1
|
Chen H, Su W, Li T, Wang Y, Li Z, Xiong L, Chen ZS, Zhang C, Wang T. Recent advances in small molecule design strategies against hepatic fibrosis. Eur J Med Chem 2025; 286:117281. [PMID: 39854939 DOI: 10.1016/j.ejmech.2025.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Hepatic fibrosis, a widespread pathological process observed across various liver diseases, is acknowledged as a potentially reversible condition. In recent years, liver fibrosis has garnered extensive research attention, with a primary emphasis on developing drugs that can directly block or reverse this condition. This paper presents a comprehensive review of the design strategies for various anti-hepatic fibrosis agents that have been many efficacious small-molecule drugs. This review encompasses the synthesis and design of nuclear receptor ligands (such as VDR and Nurr7), kinase inhibitors (including ALK5 and JAK1), selective PDE inhibitors, small-molecule monomers derived from natural products, and other small molecules. The aim of this review is to provide promising avenues and valuable insights for the continued development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Heming Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Su
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingting Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhuangyu Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA.
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Chen M, Song L, Zeng A. Harnessing nature's arsenal: Targeting the TGF-β/Smad Cascade with novel natural anti-fibrotic agents. Fitoterapia 2025; 181:106372. [PMID: 39778722 DOI: 10.1016/j.fitote.2024.106372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Hepatic fibrosis is a wound healing response that leads to excessive deposition of extracellular matrix (ECM) due to sustained liver injury. Hepatic stellate cells (HSCs) are key players in ECM synthesis, with the TGF-β/Smad signaling pathway being central to their activation. Despite advances in understanding the pathogenesis of hepatic fibrosis, effective anti-fibrotic therapies are still lacking. METHODS This treatise conducts a comprehensive review of the literature on the hepatoprotective effects of natural products, including natural medicine compounds, herbal extracts, and polysaccharides. The focus is on their ability to modulate the TGF-β pathway, which is critical in the activation of HSCs and ECM synthesis in hepatic fibrosis. RESULTS The review identifies a variety of natural products that have shown promise in inhibiting the TGF-β/Smad signaling cascade, thereby reducing the activation of HSCs and ECM accumulation. These findings highlight the potential of these natural products as therapeutic agents in the treatment of hepatic fibrosis. CONCLUSIONS The exploration of natural products as modulators of the TGF-β pathway presents a novel avenue for both clinical and preclinical research into hepatic fibrosis. Further investigation is warranted to fully understand the mechanisms of action and to develop these compounds into effective anti-fibrotic pharmaceuticals.
Collapse
Affiliation(s)
- Maohua Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China; Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China. Chengdu, Sichuan 610072, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine,Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
3
|
Wu M, Li K, Wu J, Ding X, Ma X, Wang W, Xiao W. Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases. Pharmacol Res 2025; 212:107571. [PMID: 39756553 DOI: 10.1016/j.phrs.2024.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/10/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C. A. Meyer) is a tonic traditional Chinese herbal medicine, and natural products, including ginsenoside Rg1 (G-Rg1), which is a kind of 20(S)-protopanaxatriol saponin with a relatively high biological activity, can be isolated from the roots or stems of ginseng. Given these information, this review aimed to summarise and discuss the metabolic mechanisms of G-Rg1 in the regulation of diverse liver diseases and the measures to improve its bioavailability. As a kind of monomer in Chinese medicine with multitarget pharmacological effects, G-Rg1 can provide significant therapeutic benefits in the alleviation of alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, viral hepatitis, etc., which mainly rely on the inhibition of apoptosis, strengthening endogenous anti-inflammatory and antioxidant mechanisms, activation of immune responses and regulation of efflux transport signals, to improve pathological changes in the liver caused by lipid deposition, inflammation, oxidative stress, accumulation of hepatotoxic product, etc. However, the poor bioavailability of G-Rg1 must be overcome to improve its clinical application value. In summary, focusing on the hepatoprotective benefits of G-Rg1 will provide new insights into the development of natural Chinese medicine resources and their pharmaceutical products to target the treatment of liver diseases.
Collapse
Affiliation(s)
- Mingyu Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Ke Li
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Jiabin Wu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xianyi Ding
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaotong Ma
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Liu Y, Tan H, Dai J, Lin J, Zhao K, Hu H, Zhong C. Targeting macrophages in cancer immunotherapy: Frontiers and challenges. J Adv Res 2025:S2090-1232(24)00622-2. [PMID: 39778768 DOI: 10.1016/j.jare.2024.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer immunotherapy has emerged as a groundbreaking approach in cancer treatment, primarily realized through the manipulation of immune cells, notably T cell adoption and immune checkpoint blockade. Nevertheless, the manipulation of T cells encounters formidable hurdles. Macrophages, serving as the pivotal link between innate and adaptive immunity, play crucial roles in phagocytosis, cytokine secretion, and antigen presentation. Consequently, macrophage-targeted therapies have garnered significant attention. AIM OF REVIEW We aim to provide the most cutting-edge insights and future perspectives for macrophage-targeted therapies, fostering the development of novel and effective cancer treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW To date, the forefront strategies for macrophage targeting encompass: altering their plasticity, harnessing CAR-macrophages, and targeting phagocytosis checkpoints. Macrophages are characterized by their remarkable diversity and plasticity, offering a unique therapeutic target. In this context, we critically analyze the innovative strategies aimed at transforming macrophages from their M2 (tumor-promoting) to M1 (tumor-suppressing) phenotype. Furthermore, we delve into the design principles, developmental progress, and advantages of CAR-macrophages. Additionally, we illuminate the challenges encountered in targeting phagocytosis checkpoints on macrophages and propose potential strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Yu'e Liu
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Pediatric Hematology-Oncology, Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China; General internal medicine, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430048, China
| | - Jingyuan Dai
- School of Computer Science and Information Systems, Northwest Missouri State University, Maryville, MO 64468, USA
| | - Jianghua Lin
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Haibo Hu
- Department of Cardiothoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China.
