiency, and to explore its possible mechanism from the perspective of pseudo-targeted metabolomics of follicular fluid. METHODS Sixty cases of elderly women undergoing IVF were sampled and randomly divided into 2 equal groups: the treatment and the elderly control (HA) group. In the treatment group, routine ovulation induction combined with acupuncture treatment was used. Routine ovulation induction combined with sham acupuncture was used in the HA group. Reproductive outcomes of the 2 groups were compared. The follicular fluid of patients obtained on the day of oocyte retrieval was analyzed by the ultra-high-performance liquid chromatography-mass spectrometry analysis system. RESULTS Compared with the HA group, the score of kidney qi deficiency syndrome in the treatment group was significantly decreased, and the 2 PN fertilization rate, high-quality embryo rate and cumulative pregnancy rate were significantly increased (P < .05). Through the identification of target metabolites, 3 metabolic pathways were found to be closely related to the developmental potential of oocytes, namely: Retinol metabolism pathway; Glycine, serine, and threonine metabolism pathway; Glycerophospholipid metabolism pathway. CONCLUSION From our findings, acupuncture can improve the quality of oocytes thus bettering the outcome of IVF-assisted pregnancy in elderly patients with kidney qi deficiency. TRIAL REGISTRATION ChiCTR1800018329.
Collapse
Affiliation(s)
- Qingchang Xia
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingyu Yu
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingyan Song
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhengao Sun
- Reproductive Medicine Center of Integration of Traditional and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
11
|
Zhang L, Li R, Zheng T, Wu H, Yin Y. An integrated analytical strategy to decipher the metabolic profile of alkaloids in Compound Kushen injection based on UHPLC-ESI-QTOF/MS E. Xenobiotica 2023:1-29. [PMID: 37335262 DOI: 10.1080/00498254.2023.2227976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/21/2023]
Abstract
1. Compound Kushen injection (CKI) is a kind of sterilized water-soluble traditional Chinese medicine preparation that has been used for the clinical treatment of a variety of cancers (hepatocellular carcinoma, lung cancer, etc.) for nineteen years. However, to date, the metabolism-related study on CKI in vivo has not been conducted.2. An integrated analytical strategy was established to investigate the metabolic profile of alkaloids of CKI in rat plasma, urine and feces based on ultra-high performance liquid chromatography-electrospray quadrupole time-of-flight mass spectrometry in MSE mode (UHPLC-ESI-QTOF/MSE).3. Nineteen prototype alkaloids (including 12 matrine-type alkaloids, 2 cytisine-type alkaloids, 3 lupinine-type alkaloids, and 2 aloperine-type alkaloids) of CKI were identified in vivo. Furthermore, seventy-one metabolites of alkaloids (including 11 of lupanine-related metabolites, 14 of sophoridine-related metabolites, 14 of lamprolobine-related metabolites and 32 of baptifoline-related metabolites) were tentatively characterized. Metabolic pathways involved in the metabolism of phase I (include oxidation, reduction, hydrolysis, and desaturation), phase II (mainly include glucuronidation, acetylcysteine or cysteine conjugation, methylation, acetylation and sulfation) and associated combination reactions.4. The integrated analytical strategy was successfully used to characterize the prototype alkaloids and their metabolites in CKI, and the results laying a foundation for further study its pharmacodynamic substances in vivo.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230038, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine & Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Yanyan Yin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
12
|
Fu J, Li J, Sun Y, Liu S, Song F, Liu Z. In-depth investigation of the mechanisms of Schisandra chinensis polysaccharide mitigating Alzheimer's disease rat via gut microbiota and feces metabolomics. Int J Biol Macromol 2023; 232:123488. [PMID: 36731694 DOI: 10.1016/j.ijbiomac.2023.123488] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/24/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Schisandra chinensis (S. chinensis) is an herbal medicine used for the treatment of Alzheimer's disease (AD). The purified polysaccharide fraction, namely SCP2, was previously isolated from S. chinensis crude polysaccharide (SCP) and its structure and in vitro activity were investigated. However, the in vivo activity of SCP2 and its potential mechanism for the treatment of AD have yet to be determined. This study used a combination of microbiomics and metabolomics to comprehensively explore the microbiota and metabolic changes in AD rats under SCP2 intervention, with the aim of elucidating the potential mechanisms of SCP2 in the treatment of AD. SCP2 showed significant therapeutic effects in AD rats, as evidenced by improved learning and memory capacity, reduced neuroinflammation, and restoration of the integrity of the intestinal barrier. Fecal metabolomic and microbiomic analyses revealed that SCP2 significantly modulated 19 endogenous metabolites and reversed gut microbiota disorders in AD rats. Moreover, SCP2 significantly increased the content of short-chain fatty acid (SCFAs) in the AD rats. Correlation analysis showed a significant correlation between gut microbes, metabolites and the content of SCFAs. Collectively, these findings will provide the basis for further development of SCP2.
Collapse
Affiliation(s)
- Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.; Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Jixun Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.; Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Yuzhen Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.; Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China..
| |
Collapse
|
13
|
Yang W, Zheng X, Bai J, Zhong P, Tan S, Zeng W, Chen J, Sun Z, Liu Z, Jin J, Zhao Z. Triterpenoids from the genus Ilex attenuate free fatty acid-induced lipid accumulation in HepG2 cells by regulating lipid metabolism disorder and the AMPK signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115845. [PMID: 36265675 DOI: 10.1016/j.jep.2022.115845] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Various traditional Chinese medicines from the genus Ilex (Aquifoliaceae) have been reported to have excellent hypolipidaemic effects. Although triterpenoids have been found to be the main active components, the underlying mechanisms have not been clarified. AIM OF THE STUDY This study aimed to investigate the lipid-lowering effect, structure-activity relationship and action mechanism of triterpenoids from the genus Ilex. MATERIALS AND METHODS FFA was used to induce HepG2 cells to establish a classical lipid-lowering activity screening model for the activities of 31 triterpenoids, and the contents of intracellular lipids, TC, and TG were measured. Furthermore, the structure-activity relationship was discussed. Mechanistically, UPLC-Q/TOF-MS-based metabolomics and lipidomics studies were performed, and metabolic pathways were analysed to investigate the lipid-lowering mechanism. Moreover, western blotting was performed to analyse the expression of key proteins of lipid metabolism and predict the targets of action. RESULTS Thirteen triterpenoids significantly reduced intracellular lipid accumulation and decreased the levels of TG and TC. Among them, rotundic acid (RA) showed stronger lipid-lowering activity than the simvastatin-positive group, and structure-activity relationship analysis indicated that the hydroxyl groups at C-3 and C-19, hydroxymethyl groups at C-23, and carboxyl groups at C-28 may be the key groups for biological activity. Twenty-two metabolites in the metabolomics study and 19 metabolites in the lipidomics study were identified. The identified biomarkers were primarily glycerophosphocholine, LysoPCs, PCs, TAGs, LysoPEs, LysoPIs and sphingolipids, which are involved in glycerophospholipid and sphingolipid metabolism. Moreover, western blotting analysis showed that the expression of SREBP-1 and HMGCR decreased, while AMPK and ACC phosphorylation and the expression of CPT1A and CYP7A1 increased in the RA-treated group. CONCLUSION The results suggested that triterpenoids from the genus Ilex showed significant lipid-lowering effects and that RA may be a novel hypolipidaemic drug candidate. Moreover, the underlying mechanism indicated that RA showed a lipid-lowering effect by regulating glycerophospholipid and sphingolipid metabolism and activating the AMPK pathway.