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| |
Collapse
|
5
|
Ye B, Yue M, Chen H, Sun C, Shao Y, Jin Q, Zhang C, Yu G. YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets. Mol Biol Rep 2024; 52:78. [PMID: 39718664 DOI: 10.1007/s11033-024-10177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad. While the activation of YAP/TAZ can promote the regeneration of damaged liver tissue, their mechanisms of action may differ under various LR conditions. Furthermore, excessive activation of YAP/TAZ may also lead to severe liver damage, manifesting as alcoholic hepatitis, liver fibrosis, and even liver cancer. Here, we review the role and mechanisms of YAP/TAZ in LR and liver disease, highlighting the potential for advancements in clinical diagnosis and treatment targeting YAP/TAZ in these contexts.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Meijuan Yue
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hu Chen
- Anyang Food and Drug Inspection and Testing Center, Anyang, 455000, China
| | - Caifang Sun
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yongle Shao
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qinpeng Jin
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
6
|
Zhang W, Gao K, Bai Y, Xu D, Zhao M, Tao X, Wang J. Wedelolactone Attenuates Liver Fibrosis and Hepatic Stellate Cell Activation by Suppressing the Hippo Pathway. Rejuvenation Res 2024; 27:207-219. [PMID: 39276092 DOI: 10.1089/rej.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
Liver fibrosis is a commonly observed pathological phenomenon that occurs during the progression of various types of chronic liver diseases. The Hippo pathway is closely associated with the pathogenesis of liver fibrosis. Previous studies have shown that wedelolactone (WED) has a significant antihepatic fibrosis effect, whereas the target and mechanism underlying WED remain elusive. In this study, we found that WED significantly alleviated liver fibrosis and injury by inhibiting the expression of Yes-associated protein (YAP) and tafazzin (TAZ). In an in vitro model, WED suppressed the activation of hepatic stellate cells (HSCs) induced by transforming growth factor (TGF-β1), as well as the mRNA and protein expression of α-smooth muscle actin (α-SMA), YAP, and TAZ. The allosteric regulation of YAP by WED was confirmed using MD and cellular thermal shift assay. Moreover, specific knockdown or inhibition of YAP did not enhance the suppressive effect of WED on HSC activation or protein expression associated with fibrosis. These findings demonstrated that the administration of WED effectively alleviated liver fibrosis by suppressing the Hippo/YAP/TAZ pathways. In addition, YAP activity may be regulated by WED via allosteric regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ya Bai
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Kim E, Kim JY, Choi SH, Park HY, Ko J, Yoon JS. Therapeutic role of physalin A in the pathogenesis of Graves' orbitopathy. Immunopharmacol Immunotoxicol 2024; 46:912-923. [PMID: 39491800 DOI: 10.1080/08923973.2024.2422079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Graves' orbitopathy (GO) is an autoimmune condition that causes serious ocular symptoms; its treatment strategies are limited. Physalin A is a phytosterol that has shown various therapeutic properties, including anti-inflammatory and anti-fibrotic effects. In this study, we investigated whether physalin A could inhibit inflammation, fibrosis, hyaluronan (hyaluronic acid) production, and adipogenesis, which are crucial to the pathogenesis of GO. METHODS Orbital tissue explants were obtained from patients with GO during orbital decompression surgery and healthy controls. Orbital fibroblasts (OFs) were isolated and treated with different concentrations of physalin A. Using western blot and ELISA analyses, we determined the effects of physalin A on OFs. RESULTS Physalin A treatment suppressed the production of interleukin (IL)-1β-induced prostaglandin E2 (PGE2) and pro-inflammatory molecules, including cyclooxygenase (COX)-2, IL-6, IL-8, and intercellular adhesion molecule (ICAM)-1. We discovered that physalin A attenuated hyaluronan production induced by IL-1β or insulin-like growth factor (IGF)-1. Moreover, physalin A reduced lipid droplet formation and production of peroxisome proliferator activator (PPAR) γ, CCAAT-enhancer-binding protein (C/EBP) α, C/EBP β, sterol regulatory element binding protein (SREBP)-1, leptin, and adiponectin proteins. Physalin A suppressed the phosphorylation of extracellular signal-related kinase (ERK), nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB), and suppressor of mothers against decapentaplegic (SMAD) 2 signaling protein. CONCLUSIONS Our study suggests that the major mechanisms by which physalin A suppresses GO include reducing inflammation, fibrosis, hyaluronan production, and adipogenesis in OFs. The findings of this study provide evidence of the therapeutic effect of physalin A in GO.
Collapse
Affiliation(s)
- Eunjin Kim
- Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Young Park
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Abdul‐Aziz Ahmed K, Jabbar AAJ, Raouf MMHM, M. Al‐Qaaneh A, Rizgar Hassan R, Ismael Salih M, Mothana RA, Abdulaziz Al‐Hamoud G, Ameen Abdulla M, Hasson S, Abdul‐samad Ismail P. Phytochemical Profiling, Acute Toxicity, and Hepatoprotective Effects of Anchusa Limbata in Thioacetamide-Induced Liver Cirrhosis in Rats. Food Sci Nutr 2024; 12:10628-10645. [PMID: 39723071 PMCID: PMC11666841 DOI: 10.1002/fsn3.4544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024] Open
Abstract
Evaluation of Anchusa species of the family Boraginaceae during previous investigations determined numerous therapeutic potentials against inflammatory-related diseases. The present study evaluates the phytochemical, acute toxicity, and hepatoprotective effects of methanolic extracts of Anchusa limbata (MEAL) against thioacetamide (TAA)-induced liver injury in rats. The phytochemical profiling of MEAL followed a Folin-Ciocalteu and 10% AlCl3 procedure using a spectrophotometer. Thirty rats were divided into 5 groups: Normal (A) and TAA control rats (B) treated orally with daily 10% tween 20; reference rats (C) received daily oral dose of 50 mg/kg silymarin; (D and E) rats received daily doses of 250 and 500 mg/kg MEAL, respectively. In addition, group B-E received 3 injections of 200 mg/kg TAA weekly for 60 days. The phytochemical profiling showed increased polyphenolic (129.2 mg gallic acid equivalent/g) and flavonoid (105.3 mg quercetin equivalent/g extract) contents in MEAL. The TAA intraperitoneal injection caused significant hepatic dysfunctionality (lowered total protein, 54.7 g/L; albumin levels, 7.8 g/L), hepatotoxicity, and necrotized cell proliferation. TAA hepatotoxicity resulted in an increased expression of proliferating cell nuclear antigen (PCNA), TGF-β1 tissue expression, liver enzymatic leakage, and oxidative stress biomarkers, while it reduced pro-apoptotic Bcl-2-associated X protein (Bax) proteins and inflammatory mediators (TNF-α and IL-6) and increased IL-10. Conversely, MEAL treatment ameliorated the TAA-induced hepatotoxicity and restored liver functions. The present hepatoprotectives of MEAL could be attributed to its increased polyphenolic and flavonoid contents, which require further isolation and identification of molecules underlying such therapeutic actions.
Collapse
Affiliation(s)
- Khaled Abdul‐Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical SciencesAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ahmed A. J. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical CollegeErbil Polytechnic UniversityErbilIraq
| | | | - Ayman M. Al‐Qaaneh
- Department of Allied Health SciencesAl‐Balqa Applied University (BAU)Al‐SaltJordan
- Department of Pharmaceutical TechnologyFaculty of Pharmacy, Jordan University of Science and Technology (JUST)IrbidJordan
| | - Rawaz Rizgar Hassan
- Department of Medical microbiology, College of ScienceKnowledge UniversityErbilIraq
| | - Musher Ismael Salih
- Department of Chemistry, Faculty of Science and HealthKoya UniversityKoyaIraq
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | | | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied ScienceTishk International UniversityErbilIraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityLiverpoolUK
| | | |
Collapse
|
9
|
Feng S, Liu L, Cheng Y, Zhou M, Zhu H, Zhao X, Chen Z, Kan S, Fu X, Hu W, Zhu R. Icariin promotes functional recovery in rats after spinal cord injury by inhibiting YAP and regulating PPM1B ubiquitination to inhibiting the activation of reactive astrocytes. Front Pharmacol 2024; 15:1434652. [PMID: 39439899 PMCID: PMC11493691 DOI: 10.3389/fphar.2024.1434652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Objective The limited ability to regenerate axons after spinal cord injury (SCI) is influenced by factors such as astrocyte activation, reactive proliferation, and glial scar formation. The TGF-β/Smad (transforming growth factor-β/mothers against decapentaplegic homolog) pathway, associated with astrocytic scarring, plays a crucial role in recovery post-injury. This study aims to investigate how icariin (ICA) interacts with reactive astrocytes in the treatment of spinal cord injury. Methods A rat SCI model was constructed, and the recovery of motor function was observed after treatment with ICA.HE staining, LFB staining, immunofluorescence staining, and Western blotting were employed to assess ICA's ability to inhibit astrocyte proliferation in rats following spinal cord injury by modulating YAP, as well as to evaluate the reparative effects of ICA on the injured spinal cord tissue. Primary astrocytes were isolated and cultured. Immunoprecipitation-Western Blot (IP-WB) ubiquitination and cytoplasm-nuclear separation were employed to assess PPM1B ubiquitination and nuclear translocation. Results The CatWalk XT gait analysis, BBB (Basso, Beattie, and Bresnahan) score, electrophysiological measurements, HE staining, and LFB staining collectively demonstrated that ICA promotes motor function and tissue recovery following spinal cord injury in rats. Immunofluorescence staining and Western Blot analyses revealed that ICA inhibits astrocyte proliferation in rats post-spinal cord injury by suppressing YAP activity. Furthermore, the activation of YAP by XMU-MP-1 was shown to compromise the efficacy of ICA in these rats after spinal cord injury. Additional immunofluorescence staining and Western Blot experiments confirmed that ICA inhibits TGFβ1-induced astrocyte activation through the regulation of YAP. The knockdown of PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) in astrocytes was found to inhibit TGFβ signaling. Additionally, YAP was shown to regulate PPM1B ubiquitination and nuclear translocation through immunoprecipitation-Western blot analysis, along with the segregation of cytoplasm and nucleus. Conclusion Icariin promotes functional recovery in rats after spinal cord injury by inhibiting YAP and regulating PPM1B ubiquitination to inhibiting the activation of reactive astrocytes.
Collapse
Affiliation(s)
- Sa Feng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Linyan Liu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yuelin Cheng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Mengmeng Zhou
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Haoqiang Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xinyan Zhao
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Ziyu Chen
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Shunli Kan
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xuanhao Fu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Wei Hu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rusen Zhu
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Tianjin Institute of Spinal Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
10
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Xue Y, Zhu W, Qiao F, Yang Y, Qiu J, Zou C, Gao Y, Zhang X, Li M, Shang Z, Gao Y, Huang L. Ba-Qi-Rougan formula alleviates hepatic fibrosis by suppressing hepatic stellate cell activation via the MSMP/CCR2/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118169. [PMID: 38621463 DOI: 10.1016/j.jep.2024.118169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/03/2024] [Accepted: 04/07/2024] [Indexed: 04/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Ba-Qi-Rougan formula (BQRGF) is a traditional and effective compound prescription from Traditional Chinese Medicine (TCM) utilized in treating hepatic fibrosis (HF). AIM OF THE STUDY We aimed to evaluate the therapeutic efficacy of BQRGF on HF and explore the underlying mechanisms of action. MATERIALS AND METHODS UPLC-Q-TOF-MS technology was employed to identify the material basis of BQRGF. Mice with carbon tetrachloride (CCl4)-induced HF received BQRGF at three doses (3.87, 7.74, and 15.48 g/kg per day). We examined serum and liver biochemical indicators and liver histology to assess the therapeutic impact. Primary mouse cells were isolated and utilized for experimental analysis. MSMP expression levels were examined in vitro and in vivo experimental models, including human and mouse tissue. Furthermore, lentivirus and small interfering RNA (siRNA) transfections were employed to manipulate microseminoprotein (MSMP) expression in LO2 cells (human normal liver cells). These manipulated LO2 cells were then co-cultured with LX2 human hepatic stellate cells (HSCs). Through the modulation of MSMP expression in co-cultured cells, administering recombinant MSMP (rMSMP) with or without BQRGF-medicated serum, and using specific pathway inhibitors or agonists in LX2 cells, we elucidated the underlying mechanisms. RESULTS A total of 48 compounds were identified from BQRGF, with 12 compounds being absorbed into the bloodstream and 9 compounds being absorbed into the liver. Four weeks of BQRGF treatment in the HF mouse model led to significant improvements in biochemical and molecular assays and histopathology, particularly in the medium and high-dose groups. These improvements included a reduction in the level of liver injury and fibrosis-related factors. MSMP levels were elevated in human and mouse fibrotic liver tissues, and this increase was mitigated in HF mice treated with BQRGF. Moreover, primary cells and co-culture studies revealed that BQRGF reduced MSMP expression, decreased the expression of the hepatic stellate cell (HSC) activation markers, and suppressed critical phosphorylated protein levels in the CCR2/PI3K/AKT pathway. These findings were further validated using CCR2/PI3K/AKT signaling inhibitors and agonists in MSMP-activated LX2 cells. CONCLUSIONS Collectively, our results suggest that BQRGF combats HF by diminishing MSMP levels and inhibiting MSMP-induced HSC activation through the CCR2/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yan Xue
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wanchun Zhu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Fengjie Qiao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yilan Yang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jiaohao Qiu
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Chen Zou
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yating Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xin Zhang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhi Shang
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yueqiu Gao
- Laboratory of Cellular Immunity, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lingying Huang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Ruan S, Li J, Lei S, Zhang S, Xu D, Zuo A, Li L, Guo Y. Knockout of C1q/tumor necrosis factor-related protein-9 aggravates cardiac fibrosis in diabetic mice by regulating YAP-mediated autophagy. Front Pharmacol 2024; 15:1407883. [PMID: 39040468 PMCID: PMC11260687 DOI: 10.3389/fphar.2024.1407883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Diabetic cardiomyopathy (DCM) is predominantly distinguished by impairment in ventricular function and myocardial fibrosis. Previous studies revealed the cardioprotective properties of C1q/tumor necrosis factor-related protein 9 (CTRP9). However, whether CTRP9 affects diabetic myocardial fibrosis and its underlying mechanisms remains unclear. Methods We developed a type 1 diabetes (T1DM) model in CTRP9-KO mice via streptozotocin (STZ) induction to examine cardiac function, histopathology, fibrosis extent, Yes-associated protein (YAP) expression, and the expression of markers for autophagy such LC3-II and p62. Additionally, we analyzed the direct impact of CTRP9 on high glucose (HG)-induced transdifferentiation, autophagic activity, and YAP protein levels in cardiac fibroblasts. Results In diabetic mice, CTRP9 expression was decreased in the heart. The absence of CTRP9 aggravated cardiac dysfunction and fibrosis in mice with diabetes, alongside increased YAP expression and impaired autophagy. In vitro, HG induced the activation of myocardial fibroblasts, which demonstrated elevated cell proliferation, collagen production, and α-smooth muscle actin (α-SMA) expression. CTRP9 countered these adverse effects by restoring autophagy and reducing YAP protein levels in cardiac fibroblasts. Notably, the protective effects of CTRP9 were negated by the inhibition of autophagy with chloroquine (CQ) or by YAP overexpression through plasmid intervention. Notably, the protective effect of CTRP9 was negated by inhibition of autophagy caused by chloroquine (CQ) or plasmid intervention with YAP overexpression. Discussion Our findings suggest that CTRP9 can enhance cardiac function and mitigate cardiac remodeling in DCM through the regulation of YAP-mediated autophagy. CTRP9 holds promise as a potential candidate for pharmacotherapy in managing diabetic cardiac fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Guo
- Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Wang X, Liu H, Wang Y, Wang P, Yi Y, Lin Y, Li X. Novel protein C6ORF120 promotes liver fibrosis by activating hepatic stellate cells through the PI3K/Akt/mTOR pathway. J Gastroenterol Hepatol 2024; 39:1422-1430. [PMID: 38523410 DOI: 10.1111/jgh.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIM The role of C6ORF120 in promoting CCL4-induced hepatic fibrosis and its possible mechanisms were explored in C6orf120 knockout rats (C6orf120-/-) and LX-2 cells (a type of human hepatic stellate cell line). METHODS In vivo experiments, wild-type and C6orf120-/- rats were used to investigate the function of C6ORF120. In the in vitro experiments, C6ORF120 recombinant protein (rC6ORF120) at a concentration of 200 ng/mL was used to stimulate LX-2 cells. Sirius Red staining, Masson staining, western blotting, polymerase chain reaction, immunohistochemistry, and immunofluorescence were used to explore fibrosis-associated factors. RESULTS C6orf120-/- rats showed mild fibrosis and liver injury in the CCL4-induced liver fibrosis model. Furthermore, RNA-seq revealed that C6orf120-/- rats had less extracellular matrix deposition and activated stellate cells. Consistent with the in vivo, the rC6ORF120 induced LX-2 cell activation. Moreover, mechanistic studies revealed that the p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR levels were significantly elevated and LY294002 (a PI3K/Akt/mTOR typical pathway inhibitor) reversed the function of C6ORF120 in activating LX-2 cells. CONCLUSION C6ORF120 could activate hepatic stellate cells and promote hepatic fibrosis via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Xin Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Hui Liu