Collapse
Affiliation(s)
- Weiqun Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyun Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jingyan Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Pinfei Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shaoli Tan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wei Zeng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhanghua Sun
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Zhu S, Han X, Yang R, Tian Y, Zhang Q, Wu Y, Dong S, Zhang B. Metabolomics study of ribavirin in the treatment of orthotopic lung cancer based on UPLC-Q-TOF/MS. Chem Biol Interact 2023; 370:110305. [PMID: 36529159 DOI: 10.1016/j.cbi.2022.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Ribavirin is a common antiviral drug, especially for patients with hepatitis C. Our recent studies demonstrated that ribavirin showed anti-tumor activity in colorectal cancer and hepatocellular carcinoma, but its effects on lung cancer remains unclear. This study aimed to evaluate the anti-tumor activity of ribavirin against lung cancer and elucidate the underlying mechanism. We established orthotopic mouse model of lung cancer (LLC and GLC-82) and employed an ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics approach. We found that ribavirin significantly inhibited the proliferation and colony formation of lung cancer cells. Tumor sizes of orthotopic lung cancer in ribavirin-treated groups were also significantly lower than those in control groups. Metabolomics analysis revealed that ribavirin mainly affected 5 metabolic pathways in orthotopic lung tumor models, taurine and hypotaurine metabolism, nicotinate and nicotinamide metabolism, linoleic acid metabolism, arginine biosynthesis and arachidonic acid metabolism. Furthermore, we identified 5 upregulated metabolites including β-nicotinamide adenine dinucleotide (NAD+), nicotinamide (NAM), taurine, ornithine and citrulline, and 7 downregulated metabolites including 1-methylnicotinamide (MNAM), S-adenosyl-l-homocysteine (SAH), N1-Methyl-2-pyridone-5-carboxamide (2PY), homocysteine (Hcy), linoleic acid, arachidonic acid (AA) and argininosuccinic acid in ribavirin-treated groups. These results provide new insight into the anti-tumor mechanism of ribavirin for lung cancer.
Collapse
Affiliation(s)
- Shihao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Han
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yizhen Tian
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qingqing Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjie Wu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
15
|
Fu J, Li J, Sun Y, Liu S, Song F, Liu Z. An integrated study on the comprehensive mechanism of Schisandra chinensis polysaccharides mitigating Alzheimer's disease in rats using a UPLC-Q-TOF-MS based serum and urine metabolomics strategy. Food Funct 2023; 14:734-745. [PMID: 36562313 DOI: 10.1039/d2fo02842e] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As a well-known traditional Chinese medicine and functional food, Schisandra chinensis (S. chinensis) has been proved to possess excellent neuroprotective effects, and particularly the role of the polysaccharide fraction in neuroprotection has been increasingly emphasized. The aim of this study was to investigate the therapeutic effects and potential mechanism of action of the homogeneous polysaccharide SCP2, isolated and purified from S. chinensis polysaccharide (SCP), on Alzheimer's disease (AD) rats based on a holistic metabolomics approach in serum and urine. The results of the pharmacodynamics study showed that SCP2 significantly improved Aβ25-35-induced cognitive dysfunction, improved oxidative damage and reduced Aβ deposition in the hippocampus. The holistic metabolomics results of serum and urine showed that the intervention with SCP2 significantly reversed the metabolic profile disorder in AD rats. A total of 40 metabolites (21 serum metabolites and 19 urine metabolites) were identified, which were mainly involved in linoleic acid metabolism, alpha-linolenic acid metabolism and arachidonic acid metabolism. The results obtained in this study will provide new insights into the mechanisms of SCP2 in the treatment of AD and provide a basis for the subsequent structure-activity studies of SCP2.
Collapse
Affiliation(s)
- Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Jixun Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Yuzhen Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Shu Liu
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Fengrui Song
- Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun; Institute of Applied Chemistry, Chinese Academy of Sciences & National Center of Mass Spectrometry in Changchun, Changchun, 130022, China
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
16
|
Zhao Y, Chen Y, Li R, Zheng T, Huang M, Gao Y, Li Z, Wu H. An ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry method based on a four-step analysis strategy to investigate metabolites of Qi-Yu-San-Long decoction in rat plasma. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9419. [PMID: 36260057 DOI: 10.1002/rcm.9419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Metabolism is undoubtedly significantly correlated with the efficacy and safety of traditional Chinese medicine. In clinic, Qi-Yu-San-Long decoction (QYSLD) has achieved good results in the treatment of non-small-cell lung cancer (NSCLC). Nevertheless, a detailed understanding of the compounds (prototypes and metabolites) of QYSLD and its dynamic metabolic profile in plasma has not been revealed. METHODS In this study, a rapid and sensitive method based on ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF/MSE ), combined with a four-step analysis strategy, was established to investigate QYSLD metabolic profile in rat plasma. RESULTS In all, 101 xenobiotics (41 prototypes and 60 QYSLD-related metabolites) were identified in rat plasma. The research uncovered metabolic profiles of alkaloids, saponins, flavonoids, iridoids, anthraquinones, and phenylpropanoids of QYSLD in rat plasma. The dynamic changes in these xenobiotics were also observed at different time intervals. At 0.5 h after oral administration, only 15 prototypes and 11 metabolites were detected. Within 24 h, 4 prototypes and 20 metabolites can still be detected. Four prototypes and 10 metabolites had the phenomenon of emergence-disappearance-reappearance in vivo. CONCLUSION In rat plasma, 101 xenobiotics of QYSLD were identified and their dynamic metabolic profiles were systematically delineated, which laid a material basis for further research of the pharmacodynamic substances of QYSLD inhibiting NSCLC.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yang Chen
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ting Zheng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Mengwen Huang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Yating Gao
- Department of Education of Anhui Province, Key Laboratory of Traditional Chinese medicine for Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Department of Education of Anhui Province, Key Laboratory of Traditional Chinese medicine for Prevention and Treatment of Major Pulmonary Diseases, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
17
|
Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1215:123572. [PMID: 36565575 DOI: 10.1016/j.jchromb.2022.123572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Unsaturated fatty acids (UFAs) are essential fatty acids that execute various biological functions in the human body. Therefore, the qualitative and quantitative analysis of UFAs in biological samples can help to clarify their roles in the occurrence and development of diseases, so to reveal the mechanisms of pathogenesis and potential drug intervention strategies. Chromatography-mass spectrometry is one of the most commonly used techniques for the analysis of UFAs in biological samples. However, due to factors such as the complex structural information of UFAs (the number and specific location of CC double bonds) and the low concentration of UFAs in biological samples, it is still difficult to conduct accurate qualitative and/or quantitative studies of UFAs in complex biological samples. In recent years, the integration and application of chemical derivatization and chromatography-mass spectrometry has been widely used in the detection of UFAs. Based on this overview, we reviewed recent developments and application progress for chemical derivatization-based chromatography-mass spectrometry methods for the qualitative and/or quantitative analysis of UFAs in biological samples over the past ten years. Potential trends for the design and improvement of novel derivatization reagents were proposed.
Collapse
Affiliation(s)
- Chang Chen
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ruijuan Li
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Huan Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
18
|
Qi YS, Xiao MY, Xie P, Xie JB, Guo M, Li FF, Piao XL. Comprehensive serum metabolomics and network analysis to reveal the mechanism of gypenosides in treating lung cancer and enhancing the pharmacological effects of cisplatin. Front Pharmacol 2022; 13:1070948. [PMID: 36532716 PMCID: PMC9751056 DOI: 10.3389/fphar.2022.1070948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 10/23/2023] Open
Abstract
Gypenosides (GYP) exerted anticancer activity against various cancers. However, the mechanism of GYP against lung cancer (LC) in vivo remains unclear. This study aims to reveal the potential mechanism of GYP against LC and enhancing cisplatin efficacy using a comprehensive analysis of metabolomics, network analysis. Pharmacodynamic results showed that GYP inhibited tumor growth, reduced tumor volume and tumor weight, and alleviated pathological symptoms in Lewis tumor-bearing mice, and GYP could enhance the anti-LC effects of cisplatin. Using serum metabolomics methods, 53 metabolites were found to be significantly altered in the model group, and the levels of 23 biomarkers were significantly restored after GYP treatment. GYP-related metabolic pathways involved six pathways, including alpha-linolenic acid metabolism, glutathione metabolism, sphingolipid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and primary bile acid biosynthesis. 57 genes associated with differential metabolites of GYP recovery and 7 genes of 11 saponins of GYP against LC were screened by network analysis, the STRING database was used to find the association between 57 genes and 7 genes, and a compound-intersection gene-metabolite related gene-metabolite-pathway network was constructed, and STAT3, MAPK14, EGFR and TYMS might be the crucial targets of GYP against LC. Western blot results showed that GYP restored the levels of STA3, MAPK14, EGFR, and TYMS in the model group, and GYP also restored the levels of STAT3 and MAPK14 in the cisplatin group, indicating that GYP might exert anti-LC effects and enhance the pharmacological effects of cisplatin through MAPK14/STAT3 signaling pathway. Our method revealed the effect and mechanism of GYP on LC and the pharmacological effects of GYP-enhanced chemotherapeutic agent cisplatin, which provided some reference for the development of anti-cancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang-Lan Piao
- School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
19
|
Xu G, Xue W, Zhang D, Yu Z, Liu J, Zhao W. Non-targeted cellular metabolomics revealing the metabolomic features and anti-tumor mechanisms of cyanidin-3-O-arabinoside on Caco-2 cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Huang M, Li R, Yang M, Zhou A, Wu H, Li Z, Wu H. Discovering the potential active ingredients of Qi-Yu-San-Long decoction for anti-oxidation, inhibition of non-small cell lung cancer based on the spectrum-effect relationship combined with chemometric methods. Front Pharmacol 2022; 13:989139. [PMID: 36339563 PMCID: PMC9627220 DOI: 10.3389/fphar.2022.989139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Qi-Yu-San-Long decoction (QYSLD), a traditional Chinese medicine (TCM) prescription, consisting of ten types of herbal medicine which has significant clinical efficacy in the treatment of non-small cell lung cancer (NSCLC). However, the bioactive ingredients of QYSLD remain unclear, due to their “multi-ingredients” and “multi-targets” features. This study aimed to construct a spectrum-effect correlation analysis model and screen the potential active components of QYSLD. A fingerprint method based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) was developed and validated to obtain seventy common peaks of ten batches of QYSLD. The results of methodological evaluation, including precision, repeatability and stability, were less than 8.19%. In terms of linearity, eleven common components did not reach the linear standard (R2 < 0.99), they were removed before spectrum-effect relationship analysis. After treated with ten batches of QYSLD, the results of DPPH and FRAP assays ranged from 1.59 to 5.50 mg mL−1 and 143.83–873.83 μmol L−1, respectively. Meanwhile, the cell viabilities of A549 cells treated with QYSLD samples ranged from 21.73% to 85.71%. The relative healing rates ranged from 21.50% to 44.46%. The number of migrated and invaded cells ranged from 12.00 to 68.67 and 7.67 to 27.00, respectively. Then, the potential active components of QYSLD were screened through spectrum-effect relationship constructed by grey correlation analysis (GRA), partial least squares regression (PLSR) and backpropagation neural network (BP-ANN). The results were as follow: 1) eight ingredients of QYSLD were relevant to DPPH free radical scavenging ability; 2) nine ingredients were relevant to FRAP; 3) six ingredients were relevant to inhibit the proliferation ability of A549 cells; 4) twenty-two ingredients were relevant to inhibit the horizontal migration ability; 5) five ingredients were relevant to inhibit the vertical migration ability; 6) twelve ingredients were relevant to inhibit the invasion ability. Confirmatory experiments showed that compared with the unscreened ingredients, the potential active ingredients screened by the spectrum-effect relationship had better antioxidant and anti-NSCLC effects. In general, this study found the potential active ingredients in QYSLD. Meanwhile, the established method provided a valuable reference model for the potential active ingredients of TCM.