- Department of Center of Infectious Disease, Beijing Ditan Hospital; Capital Medical University, Beijing, China
| | - Yuqi Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yunyun Yi
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yingying Lin
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
| | - Xin Li
- Department of Center of Integrated Traditional Chinese and Western Medicine, Peking University Ditan Teaching Hospital, Beijing, China
- Department of Center of Integrated Traditional Chinese and Western Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
16
|
Xu AL, Han L, Yan J, Liu D, Wang W. Effects of Mesenchymal Stem Cells-Derived Extracellular Vesicles on Inhibition of Hepatic Fibrosis by Delivering miR-200a. Tissue Eng Regen Med 2024; 21:609-624. [PMID: 38568409 PMCID: PMC11087440 DOI: 10.1007/s13770-024-00631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Hepatic fibrosis (HF) is a common pathological feature of chronic hepatic diseases. We aimed to illuminate the significance of amniotic mesenchymal stem cells (AMSCs)-derived extracellular vesicles (AMSCs-EVs) in HF. METHODS Human AMSCs-EVs were isolated and identified. HF mice were constructed and treated with EVs. The fibrosis was observed by staining experiments and Western blot (WB) assay. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and hepatic hydroxyproline (Hyp) were detected to confirm liver function. For the in vitro experiments, human hepatic stellate cells were induced with transforming growth factor-β and treated with EVs. To measure the degree of HF, the expression of alpha-smooth muscle actin (α-SMA) and Collagen I was detected by WB assay, and cell proliferation was detected by cell counting kit 8 assay. The levels of miR-200a, Zinc finger E-box binding homeobox 1 (ZEB1), and phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) were detected by WB and real-time quantitative polymerase chain reaction. The binding of ZEB1 to PIK3R3 and miR-200a to ZEB1 was analyzed by chromatin immunoprecipitation and dual luciferase assays to validate their relationships. RESULTS Human AMSCs and AMSCs-EVs were obtained. Serum ALT, AST, TBIL, and hepatic Hyp were increased, implying the fibrosis degree was aggravated in HF mice, which was decreased again after EV treatment. EVs inhibited HF degree by reducing α-SMA and Collagen I and promoting cell proliferation. AMSCs-EVs delivered miR-200a into hepatocytes, which up-regulated miR-200a expression, inhibited ZEB1 expression, and reduced its enrichment on the PIK3R3 promoter, therefore inhibiting PIK3R3 expression and alleviating HF. Overexpression of ZEB1 or PIK3R3 attenuated the anti-fibrotic effect of AMSCs-EVs. CONCLUSION Human AMSCs-derived EVs mediated miR-200a delivery and inhibition of intracellular ZEB1/PIK3R3 axis to exert anti-fibrosis effects.
Collapse
Affiliation(s)
- Ai-Lei Xu
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Long Han
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Jun Yan
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Dan Liu
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China
| | - Wei Wang
- Department of Gastroenterology, Hunan Aerospace Hospital, 189 Fenglin 3rd Road, Yuelu District, Changsha, 410205, Hunan, China.
| |
Collapse
|
17
|
Wang FR, Peng ML, Zhu QF, Yu LL, Zhang LJ, Xu SY, Wang Q, Li J, He X, Liao SG, Ao JL, Xu GB. Withanolides from the active extract of Physalis angulate and their anti-hepatic fibrosis effects. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117830. [PMID: 38301983 DOI: 10.1016/j.jep.2024.117830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Physalis angulata L., a traditional Chinese medicine called "Kuzhi" in China, was used traditionally to treat liver diseases (eg. icterus, hepatitis) as well as malaria, asthma, and rheumatism. AIM OF THE STUDY Our study aimed to investigate the withanolides with anti-hepatic fibrosis effect from P. angulate. MATERIALS AND METHODS Withanolides were obtained from the EtOH extract of P. angulate by bioassay-molecular networking analysis-guided isolation using column chromatography and normal/reversed-phase semipreparative HPLC. The structures of new withanolides were elucidated by combinations of spectroscopic techniques with NMR and ECD calculations. MTT cell viability assay, AO/EB staining method, cell wound healing assay, ELISA and Western blot experiments were employed to evaluate the anti-hepatic fibrosis activity and to uncover related mechanism. Molecular docking analysis and cellular thermal shift assay were used to evaluate and verify the interaction between the active withanolides and their potential targets. RESULTS Eight unreported withanolides, withagulides A-H (1-8), along with twenty-eight known ones were obtained from P. angulate. Withanolides 6, 9, 10, 24, 27, and 29-32 showed marked anti-hepatic fibrosis effect with COL1A1 expression inhibition above 50 %. Physalin F (9), the main component in the active fraction, significantly decreased the TGF β1-stimulated expressions of collagen I and α-SMA in LX-2 cells. Mechanism study revealed that physalin F exerted its anti-hepatic fibrosis effect via the PI3K/AKT/mTOR signaling pathway. CONCLUSION This study suggested that withanolides were an important class of natural products with marked anti-hepatic fibrosis effect. The main withanolide physalin F might be a promising candidate for hepatic fibrosis treatment. The work provided experimental foundation for the use of P. angulate to treat hepatic fibrosis.
Collapse
Affiliation(s)
- Fu-Rui Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Mei-Lin Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Qin-Feng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Ling-Ling Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Li-Jie Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Shi-Ying Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Qian Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China
| | - Xun He
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| | - Jun-Li Ao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| | - Guo-Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy, Guizhou Medical University, Gui-an New District, 550025, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases by Authentic Medicinal Materials in Guizhou Province, Gui-an New District, 550025, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM, Ministry of Education, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
18
|
Lou D, Fang Q, He Y, Ma R, Wang X, Li H, Qi M. Oxymatrine alleviates high-fat diet/streptozotocin-induced non-alcoholic fatty liver disease in C57BL/6 J mice by modulating oxidative stress, inflammation and fibrosis. Biomed Pharmacother 2024; 174:116491. [PMID: 38537582 DOI: 10.1016/j.biopha.2024.116491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a complex complication of type 2 diabetes mellitus (T2DM). Oxymatrine (OMT) is an alkaloid extracted from Sophora flavescens with broad pharmacological effects. However, there is currently a lack of research on OMT in the field of NAFLD. The present study aimed to explore the effects and underlying mechanisms of oxymatrine in treating T2DM with NAFLD. The T2DM mice model was induced by high-fat diet (HFD) combined with streptozotocin (STZ) injection in male C57BL/6 J mice. Animals were randomly divided into four groups (n = 8): Control group, DC group, OMT-L group (45 mg/kg i.g.), and OMT-H group (90 mg/kg, i.g.). The drug was administered once a day for 8 weeks. In addition, HepG2 hepatocytes were incubated with palmitic acid (PA) to establish a fatty liver cell model. Treated with OMT, the body weight and fasting blood glucose (FBG) of DC mice were reduced and the liver organ coefficient was significantly optimized. Meanwhile, OMT markedly enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and also reduced malondialdehyde (MDA) levels. These biochemical alterations were accompanied by noticeable improvements in liver histopathology. Furthermore, OMT down-regulated the expression of NOD-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1) and collagen I significantly, highlighting its potential in modulating inflammatory and fibrotic pathways. In conclusion, OMT improved liver impairment effectively in diabetic mice by suppressing oxidative stress, inflammation and fibrosis. These results suggest that OMT may represent a novel therapy for NAFLD with diabetes.