Collapse
Affiliation(s)
- Mengwen Huang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Ruijuan Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Mo Yang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - An Zhou
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Zegeng Li
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Major Pulmonary Diseases, Department of Education of Anhui Province, Hefei, China
| | - Huan Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula & Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
- *Correspondence: Huan Wu,
| |
Collapse
|
21
|
Yang R, Dong S, Zhang J, Zhu S, Miao G, Zhang B. Downregulation of PRMT5 by AMI-1 enhances therapeutic efficacy of compound kushen injection in lung carcinoma in vitro and in vivo. Mol Cell Biochem 2022; 478:1031-1044. [PMID: 36214894 DOI: 10.1007/s11010-022-04577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Protein arginine methyltransferase 5 (PRMT5) is overexpressed in lung carcinoma, which promotes tumor cell proliferation, survival, migration and invasion. Compound Kushen injection (CKI) is a mixture of natural compounds extracted from Kushen and Baituling, which are mainly used to stop in cancer pain and bleeding. Here we found that cell viability and colony formation were inhibited after the incubation of AMI-1. Meanwhile, AMI-1 suppressed cell migration, enhanced apoptosis, induced cell cycle arrest, inhibited PRMT5 expression and histone H3R8 and H4R3 symmetric di-methylation (H3R8me2s and H4R3me2s) accumulation, down-regulated the expression of eukaryotic translation initiation factor 4E (eIF4E) in lung carcinoma cells. Moreover, AMI-1 suppressed tumor growth, decreased H3R8me2s and H4R3me2s accumulation, down-regulated eIF4E expression and increased p53 expression in lung carcinoma xenografts of BALB/c nude mice. Of note, combined and CKI markedly enhanced the anticancer efficacy CKI in lung carcinoma. The above findings demonstrated that AMI-1 has established antineoplastic activity and this role may be associated with affecting the function of eIF4E via inhibiting PRMT5 activity or protein levels in lung carcinoma. This study highlights evidence of novel selective anticancer activity of AMI-1 in combination with CKI in lung carcinoma.
Collapse
Affiliation(s)
- Ruiying Yang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuhong Dong
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jinghui Zhang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Shihao Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoliang Miao
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Baolai Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
22
|
Li C, Chi C, Li W, Li Z, Wang X, Wang M, Zhang L, Lu J, Liu R. An integrated approach for identifying the efficacy and potential mechanisms of TCM against atherosclerosis-Wu-Zhu-Yu decoction as a case study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115436. [PMID: 35667584 DOI: 10.1016/j.jep.2022.115436] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a chronic disease that is associated with high morbidity. However, therapeutic approaches are limited. Wu-Zhu-Yu decoction (WZYD) is a well-known traditional Chinese medicine prescription that is traditionally used to treat headaches and vomiting. Modern studies have demonstrated the cardiotonic effects of WZYD. However, whether WZYD can alleviate AS and its underlying mechanisms remain unclear. AIM OF THE STUDY This study aims to investigate the antiatherosclerotic efficacy of WZYD and illustrate its potential mechanisms using an integrated approach combining in vivo and in vitro assessments, including metabolomics, network pharmacology, cell experiments, and molecular docking analyses. MATERIALS AND METHODS In this work, an atherosclerotic mouse model was established by administering a high-fat diet to apolipoprotein-E deficient (ApoE-/-) mice for twelve weeks. Meanwhile, the mice were intragastrically administered WZYD at different dosages. Efficacy evaluation was performed through biochemical and histopathological assessments. The potential active constituents, metabolites, and targets of WZYD in atherosclerosis were predicted by metabolomics combined with network pharmacology analysis, the constituents and targets were further assessed through cell experiments and molecular docking analysis. RESULTS WZYD decreased the lipid levels in serum, reduced the areas of aortic lesions, and attenuated intimal thickening, which had antiatherosclerotic effects in ApoE-/- mice. Metabolomics and network pharmacology approach revealed that the ten constituents (6-shogaol, evodiamine, isorhamnetin, quercetin, beta-carotene, 8-gingerol, kaempferol, 6-paradol, 10-gingerol, and 6-gingerol) of WZYD affected 24 metabolites by acting on the candidate targets, thus resulting in changes in five metabolic pathways (sphingolipid metabolism; glycine, serine and threonine metabolism; arachidonic acid metabolism; tryptophan metabolism; and fatty acid biosynthesis pathway). Cell experiments indicated that the ten key compounds showed antiproliferative effects on the vascular smooth muscle cell. Moreover, the key compounds exhibited direct interactions with the key targets, as assessed by molecular docking analysis. CONCLUSION This study revealed that WZYD exerted therapeutic effects on atherosclerosis, and the potential mechanisms were elucidated. Furthermore, it offered a powerful integrated strategy for studying the efficacy of traditional Chinese medicine and exploring its active components and possible mechanisms.
Collapse
Affiliation(s)
- Caihong Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Chenglin Chi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Wenjing Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Zongchao Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xinlin Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Minjun Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Leiming Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Rongxia Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| |
Collapse
|
23
|
Qu J, Ke F, Yang X, Wang Y, Xu H, Li Q, Bi K. Induction of P-glycoprotein expression by dandelion in tumor and heart tissues: Impact on the anti-tumor activity and cardiotoxicity of doxorubicin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154275. [PMID: 35760022 DOI: 10.1016/j.phymed.2022.154275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Previously, we have investigated the anti-tumor activity and mechanism through which dandelion acts against triple-negative breast cancer (TNBC). However, traditional Chinese medicine is mostly accepted as an adjunct therapy during chemotherapy in clinical practice. So far, little is known about the effects of dandelion in conjunction with chemotherapeutic drugs. PURPOSE To investigate the effects of dandelion on the anti-tumor activity and cardiotoxicity of doxorubicin (DOX), and to further explore the molecular mechanisms through which these effects occur. STUDY DESIGN At the beginning of this study, dandelion was observed to alleviate DOX-induced cardiotoxicity and reduce the anti-tumor activity of DOX. Subsequently, we investigated whether the resistance to DOX mediated by P-glycoprotein was involved in the above effects. METHODS The cardioprotective effect of dandelion was investigated on DOX-treated mice by histological analysis, myocardial enzyme assays, and an untargeted metabolomics study based on LC-Q-TOF/MS. TNBC cell lines and 4T1 tumor-bearing mice were employed to investigate the combined anti-tumor activity. Laser scanning confocal microscope and a flow cytometry analysis were employed to measure the intracellular accumulation of DOX. A specific, sensitive, and rapid LC-MS/MS method was developed to detect the efflux of DOX from cells. Expression of P-glycoprotein in mouse tumor and heart tissues was detected via Western blotting analysis. RESULTS Dandelion was found to significantly alleviate DOX-induced cardiotoxicity, as was evidenced by improved cardiomyocyte morphology, decreased LDH and CK-MB release, and adjusted metabolic biomarker levels. However, in vitro and in vivo studies showed that dandelion could reduce the anti-tumor activity of DOX. This counteraction was achieved by activating of the drug efflux transporter P-glycoprotein, thereby promoting the efflux of DOX from cells and reducing the intracellular accumulation of DOX. Moreover, the activation of P-glycoprotein by dandelion in mouse heart tissue was also observed, thus suggesting that the decrease of cardiac DOX accumulation plays an important role in the cardioprotective effect of dandelion. CONCLUSION Dandelion can activate the P-glycoprotein in heart and tumor tissues, which ameliorates DOX-induced cardiotoxicity but attenuates DOX cytotoxicity toward TNBC. Our findings have important implications for the correct clinical use of dandelion.