Collapse
Affiliation(s)
- Di Lou
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qing Fang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yinghao He
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ruyu Ma
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xinyan Wang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Hanbing Li
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| | - Minyou Qi
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
19
|
Xu C, Fang T, Qu J, Miao Y, Tian L, Zhang M, Zhuang H, Sun B, Chen L. RASSF4 Attenuates Metabolic Dysfunction-Associated Steatotic Liver Disease Progression via Hippo Signaling and Suppresses Hepatocarcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:101348. [PMID: 38697356 PMCID: PMC11217689 DOI: 10.1016/j.jcmgh.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a dynamic chronic liver disease closely related to metabolic abnormalities such as diabetes and obesity. MASLD can further progress to metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). However, the mechanisms underlying the progression of MASLD and further progression to liver fibrosis and liver cancer are unknown. METHODS In this study, we performed transcriptome analysis in livers from mice with MASLD and found suppression of a potential anti-oncogene, RAS association domain protein 4 (RASSF4). RASSF4 expression levels were measured in liver or tumor tissues of patients with MASH or HCC, respectively. We established RASSF4 overexpression and knockout mouse models. The effects of RASSF4 were evaluated by quantitative polymerase chain reaction, Western blotting, histopathological analysis, wound healing assays, Transwell assays, EdU incorporation assays, colony formation assays, sorafenib sensitivity assays, and tumorigenesis assays. RESULTS RASSF4 was significantly down-regulated in MASH and HCC samples. Using liver-specific RASSF4 knockout mice, we demonstrated that loss of hepatic RASSF4 exacerbated hepatic steatosis and fibrosis. In contrast, RASSF4 overexpression prevented steatosis in MASLD mice. In addition, RASSF4 in hepatocytes suppressed the activation of hepatic stellate cells (HSCs) by reducing transforming growth factor beta secretion. Moreover, we found that RASSF4 is an independent prognostic factor for HCC. Mechanistically, we found that RASSF4 in the liver interacts with MST1 to inhibit YAP nuclear translocation through the Hippo pathway. CONCLUSIONS These findings establish RASSF4 as a therapeutic target for MASLD and HCC.
Collapse
Affiliation(s)
- Chaofei Xu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jingru Qu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yahui Miao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lei Tian
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Man Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatobiliopancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
20
|
Costa CRR, Chalgoumi R, Baker A, Guillou C, Yamaguti PM, Simancas Escorcia V, Abbad L, Amorin BR, de Lima CL, Cannaya V, Benassarou M, Berdal A, Chatziantoniou C, Cases O, Cosette P, Kozyraki R, Acevedo AC. Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis. Sci Rep 2024; 14:9497. [PMID: 38664418 PMCID: PMC11045870 DOI: 10.1038/s41598-024-59713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.
Collapse
Affiliation(s)
- Cláudio Rodrigues Rezende Costa
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
- Department of Dentistry, Health Group of Natal (GSAU-NT), Brazilian Air Force, Natal, Parnamirim, Brazil
| | - Rym Chalgoumi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Amina Baker
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Clément Guillou
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Paulo Marcio Yamaguti
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Grupo de Investigación GENOMA, Universidad del Sinú, Cartagena, Colombia
| | - Lilia Abbad
- MRS1155, INSERM, Sorbonne Université, 75020, Paris, France
| | - Bruna Rabelo Amorin
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital de La Pitié Salpétrière, Sorbonne Université, 75006, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France
| | | | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Pascal Cosette
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France.
- Rouen University, UFR SANTE ROUEN NORMANDIE, Inserm 1096, 76000, Rouen, France.
| | - Ana Carolina Acevedo
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
21
|
Ma R, Xie N, Shu Y, Wu Y, He P, Xiang Y, Zhou Y, Wang Y. Cannabidiol alleviates carbon tetrachloride-induced liver fibrosis in mice by regulating NF-κB and PPAR-α pathways. Exp Biol Med (Maywood) 2024; 249:10141. [PMID: 38711461 PMCID: PMC11070938 DOI: 10.3389/ebm.2024.10141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/11/2023] [Indexed: 05/08/2024] Open
Abstract
Liver fibrosis has become a serious public health problem that can develop into liver cirrhosis and hepatocellular carcinoma and even lead to death. Cannabidiol (CBD), which is an abundant nonpsychoactive component in the cannabis plant, exerts cytoprotective effects in many diseases and under pathological conditions. In our previous studies, CBD significantly attenuated liver injury induced by chronic and binge alcohol in a mouse model and oxidative bursts in human neutrophils. However, the effects of CBD on liver fibrosis and the underlying mechanisms still need to be further explored. A mouse liver fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and used to explore the protective properties of CBD and related molecular mechanisms. After the injection protocol, serum samples and livers were used for molecular biology, biochemical and pathological analyses. The results showed that CBD could effectively improve liver function and reduce liver damage and liver fibrosis progression in mice; the expression levels of transaminase and fibrotic markers were reduced, and histopathological characteristics were improved. Moreover, CBD inhibited the levels of inflammatory cytokines and reduced the protein expression levels of p-NF-κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB and activating PPAR-α. In conclusion, these results suggest that the hepatoprotective effects of CBD may be due to suppressing the inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-α signaling pathways might be involved in this process.
Collapse
Affiliation(s)
- Run Ma
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
- Sichuan Provincial Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Na Xie
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanhui Shu
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yafeng Wu
- Clinical Laboratory, The Fourth People’s Hospital of Ya’an City, Ya’an, Sichuan, China
| | - Ping He
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yining Xiang
- Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yan Zhou
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuping Wang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
22
|
Hu X, Shen H, Liu R, Tang B, Deng F. Mechanism of acacetin regulating hepatic stellate cell apoptosis based on network pharmacology and experimental verification. Heliyon 2024; 10:e28693. [PMID: 38571642 PMCID: PMC10988056 DOI: 10.1016/j.heliyon.2024.e28693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Background Hepatic fibrosis is caused by various liver diseases and eventually develops into liver cancer. There is no specific drug approved for the treatment of hepatic fibrosis in the world. Acacetin (AC), a natural flavonoid, is widely present in nature in various plants, such as black locust, Damiana, Silver birch. It has been reported that acacetin can inhibit the proliferation of cancer cells and induce apoptosis. Purpose In this study, we investigated the effect of acacetin on hepatic stellate cell apoptosis, thereby improving hepatic fibrosis, and combined experimental validation and molecular docking to reveal the underlying mechanism. Result First, we discovered that acacetin inhibited hepatic stellate cell proliferation as well as the expression of fibrosis-related proteins α-smooth muscle actin (α-SMA) and collagen type I 1 gene (COL1A1) in LX2 cells. Acacetin was then found to promote apoptosis of hepatic stellate cells through the caspase cascade pathway. Network pharmacology screening showed that TP53, CASP3, CASP8, BCL2, PARP1, and BAX were the most important targets related to apoptosis in the PPI network. GO and KEGG analyses of these six important targets were performed, and the top 10 enriched biological processes and related signaling pathways were revealed. Further network pharmacology analysis proved that apoptosis was involved in the biological process of acacetin's action against hepatic stellate cells. Finally, molecular docking revealed that acacetin binds to the active sites of six apoptotic targets. In vitro experiments further confirmed that acacetin could promote the apoptosis of LX2 cells by inducing the activation of P53, thereby improving hepatic fibrosis. Conclusion acacetin induces P53 activation and promotes apoptosis of hepatic stellate cells thereby ameliorating hepatic fibrosis.