Collapse
Affiliation(s)
- Jiameng Qu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Traditional Chinese Material Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fan Ke
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao Yang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Wang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kaishun Bi
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
24
|
Ke JT, Zhang H, Bu YH, Gan PR, Chen FY, Dong XT, Wang Y, Wu H. Metabonomic analysis of abnormal sphingolipid metabolism in rheumatoid arthritis synovial fibroblasts in hypoxia microenvironment and intervention of geniposide. Front Pharmacol 2022; 13:969408. [PMID: 35935818 PMCID: PMC9353937 DOI: 10.3389/fphar.2022.969408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by a joint hypoxia microenvironment. Our previous untargeted metabolomics study found that sphingolipid (SPL) metabolism was abnormal in the joint synovial fluid samples from adjuvant arthritis (AA) rats. Geniposide (GE), an iridoid glycoside component of the dried fruit of Gardenia jasminoides Ellis, is commonly used for RA treatment in many Asian countries. At present, the mechanism of GE in the treatment of RA, especially in the joint hypoxia microenvironment, is not entirely clear from the perspective of SPL metabolism. The purpose of this research was to explore the potential mechanism of abnormal SPL metabolism in RA joint hypoxia microenvironment and the intervention effect of GE, through the untargeted metabolic analysis based on the ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Arthritis index, foot swelling and histopathology were used to assess whether the AA rat model was successfully established. The SPLs extracts collected from AA rats’ synovial tissue, serum and rheumatoid arthritis synovial fibroblasts (RASFs, MH7A cells, hypoxia/normoxia culture) were analyzed by metabolomics and lipdomics approach based on UPLC-Q-TOF/MS, to identify potential biomarkers associated with disorders of GE regulated RA sphingolipid metabolism. As a result, 11 sphingolipid metabolites related to RA were screened and identified. Except for galactosylceramide (d18:1/20:0), GE could recover the change levels of the above 10 sphingolipid biomarkers in varying degrees. Western blotting results showed that the changes in ceramide (Cer) level regulated by GE were related to the down-regulation of acid-sphingomyelinase (A-SMase) expression in synovial tissue of AA rats. To sum up, this research examined the mechanism of GE in the treatment of RA from the perspective of SPL metabolism and provided a new strategy for the screening of biomarkers for clinical diagnosis of RA.
Collapse
Affiliation(s)
- Jiang-Tao Ke
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Heng Zhang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan-Hong Bu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Pei-Rong Gan
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Fang-Yuan Chen
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Xin-Tong Dong
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Yan Wang, ; Hong Wu,
| | - Hong Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education, Hefei, China
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Yan Wang, ; Hong Wu,
| |
Collapse
|
25
|
Cheng WJ, Yang HT, Chiang CC, Lai KH, Chen YL, Shih HL, Kuo JJ, Hwang TL, Lin CC. Deer Velvet Antler Extracts Exert Anti-Inflammatory and Anti-Arthritic Effects on Human Rheumatoid Arthritis Fibroblast-Like Synoviocytes and Distinct Mouse Arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1617-1643. [PMID: 35850642 DOI: 10.1142/s0192415x22500689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint deformity and disability. Deer velvet antler (DA), a traditional Chinese medicine, has been used to treat various types of arthritis for several thousands of years, but the underlying mechanisms are unknown. Herein, we investigated the anti-arthritic and anti-inflammatory effects of DA in vitro and in vivo. The ethyl acetate layer of DA ethanol extract (DA-EE-EA) was used to treat tumor necrosis factor (TNF)-[Formula: see text]-stimulated fibroblast-like synoviocyte MH7A cells, collagen-induced arthritis DBA/1 mice, and SKG mice with zymosan-induced arthritis. DA-EE-EA reduced nitric oxide production, prostaglandin E2 levels, and levels of pro-inflammatory cytokines including interleukin (IL)-1[Formula: see text], IL-6, and IL-8 in MH7A cells. DA-EE-EA also downregulated the phosphorylation of mitogen-activated protein kinase p38 and c-Jun N-terminal kinase and the translocation of nuclear factor kappa B p65. Intraperitoneal injection of DA-EE-EA for 3 weeks substantially reduced clinical arthritis scores in vivo models. Pathohistological images of the hind paws showed that DA-EE-EA reduced immune cell infiltration, synovial hyperplasia, and cartilage damage. The levels of pro-inflammatory cytokines, such as tumor necrosis factor alpha, IL-1[Formula: see text], IL-6, IL-8, IL-17A, and interferon-gamma, decreased in the hind paw homogenates of DA-EE-EA-treated mice. We also identified several potential components, such as hexadecanamide, oleamide, erucamide, and lysophosphatidylcholines, that might contribute to the anti-inflammatory effects of DA-EE-EA. In conclusion, DA-EE-EA has the potential to treat RA by regulating inflammatory responses. However, the individual components of DA-EE-EA and the underlying anti-inflammatory mechanisms need further investigation in future studies.
Collapse
Affiliation(s)
- Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsuan-Tzu Yang
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Puxin Fengze Chinese Medicine Clinic, Taoyuan, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yu-Li Chen
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Huei-Lin Shih
- Division of Chinese Internal Medicine, Center of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jong-Jen Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Traditional Chinese Medicine, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming-Chi University of Technology, New Taipei, Taiwan
| | - Chi-Chien Lin
- Institute of Biomedical Science, College of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Tang E, Zhou Y, Liu S, Zhang Z, Zhang R, Huang D, Gao T, Zhang T, Xu G. Metabolomic and Transcriptomic Profiling Identified Significant Genes in Thymic Epithelial Tumor. Metabolites 2022; 12:metabo12060567. [PMID: 35736499 PMCID: PMC9228216 DOI: 10.3390/metabo12060567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Thymomas and thymic carcinomas are malignant thymic epithelial tumors (TETs) with poor outcomes if non-resectable. However, the tumorigenesis, especially the metabolic mechanisms involved, is poorly studied. Untargeted metabolomics analysis was utilized to screen for differential metabolic profiles between thymic cancerous tissues and adjunct noncancerous tissues. Combined with transcriptomic data, we comprehensively evaluated the metabolic patterns of TETs. Metabolic scores were constructed to quantify the metabolic patterns of individual tumors. Subsequent investigation of distinct clinical outcomes and the immune landscape associated with the metabolic scores was conducted. Two distinct metabolic patterns and differential metabolic scores were identified between TETs, which were enriched in a variety of biological pathways and correlated with clinical outcomes. In particular, a high metabolic score was highly associated with poorer survival outcomes and immunosuppressive status. More importantly, the expression of two prognostic genes (ASNS and BLVRA) identified from differential metabolism-related genes was significantly associated with patient survival and may play a key role in the tumorigenesis of TETs. Our findings suggest that differential metabolic patterns in TETs are relevant to tumorigenesis and clinical outcome. Specific transcriptomic alterations in differential metabolism-related genes may serve as predictive biomarkers of survival outcomes and potential targets for the treatment of patients with TETs.
Collapse
Affiliation(s)
- Enyu Tang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Yang Zhou
- Department of Cardiac Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China;
| | - Siyang Liu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Zhiming Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Rixin Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Dejing Huang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Tong Gao
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Tianze Zhang
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
| | - Guangquan Xu
- Department of Thoracic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; (E.T.); (S.L.); (Z.Z.); (R.Z.); (D.H.); (T.G.); (T.Z.)
- Correspondence:
| |
Collapse
|
27
|
Wu C, Xing X, Liu G, Su D, Li A, Gui S, Lu W, Liang J. Effects of Nongxiangxing baijiu (Chinese liquor) on mild alcoholic liver injury revealed by non-target metabolomics using ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. J Biosci Bioeng 2022; 134:62-69. [PMID: 35597723 DOI: 10.1016/j.jbiosc.2022.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022]
Abstract
Nongxiangxing baijiu (Chinese liquor) is one of the most widely consumed beverages in China. This liquor has been shown to contain large quantities of various bioactive ingredients that are beneficial to health. The goals of the present study were to examine the effects of moderate dose Nongxiangxing baijiu on alcoholic liver injury in rats, and to explore the mechanism of action of Nongxiangxing baijiu on alcoholic liver injury. To accomplish these goals, we developed a metabolomic analysis method based on ultra-performance liquid chromatography quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis and multivariate statistical analysis. Our serum lipid and hepatic histopathology results demonstrate that ethanol administration induced mild alcoholic liver injury in rats. However, these ethanol-induced changes were significantly alleviated in the Nongxiangxing baijiu group. These results suggest that moderate dose Nongxiangxing baijiu might have a preventive effect on mild alcoholic liver injury. Using our metabolomics method, we were able to identify 45 differential metabolites in serum and urine which could be used to characterize mild alcoholic liver injury in rats. Of these, 15 differential metabolites, including four Lysophosphatidylethanolamines, two phosphatidylcholines, four long-chain fatty acids, one porphyrin, two esters, one ceramide, and one triol, were regulated by Nongxiangxing baijiu. KEGG metabolic pathway analysis revealed that the main metabolic pathway regulated by Nongxiangxing baijiu was the glycerolipid pathway. Together, these findings provide evidence that moderate dose Nongxiangxing baijiu can reduce mild alcoholic liver injury (including metabolic disorders). Our study also provides preliminary data on the mechanism of action of Nongxiangxing baijiu in liver injury.
Collapse
Affiliation(s)
- Cuifang Wu
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Xiaofan Xing
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoying Liu
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Die Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Anjun Li
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Shuangying Gui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230021, China
| | - Wei Lu
- Anhui Gujing Gongjiu Co. Ltd., Bozhou, 236820 Anhui, China
| | - Juan Liang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230021, China.
| |
Collapse
|
28
|
Zheng T, Zhao Y, Li R, Huang M, Zhou A, Li Z, Wu H. Delineating the dynamic metabolic profile of Qi-Yu-San-Long decoction in rat urine using UPLC-QTOF-MSE coupled with a post-targeted screening strategy. J Pharm Anal 2022; 12:755-765. [PMID: 36320602 PMCID: PMC9615542 DOI: 10.1016/j.jpha.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Qi-Yu-San-Long decoction (QYSLD) is a traditional Chinese medicine that has been clinically used in the treatment of non-small-cell lung cancer (NSCLC) for more than 20 years. However, to date, metabolic-related studies on QYSLD have not been performed. In this study, a post-targeted screening strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight full information tandem mass spectrometry (UPLC-QTOF-MSE) was developed to identify QYSLD-related xenobiotics in rat urine. The chemical compound database of QYSLD constituents was established from previous research, and metabolites related to these compounds were predicted in combination with their possible metabolic pathways. The metabolites were identified by extracted ion chromatograms using predicted m/z values as well as retention time, excimer ions, and fragmentation behavior. Overall, 85 QYSLD-related xenobiotics (20 prototype compounds and 65 metabolites) were characterized from rat urine. The main metabolic reactions and elimination features of QYSLD included oxidation, reduction, decarboxylation, hydrolysis, demethylation, glucuronidation, sulfation, methylation, deglycosylation, acetylation, and associated combination reactions. Of the identified molecules, 14 prototype compounds and 58 metabolites were slowly eliminated, thus accumulating in vivo over an extended period, while five prototypes and two metabolites were present in vivo for a short duration. Furthermore, one prototype and five metabolites underwent the process of “appearing-disappearing-reappearing” in vivo. Overall, the metabolic profile and characteristics of QYSLD in rat urine were determined, which is useful in elucidating the active components of the decoction in vivo, thus providing the basis for studying its mechanism of action. A post-targeted screening strategy based on UPLC-QTOF-MSE was developed. Twenty prototype compounds and 65 metabolites of QYSLD were identified in rat urine. The main metabolic reactions and elimination features of QYSLD were determined in vivo. Dynamic metabolic profiles of QYSLD-related xenobiotics at multiple time intervals were delineated.
Collapse
|
29
|
Yin F, Nian M, Wang N, Wu H, Wu H, Zhao W, Cao S, Wu P, Zhou A. Protective Mechanism of Gandou Decoction in a Copper-Laden Hepatolenticular Degeneration Model: In Vitro Pharmacology and Cell Metabolomics. Front Pharmacol 2022; 13:848897. [PMID: 35401189 PMCID: PMC8984159 DOI: 10.3389/fphar.2022.848897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 01/09/2023] Open
Abstract
Gandou decoction (GDD) is a classic prescription for the treatment of hepatolenticular degeneration (HLD) in China; however, the liver-protecting mechanism of this prescription needs further evaluation. In the present study, we explored the protective mechanisms of GDD in a copper-laden HLD model using integrated pharmacology and cellular metabolomics in vitro. The results revealed that GDD could significantly promote copper excretion in copper-laden HLD model cells and improve the ultrastructural changes in hepatocytes. In addition, GDD could decrease the extent of lipid peroxidation, levels of reactive oxygen species, and the release rate of lactate dehydrogenase while increasing the activity of superoxide dismutase and the ratio of glutathione to oxidized glutathione in the copper-laden HLD model cells. On conducting statistical analysis of significant metabolic changes, 47 biomarkers and 30 related metabolic pathways were screened as pharmacological reactions induced by GDD in HLD model cells. d-glutamate and d-glutamine metabolic pathways showed the highest importance and significance among the 30 metabolic pathways, and the differential expression levels of the glutamine synthetase (GS) and the renal type and liver type GLS (GLS1 and GLS2) proteins were verified by Western blotting. Collectively, our data established the underlying mechanism of GDD therapy, such as the promotion of copper excretion and improvement in oxidative stress by regulating the expressions of GS, GLS1, and GLS2 protein to protect hepatocytes from injury.