Collapse
Affiliation(s)
- Xue Hu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Haotian Shen
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Rong Liu
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| | - Bin Tang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Fengmei Deng
- School of Basic Medical Science, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
23
|
Pydyn N, Ferenc A, Trzos K, Pospiech E, Wilamowski M, Mucha O, Major P, Kadluczka J, Rodrigues PM, Banales JM, Herranz JM, Avila MA, Hutsch T, Malczak P, Radkowiak D, Budzynski A, Jura J, Kotlinowski J. MCPIP1 Inhibits Hepatic Stellate Cell Activation in Autocrine and Paracrine Manners, Preventing Liver Fibrosis. Cell Mol Gastroenterol Hepatol 2024; 17:887-906. [PMID: 38311169 PMCID: PMC11026697 DOI: 10.1016/j.jcmgh.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND & AIMS Hepatic fibrosis is characterized by enhanced deposition of extracellular matrix (ECM), which results from the wound healing response to chronic, repeated injury of any etiology. Upon injury, hepatic stellate cells (HSCs) activate and secrete ECM proteins, forming scar tissue, which leads to liver dysfunction. Monocyte-chemoattractant protein-induced protein 1 (MCPIP1) possesses anti-inflammatory activity, and its overexpression reduces liver injury in septic mice. In addition, mice with liver-specific deletion of Zc3h12a develop features of primary biliary cholangitis. In this study, we investigated the role of MCPIP1 in liver fibrosis and HSC activation. METHODS We analyzed MCPIP1 levels in patients' fibrotic livers and hepatic cells isolated from fibrotic murine livers. In vitro experiments were conducted on primary HSCs, cholangiocytes, hepatocytes, and LX-2 cells with MCPIP1 overexpression or silencing. RESULTS MCPIP1 levels are induced in patients' fibrotic livers compared with their nonfibrotic counterparts. Murine models of fibrosis revealed that its level is increased in HSCs and hepatocytes. Moreover, hepatocytes with Mcpip1 deletion trigger HSC activation via the release of connective tissue growth factor. Overexpression of MCPIP1 in LX-2 cells inhibits their activation through the regulation of TGFB1 expression, and this phenotype is reversed upon MCPIP1 silencing. CONCLUSIONS We demonstrated that MCPIP1 is induced in human fibrotic livers and regulates the activation of HSCs in both autocrine and paracrine manners. Our results indicate that MCPIP1 could have a potential role in the development of liver fibrosis.
Collapse
Affiliation(s)
- Natalia Pydyn
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland.
| | - Anna Ferenc
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Katarzyna Trzos
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Ewelina Pospiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wilamowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Olga Mucha
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Piotr Major
- Jagiellonian University Medical College, 2nd Department of General Surgery, Krakow, Poland
| | - Justyna Kadluczka
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian-Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Jose M Herranz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Matias A Avila
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Hepatology Program, Liver Unit, Instituto de Investigación de Navarra (IdisNA), Clínica Universidad de Navarra and Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Tomasz Hutsch
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland; Veterinary Diagnostic Laboratory ALAB Bioscience, Warsaw, Poland
| | - Piotr Malczak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dorota Radkowiak
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Budzynski
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jolanta Jura
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland
| | - Jerzy Kotlinowski
- Jagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of General Biochemistry, Krakow, Poland.
| |
Collapse
|
24
|
Dan L, Hao Y, Song H, Wang T, Li J, He X, Su Y. Efficacy and potential mechanisms of the main active ingredients of astragalus mongholicus in animal models of liver fibrosis: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117198. [PMID: 37722514 DOI: 10.1016/j.jep.2023.117198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus (AM) is a Qi-tonifying and immune-regulating herb widely used in traditional Chinese medicine (TCM), which is increasingly regarded as a profound complementary medication in the treatment of fibrosis disease. Astragaloside (AS), astragaloside flavonoids (AF) and astragaloside polysaccharides (APS) are the main active ingredients of Astragalus Mongholicus (AM) that have a significant therapeutic effect on liver fibrosis. AIM OF THE STUDY This systematic review and meta-analysis aims to evaluate the effects and possible mechanisms of the main active ingredients of AM including astragaloside (AS), astragalus flavone (AF) and astragalus polysaccharide (APS) in animal models of liver fibrosis. MATERIALS AND METHODS We systematically searched ten databases PubMed, Web of Science, Embase, Scopus, CINAHL, ProQuest database, China National Knowledge Internet (CNKI), VIP Information Chinese Periodical Service Platform (VIP), WangFang database and China Biology Medicine Disc (CBM) to identify relevant animal studies from inception to November 2022. The SYRCLE's risk of bias tool was used to assess the methodological quality. The statistical analysis was performed using RevMan 5.4 software. RESULTS Twenty-three studies involving 482 animals were included. Studies quality scores ranged from 4 to 5. Alanine aminotransferase (ALT) (SMD, -3.87; 95% CI, -5.09 to -2.65; P < 0.00001) aminotransferase (AST) (SMD, -4.43; 95% CI, -5.77 to -3.08; P < 0.00001), hydroxyproline (HYP) (SMD, -2.94; 95% CI, -3.83 to -2.05; P < 0.00001) and transforming growth factor-β1 (TGF-β1) (SMD, -2.82; 95% CI, -3.57 to -2.06; P < 0.00001) were the main outcome measures to be analyzed. The meta-analysis revealed that the main active ingredients of AM lowered the levels of known risk factors including liver index (SMD, -1.25; 95% CI, -1.63 to -0.87; P < 0.00001), degree of liver fibrosis (SMD, -1.93; 95% CI, -2.57 to -1.28; P < 0.00001), collagen α type I (Col)-1 (SMD, -3.71; 95% CI, -5.63 to -1.79; P = 0.0001), hyaluronic acid (HA) (SMD, -2.65; 95% CI, -3.69 to -1.61; P < 0.00001), laminin (LN) (SMD, -2.06; 95% CI, -2.51 to -1.61; P < 0.00001), type IV collagen (CIV) (SMD, -3.04; 95% CI, -4.34 to -1.74; P < 0.00001), procollagen typeIII (PCIII) (SMD, -2.60; 95% CI, -3.15 to -2.05; P < 0.00001), albumin (ALB) (SMD, -1.19; 95% CI, -1.63 to -0.75; P < 0.00001), total bilirubin (TBiL) (SMD, -3.63; 95% CI, -5.39 to -1.88; P < 0.0001), α-smooth muscle actin (α-SMA) (SMD, -5.27; 95% CI, -6.94 to -3.61; P < 0.00001) and Smad3 (SMD, -4.11; 95% CI, -7.17 to -1.05; P = 0.009) level. CONCLUSION Our meta-analysis demonstrates the effective role of the main active ingredients of AM in preclinical studies of liver fibrosis. The underlying mechanisms may be related to attenuation of oxidative stress, modulation of inflammatory response and inhibition of collagen production. However, due to the significant heterogeneity and poor quality of included studies, positive findings should be treated cautiously. REGISTRATION PROSPERO ID CRD42023382282.
Collapse
Affiliation(s)
- Lijuan Dan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yanwei Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongfei Song
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tianyuan Wang
- The Affiliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, Sichuan, China
| | - Jia Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyan He
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
25
|
Wang H, Chang Y, Liu X, Liu L, Hua M, Li A. Protective effects of baicalin on diethyl nitrosamine-induced liver cirrhosis by suppressing oxidative stress and inflammation. Chem Biol Drug Des 2024; 103:e14386. [PMID: 37923393 DOI: 10.1111/cbdd.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Baicalin (BA) is a natural product extract with anti-inflammatory, antioxidant, and hepatoprotective properties. Given that the exact underlying mechanisms responsible for the impact of BA on liver cirrhosis remain ambiguous, a detailed investigation is sorely needed. Accordingly, a rat liver cirrhosis model was established via the intraperitoneal injection of diethyl nitrosamine (DEN, 100 mg/kg). Following the modeling, these rats were given BA (100 mg/kg) or N-acetylcysteine (NAC, 150 mg/kg) alone or in combination. The pathological morphology of rat liver tissues in each group was observed by hematoxylin and eosin staining and Masson's trichrome staining. The expression of fibrosis-related proteins was evaluated by Western blot, and the levels of liver function-related biochemical indexes, oxidative stress-related indexes, and inflammatory factors in the serum by enzyme-linked immunosorbent assays (ELISA). The level of mitochondrial reactive oxygen species was measured by flow cytometry. The results depicted that in the rat model of DEN-induced liver cirrhosis, BA reduced the expression of fibrosis-related proteins (collagen type I alpha 1, α-smooth muscle actin, and transforming growth factor-β1), thereby alleviating the structural fibrosis of liver tissue. Furthermore, BA could diminish the level of mitochondrial reactive oxygen species, and the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), interleukin (IL)-1β, IL-6, tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein-1 (MCP-1), while promoting albumin, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels. Notably, all these effects of BA above were strengthened following the combined treatment of BA and NAC. On the whole, BA suppresses liver fibrosis by inhibiting oxidative stress and inflammation, thereby exerting a hepatoprotective effect.