Collapse
Affiliation(s)
- Fengxia Yin
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Mengnan Nian
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Na Wang
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Huan Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shijian Cao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Peng Wu
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
| |
Collapse
|
30
|
Qi M, Xu D, Wang S, Li B, Peng S, Li Q, Zhang H, Fan R, Chen H, Kong MG. In Vivo Metabolic Analysis of the Anticancer Effects of Plasma-Activated Saline in Three Tumor Animal Models. Biomedicines 2022; 10:biomedicines10030528. [PMID: 35327329 PMCID: PMC8945198 DOI: 10.3390/biomedicines10030528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, the emerging technology of cold atmospheric pressure plasma (CAP) has grown rapidly along with the many medical applications of cold plasma (e.g., cancer, skin disease, tissue repair, etc.). Plasma-activated liquids (e.g., culture media, water, or normal saline, previously exposed to plasma) are being studied as cancer treatments, and due to their advantages, many researchers prefer plasma-activated liquids as an alternative to CAP in the treatment of cancer. In this study, we showed that plasma-activated-saline (PAS) treatment significantly inhibited tumor growth, as compared with saline, in melanoma, and a low-pH environment had little effect on tumor growth in vivo. In addition, based on an ultra-high-performance liquid tandem chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) analysis of tumor cell metabolism, the glycerophospholipid metabolic pathway was the most susceptible metabolic pathway to PAS treatment in melanoma in vitro and in vivo. Furthermore, PAS also inhibited cell proliferation in vivo in oral tongue squamous-cell cancer and non-small-cell lung cancer. There were few toxic side effects in the three animal models, and the treatment was deemed safe to use. In the future, plasma-activated liquids may serve as a potential therapeutic approach in the treatment of cancer.
Collapse
Affiliation(s)
- Miao Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Dehui Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
- Correspondence: (D.X.); (M.G.K.)
| | - Shuai Wang
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Bing Li
- The School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (B.L.)
| | - Sansan Peng
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Qiaosong Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Runze Fan
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (M.Q.); (S.P.); (Q.L.); (H.Z.); (R.F.)
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
| | - Michael G. Kong
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA;
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
- Correspondence: (D.X.); (M.G.K.)
| |
Collapse
|
31
|
Yang J, Li Y, Li J, Yuan J, Wang S, Zhou L, Zhou L, Kang C, Guo L. High-throughput screening of secondary metabolites by Sorbus pohuashanensis cells under environmental stress using UHPLC-QTOF combined with AntDAS. PHYSIOLOGIA PLANTARUM 2021; 173:2216-2225. [PMID: 34590719 DOI: 10.1111/ppl.13572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/02/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Environment stress can promote the synthesis and accumulation of a series of secondary metabolites, which are important quality factors in medicinal plants. However, the data related to metabolites is often too large, making it difficult to screen quickly, accurately and comprehensively various differential compounds. In this study, a high-throughput screening method for differential secondary metabolites produced by medicinal plants under environmental stress has been developed based on ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF) and automatic data analysis strategy. This work uses Sorbus pohuashanensis cells with biotic stress (Harpin protein) and abiotic stress (Cd2+ ) as potential environmental stress factors. The results showed that S. pohuashanensis cells could rapidly respond to both Harpin protein and Cd2+ within 24 h, and a significant positive correlation was observed between their concentration (within a certain range) and induction time. The proposed screening method can automatically screen the bulk UHPLC-QTOF metabolic data for differential compounds with high-throughput, and also perform preliminary identification of their possible structures. The screening results indicated that the stress response of S. pohuashanensis cells to Cd2+ was significantly higher than that of Harpin protein, and all of them could produce a series of biphenyls, terpenes, and other phytoalexins with stress-resistance and physiological functional properties. Overall, the screening method provides an efficient and powerful tool to study the response mechanisms of plants to environmental stress, to improve the resistance of medicinal plants and also to select and breed high-quality Chinese medicinal plants.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Yuan Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jiaxing Li
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Jie Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Liangyun Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Chuanzhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
32
|
Man J, Wu L, Han P, Hao Y, Li J, Gao Z, Wang J, Yang W, Tian Y. Revealing the metabolic mechanism of dandelion extract against A549 cells using UPLC-QTOF MS. Biomed Chromatogr 2021; 36:e5272. [PMID: 34727378 DOI: 10.1002/bmc.5272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 11/08/2022]
Abstract
Dandelion extract shows potential anticancer activity and is expected to be a new type of natural anti-cancer drug. However, the effect mechanism of dandelion extract to lung cancer cells is still unclear. Here, untargeted metabolomics approach based on liquid chromatography-mass spectrograph (LC-MS) was used to characterize the metabolic responses of A549 cell to dandelion extract exposure, to provide new clues for the anti-tumor mechanism of dandelion extract from the perspective of metabolomics. A total of 16 differentially expressed and time-related metabolites were identified between dandelion extract exposure and control groups. The perturbed metabolic pathways of A549 cells after dandelion extract exposure mainly include the glycerophospholipid metabolism and purine metabolism. These results concluded that dandelion extract may exert anticancer activity by affecting the malignant proliferation, disturbing the stability of cell membrane structure, reducing the adhesion of tumor cells to extracellular matrix and fibronectin and finally inducing tumor cell death.
Collapse
Affiliation(s)
- Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | | | - Pei Han
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yun Hao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jiaying Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jia Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wenjie Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Yongmei Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
33
|
HUANG M, WU H, YU W, WANG Y, WANG F, ZHANG C, ZHOU L, LI Z. [Rapid identification of chemical components in Qi-Yu-San-Long decoction by ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry]. Se Pu 2021; 39:730-743. [PMID: 34227371 PMCID: PMC9404180 DOI: 10.3724/sp.j.1123.2020.10016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Indexed: 11/25/2022] Open
Abstract
Qi-Yu-San-Long decoction (QYSLD) is a classic traditional Chinese medicine prescription consisting of ten types of herbal medicines, including Astragali Radix, Polygonati Odorati Rhizoma, Scolopendra, Pheretima, Solanum nigrum L., Hedyotis diffusa Willd., Coicis Semen, Euphorbia helioscopia L., Curcumae Rhizoma, and Fritillariae Cirrhosae Bulbus, combined in a ratio of 15∶5∶3∶3∶10∶10∶10∶3∶5∶3 by weight. QYSLD has been used to treat non-small cell lung cancer (NSCLC) for over 20 years in clinical practice, and its curative effect is considered credible. However, the chemical constituents of QYSLD have not been revealed because of their complexity, which has significantly hindered the systematic clarification of the efficacy of the materials and quality evaluation. In this study, a reliable strategy based on the data-independent acquisition (DIA) technology of ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) combined with a targeted screening method was established to investigate the chemical components of QYSLD. A 2-μL aliquot from each vial was injected into a Waters ACQUITY UPLC BEH C18 column (100 mm×2.1 mm, 1.7 μm) to separate complex components. The temperature of the column was 35 ℃, and the flow rate was set at 0.2 mL/min. The mobile phase consisted of 0.1% formic acid aqueous solution and acetonitrile. Detection was conducted using an Xevo G2-XS QTOF-MS with a LockSpray capable-electrospray interface. The data for complex components in QYSLD were collected by full-information tandem mass spectrometry (MS E) in the positive and negative ion modes. In the MSE mode, data acquisition was performed using a mass spectrometer by rapidly switching from a low-collision-energy (CE) scan to a high-CE scan during a single LC run. Thus, accurate precursor and fragment ions were collected in a single run, which was helpful for the structural elucidation of multiple components in QYSLD. In addition, systematic information on isolated chemical compounds was collected and distinguished from the ten individual herbs in QYSLD using databases such as China Academic Journals Full-text database (CNKI), PubMed, Web of Science, Medline, and ChemSpider. Accordingly, a self-building library of QYSLD, including the component name, molecular formula, and structure of the components from the herbs, was established. Subsequently, the raw MSE data of the collected samples and the self-building chemical composition library were imported into a natural product post-processing screening (UNIFI) platform for targeted screening of the chemical components in QYSLD. The parameters for UNIFI platform were as follows: the retention time deviation was ±0.1 min; an error margin of no more than 5×10 -6 for the identified compounds was allowed; positive adducts, including [M+H]+and [M+Na]+, were selected; and negative adducts, including [M-H]- and [M+HCOO]-, were selected. The results showed that a total of 166 compounds were initially identified, including 22 saponins, 13 alkaloids, 27 flavonoids, 32 terpenes, 20 amino acids, 16 phenylpropanoids, 9 organic acids, 6 sterols, 6 anthraquinones, and 15 other components. Among them, sixteen components were confirmed unambiguously with the reference substances. To better understand the chemical contribution of individual herbs to the entire decoction, the attributes of each component were summarized. This study provides a foundation for exploring the pharmacodynamic substances of QYSLD.
Collapse
|
34
|
Fu J, Wu H, Wu H, Deng R, Sun M. Deciphering the metabolic profile and pharmacological mechanisms of Achyranthes bidentata blume saponins using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry coupled with network pharmacology-based investigation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 274:114067. [PMID: 33771642 DOI: 10.1016/j.jep.2021.114067] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes bidentata Blume (AB) is a traditional Chinese medicine (TCM) widely used as a dietary supplement and anti-arthritis drug. Pharmacological studies have shown that Achyranthes bidentata Blume saponins (ABS) are the main bioactive ingredient. However, the metabolic profile and mechanisms of action of ABS against rheumatic arthritis (RA) remain to be established. AIM OF THE STUDY Our main objective was to investigate the metabolic profile and pharmacological activities of ABS against RA. MATERIALS AND METHODS In this study, an analytical method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) coupled with a metabolism platform was developed for metabolic profiling of ABS in rat liver microsomes and plasma. Then, the in vivo metabolites of ABS and their targets associated with RA were used to construct the network pharmacological analysis. Gene ontology (GO) enrichment, KEGG signaling pathway analyses and pathway network analyses were performed. The therapeutic effect of ABS on RA was further evaluated using an adjuvant arthritis (AA) model and network pharmacology results validated via Western blot. RESULTS Overall, 26 and 21 metabolites of ABS were tentatively characterized in rat liver microsomes and plasma, respectively. The metabolic pathways of ABS mainly included M+O, M+O-H2, M+O2, and M+O2-H2. Data form network pharmacology analysis suggested that MAPK, apoptosis, PI3K-AKT and p53 signaling pathways contribute significantly to the therapeutic effects of ABS on RA. In pharmacodynamics experiments, ABS ameliorated the symptoms in AA rats in a dose-dependent manner and restored the homeostasis of pro/anti-inflammatory factors. Western blot results further demonstrated a significant ABS-induced decrease in phosphorylation of ERK in the MAPK pathway (P < 0.01). CONCLUSION Application of an analytical method based on UPLC-QTOF/MS, network pharmacology and validation experiments offers novel insights into the components and mechanisms of ABS that contribute to its therapeutic effects against RA, providing useful directions for further research.
Collapse
MESH Headings
- Achyranthes
- Animals
- Anti-Inflammatory Agents/pharmacology
- Anti-Inflammatory Agents/therapeutic use
- Arthritis, Experimental/blood
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/blood
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Chromatography, High Pressure Liquid
- Cytokines/blood
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Foot Joints/drug effects
- Foot Joints/pathology
- Male
- Mass Spectrometry
- Metabolome/drug effects
- Microsomes, Liver/metabolism
- Pharmacology/methods
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Saponins/pharmacology
- Saponins/therapeutic use
- Tumor Suppressor Protein p53/metabolism
- Rats
Collapse
Affiliation(s)
- Jun Fu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Huan Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Hong Wu
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Ran Deng
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Minghui Sun
- Anhui University of Chinese Medicine, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| |
Collapse
|
35
|
Wang W, Han Z, Guo D, Xiang Y. UHPLC-QTOFMS-based metabolomic analysis of serum and urine in rats treated with musalais containing varying ethyl carbamate content. Anal Bioanal Chem 2020; 412:7627-7637. [PMID: 32897411 DOI: 10.1007/s00216-020-02900-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
The aim of this work is to investigate the effect of the ethyl carbamate (EC) content in musalais on the metabolism of rats. Electron beam irradiation was performed to decrease the content of EC in musalais, and Sprague Dawley rats were subjected to intragastric administration of musalais with varying EC content (high, medium, and low groups). Control rats were fed normally without any treatment. Serum and urine samples were analyzed using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Principal component analysis and orthogonal projections to latent structures discriminant analysis (OPLS-DA) were performed to detect changes in the metabolite profile in the serum and urine in order to identify the differential metabolites and metabolic pathways. The results demonstrated clear differences in the serum and urine metabolic patterns between control and treatment groups. Ions in treatment groups with variable importance in the projection of >1 (selected from the OPLS-DA loading plots) and Ps < 0.05 (Student t test) compared to control group were identified as candidate metabolites. Analysis of the metabolic pathways relevant to the identified differential metabolites revealed that high EC content in musalais (10 mg/kg) mainly affected rats through valine, leucine, and isoleucine biosynthesis and nicotinate and nicotinamide metabolism, which were associated with energy metabolism. In addition, this work suggests that EC can induce oxidative stress via inhibition of glycine content.
Collapse
Affiliation(s)
- Weihua Wang
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - ZhanJiang Han
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China.
| | - Dongqi Guo
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Yanju Xiang
- College of Life Science, Tarim University, Alaer, Xinjiang, 843300, China
| |
Collapse
|