Collapse
Affiliation(s)
- Hui Wang
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Yufei Chang
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Xiao Liu
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Linan Liu
- Emergency Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Mingxi Hua
- Capital Medical University Affiliated Beijing Shijitan Hospital Biomedical Innovation Center, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Ang Li
- Critical Care Medicine Department, Beijing Ditan Hospital Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Wang T, Lu Z, Sun GF, He KY, Chen ZP, Qu XH, Han XJ. Natural Products in Liver Fibrosis Management: A Five-year Review. Curr Med Chem 2024; 31:5061-5082. [PMID: 38362686 DOI: 10.2174/0109298673288458240203064112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024]
Abstract
Liver fibrosis, characterized by the overproduction of extracellular matrix proteins within liver tissue, poses a rising global health concern. However, no approved antifibrotic drugs are currently available, highlighting the critical need for understanding the molecular mechanisms of liver fibrosis. This knowledge could not only aid in developing therapies but also enable early intervention, enhance disease prediction, and improve our understanding of the interaction between various underlying conditions and the liver. Notably, natural products used in traditional medicine systems worldwide and demonstrating diverse biochemical and pharmacological activities are increasingly recognized for their potential in treating liver fibrosis. This review aims to comprehensively understand liver fibrosis, emphasizing the molecular mechanisms and advancements in exploring natural products' antifibrotic potential over the past five years. It also acknowledges the challenges in their development and seeks to underscore their potency in enhancing patient prognosis and reducing the global burden of liver disease.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhuo Lu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Gui-Feng Sun
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Kai-Yi He
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Zhi-Ping Chen
- Department of Critical Care Medicine, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xin-Hui Qu
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
- The Second Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, P.R. China
| |
Collapse
|
27
|
Jiao K, Yang K, Wang J, Ni Y, Hu C, Liu J, Zhou M, Zheng J, Li Z. 27-Hydroxycholesterol induces liver fibrosis via down-regulation of trimethylation of histone H3 at lysine 27 by activating oxidative stress; effect of nutrient interventions. Free Radic Biol Med 2024; 210:462-477. [PMID: 38056577 DOI: 10.1016/j.freeradbiomed.2023.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Chronic liver injury caused by activation of hepatic stellate cells (HSCs) is a key event in the development of liver fibrosis (LF). A high-cholesterol diet can prompt accumulation of free cholesterol in HSCs, which promotes HSC activation and progression of LF. OBJECTIVE 27-Hydroxycholesterol (27HC) is the most abundant cholesterol metabolite. Here, we investigated whether the HSC activation and LF induced by high cholesterol is caused by its metabolite 27HC, and whether TGFβ classical signaling were involved in these processes. METHODS In vitro, LX2 and HSC-T6 cells were used to explore the effects of 27HC on activation of HSCs, while LSECs were used to observe the effects of 27HC on capillarization. In vivo, zebrafish were used to assess the effect of 27HC on LF. RESULTS The cholesterol metabolite 27HC promoted the proliferation of HSCs and up-regulated expression of COL-1 and α-SMA as well as CTGF and TIMP1. Also, 27HC up-regulated expression of Smad2/3 and phosphorylated Smad2/3 in HSCs. Furthermore, 27HC-induced up-regulation of COL-1, α-SMA, CTGF, and TIMP1 protein levels was inhibited by Smad2/3 knockout. In addition, 27HC down-regulated H3K27me3 by inhibition of EZH2 and promotion of UTX and JMJD3 expression via the TGFβ signaling, thereby inducing activation of HSCs. Notably, 27HC significantly aggravated the pathological damage induced by DEN, and induced deposition of collagen fibers in zebrafish liver. Folic acid (FA) and resveratrol (RES) both reduced 27HC-induced production of reactive oxygen species (ROS) and inhibited the effects of TGFβ signaling on EZH2, UTX, and JMJD3, thereby increasing H3K27me3, and finally jointly inhibiting LF. CONCLUSION Cholesterol is metabolized to 27HC, which mediates activation of HSCs and onset of LF. Reduced expression of H3k27me3 by TGFβ signaling is crucial to 27HC-induced LF. FA and RES ameliorated activation of HSCs and LF by reducing 27HC-induced production of ROS and regulating of H3K27me3.
Collapse
Affiliation(s)
- Kailin Jiao
- Department of Nutrition, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Keke Yang
- Nanjing Municipal Center for Disease Control and Prevention, Nanjing, China
| | - Jie Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yifan Ni
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiao Liu
- Department of Nutrition, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jin Zheng
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China.
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Xiao Y, Li X, Wang L, Hu M, Liu Y. Proanthocyanidin A2 attenuates the activation of hepatic stellate cells by activating the PPAR-γ signalling pathway. Autoimmunity 2023; 56:2250101. [PMID: 37615088 DOI: 10.1080/08916934.2023.2250101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/07/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Liver fibrosis is the pathological process of chronic liver diseases induced by hepatic stellate cells. Proanthocyanidin A2 (PA2) has multiple pharmacological activities. In this study, we aimed to explore the effects of PA2 on hepatic stellate cell (HSC) activation in liver fibrosis. LX-2 cells were treated with TGF-β1 to establish a fibrosis cell model. Cell viability was evaluated using cell counting kit-8. The levels of fibrosis-related factors (collagen I, fibronectin, and α-SMA) were examined using quantitative real-time polymerase chain reaction, western blot, and immunofluorescence assay. The molecular mechanisms of PA2 were evaluated by RNA-seq, bioinformatic analysis, and western blot. The results showed that PA2 suppressed cell viability, and downregulated fibrosis-related factors induced by TGF-β1, suggesting PA2 suppressed the activation of HSCs. PA2 treatment-induced differentially expressed mRNAs are predicted to be associated with the PPAR-γ pathway. PA2 reversed the downregulation of PPAR-γ and the upregulation of phosphorylated (p)-Smad2 and Smad3. A rescue experiment illustrated that the inactivation of the PPAR-γ pathway reversed the effects of PA2 on cell viability and HSC activation. In conclusion, PA2 inhibited TGF-β1-induced activation of HSCs by activating the PPAR-γ/Smad pathway. The findings suggested that PA2 may be an effective treatment for liver fibrosis.
Collapse
Affiliation(s)
- Yacong Xiao
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Xiujuan Li
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Li Wang
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Mingyue Hu
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| | - Youlin Liu
- Guangdong Lingnan Institute of Technology, Qingyuan, Guangdong, P.R. China
| |
Collapse
|
29
|
Hu H, Lin G, He F, Liu J, Jia R, Li K, Hong W, Fang M, Zeng JZ. Design, synthesis, and biological evaluation of carbonyl-hydrazine-1-carboxamide derivatives as anti-hepatic fibrosis agents targeting Nur77. Bioorg Chem 2023; 140:106795. [PMID: 37657195 DOI: 10.1016/j.bioorg.2023.106795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
Hepatic fibrosis remains a great challenge clinically. The orphan nuclear receptor Nur77 is recently suggested as the critical regulator of transforming growth factor-β (TGF-β) signaling, which plays a central role in multi-organic fibrosis. Herein, we optimized our previously reported Nur77-targeted compound 9 h for attempting to develop effective and safe anti-hepatic fibrosis agents. The critical pharmacophore scaffold of pyridine-carbonyl-hydrazine-1-carboxamide was retained, while the naphthalene ring was replaced with an aromatic ring containing pyridyl or indole groups. Four series of derivatives were thus generated, among which the compound 16f had excellent binding activity toward Nur77-LBD (KD = 470 nM) with the best inhibitory activity against the TGF- β 1 activation of hepatic stellate cells (HSCs) and low cytotoxicity to normal mice liver AML-12 cells (IC50 > 80 μM). In mice, 16f displayed potent activity against CCl4-induced liver fibrosis with improved liver function. Mechanistically, 16f-mediated inactivation of HSC and suppression of liver fibrosis were associated with its enhancement of autophagic flux in a Nur77-dependent manner. Together, 16f was identified as a potential anti-liver fibrosis agent. Our study suggests that Nur77 may serve as a critical anti-hepatic fibrosis target.
Collapse
Affiliation(s)
- Hongyu Hu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Gang Lin
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengming He
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jie Liu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Rong Jia
- Xingzhi College, Zhejiang Normal University, Lanxi 321004, China
| | - Kun Li
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenbin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Meijuan Fang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
30
|
Shi X, Jiang W, Yang X, Ma H, Wang Z, Ai Q, Dong Y, Zhang Y, Shi Y. Aucubin inhibits hepatic stellate cell activation through stimulating Nrf2/Smad7 axis. Eur J Pharmacol 2023; 957:176002. [PMID: 37607604 DOI: 10.1016/j.ejphar.2023.176002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
AIM Liver fibrosis may develop into end-stage liver disease if left unprevented. The study is attempting to identify a compound to ameliorate liver fibrosis progression with high efficiency and low toxicity, as well as to analyze its potential molecular mechanism. METHODS The drug screening was performed using human hepatic stellate cell line LX-2 for identifying the compound as collagen I inhibitor. Primary Human hepatic stellate cells and LX-2 cell line were used to detect the antifibrotic function activity and molecular mechanism analysis in vitro. The CCl4-induced mouse experimental model was used to measure the amelioration in liver fibrosis. RESULTS This study identified Aucubin, a natural compound, as a candidate for anti-liver fibrosis. Besides, Aucubin could inhibit the collagen I and α-SMA expressions in LX-2 cells and primary human hepatic stellate cells, as well as the cell proliferation. In terms of mechanism, Aucubin could upregulate Smad7 in hepatic stellate cells in a dose-dependent manner and block TGF-β signaling. We also found that Nrf2 might be a direct target for the action of Aucubin, whose activation was necessary for Smad7 upregulation. In an in-vivo mouse model, Aucubin efficiency ameliorated the progression of CCl4-induced liver fibrosis, and reduced the hepatic levels of collagen deposition, transaminase and inflammatory cytokines. CONCLUSION Capable of inhibiting the activation of hepatic stellate cells in vitro and in vivo, Aucubin may be a potential therapeutic candidate for liver fibrosis, which is dependent on the suppression of TGF-β signaling through stimulating Nrf2/Smad7 axis.
Collapse
Affiliation(s)
- Xu Shi
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - Wenyan Jiang
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - XiaoGuang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130000, Jilin, China
| | - HeMing Ma
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Zhongfeng Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Qing Ai
- Department of Laboratory Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, Jilin, China
| | - YuTong Dong
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - YingYu Zhang
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Ying Shi
- Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
31
|
Bao L, Hao P, Jiang M, Chu W. Liquiritigenin regulates insulin sensitivity and ameliorates inflammatory responses in the nonalcoholic fatty liver by activation PI3K/AKT pathway. Chem Biol Drug Des 2023; 102:793-804. [PMID: 37455324 DOI: 10.1111/cbdd.14292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent long-term disease in the world. Liquiritigenin (LQ) is protective against a variety of hepatotoxins. Herein, we report the potential mechanism of LQ on a high-fat diet (HFD) induced NAFLD. NAFLD mice model was established by HFD for 12 weeks, and LQ treatment for 1 week. Commercially available assay kits measure liver triglycerides (TG) and total cholesterol (TC) levels. Plasm TC, TG, high-density-lipoprotein (HDL-C), and low-density-lipoprotein cholesterol (LDL-C) levels were also monitored by biochemistry. Enzyme linked immunosorbent assay (ELISA) kits were performed to analyze the pro-inflammatory factors, and intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (IPITT), and serum insulin were also determined. GO and KEGG pathway enrichment analysis was employed to analyze the overlapping genes of LQ targets and NAFLD development-related targets. Western blot was performed on key proteins of the enriched signaling pathway. HFD mice showed significant increases in hepatic TG and TC, and plasm TC, TG, and LDL-C in blood lipids, while HDL-C significantly decreased, and LQ treatment reversed their levels (p < 0.05). LQ also alleviated HFD-induced elevated levels of IPGTT, IPITT, and homeostasis model assessment of insulin resistance (HOMA-IR). And serum levels of the pro-inflammatory factor were also suppressed by LQ. PI3K/AKT pathway was enriched by KEGG pathway enrichment, and its key proteins p-PI3K and p-AKT were elevated after LQ treatment (p < 0.05). We found for the first time that LQ improves lipid accumulation, alleviates insulin resistance, and suppresses inflammatory responses in NAFLD mice, which might be associated with the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lei Bao
- Department of Endocrinology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Pei Hao
- Department of Traditional Chinese Medicine, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Meiju Jiang
- Department of Endocrinology, Qingdao Chengyang People's Hospital, Qingdao, China
| | - Weijiang Chu
- Department of Endocrinology, Laizhou City People's Hospital, Laizhou, China
| |
Collapse
|
32
|
Widiatmoko A, Fitri LE, Endharti AT, Murlistyarini S, Brahmanti H, Yuniaswan AP, Ekasari DP, Rasyidi F, Nahlia NL, Safitri PR. Inhibition Effect of Physalis angulata Leaf Extract on Viability, Collagen Type I, and Tissue Inhibitor of Metalloproteinase 1 (TIMP-1) but Not Plasminogen Activator Inhibitor-1 (PAI-1) of Keloid Fibroblast Culture. Clin Cosmet Investig Dermatol 2023; 16:2365-2373. [PMID: 37667736 PMCID: PMC10475283 DOI: 10.2147/ccid.s425036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Introduction Keloids are excessive fibroproliferative diseases that are caused by abnormal wound healing. The anti-proliferative activity of Physalis angulata compounds has potential as a keloid therapeutic agent. This study aimed to observe the effects of P. angulata on fibroblast viability and collagen type I, tissue inhibitor of metalloproteinase 1 (TIMP-1), and plasminogen activator inhibitor 1 (PAI-1) levels in human keloid fibroblasts. Methods We conducted an experimental study of P. angulata ethanol extract on three primary human keloid fibroblast 3 passage cultures with four replications. Fibroblast viability was measured using the MTT assay after incubation with 3, 5, and 10 µg/mL P. angulata. Concentrations of P. angulata used to observe effects on TIMP-1, PAI-1, and collagen type I levels were 10%, 20%, 30%, and 40% of inhibitory concentration 50 (IC50). The levels of collagen type I, TIMP-1, and PAI-1 were measured by ELISA. Mean comparisons between multiple treatment groups were analyzed using one-way ANOVA followed by post-hoc analysis. Results The 10 µg/mL P. angulata group had significantly lower fibroblast viability than the control group (p<0.05) with an IC50 6.3 µg/mL. The collagen type I level of 10% IC50 (0.63 µg/mL) P. angulata group was lower than control (12.910 vs 47.866 ng/mL) (p=0.042). Level of TIMP-1 in 40% IC50 (2.51 µg/mL) P. angulata group was lower than control (5.350 vs 9.972 ng/mL) (p=0.043). There was no significant difference in the PAI-1 levels. Conclusion This study showed the inhibitory effect of 10 µg/mL P. angulata extract on keloid fibroblast viability, with an IC50 of 6.3 µg/mL. This study also showed collagen type-1 and TIMP-1 inhibition, but not PAI-1 inhibition, after P. angulate treatment.
Collapse
Affiliation(s)
- Arif Widiatmoko
- Doctoral Program in Medical Science, Faculty of Medicine Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Loeki Enggar Fitri
- Doctoral Program in Medical Science, Faculty of Medicine Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Parasitology, Faculty of Medicine Universitas Brawijaya, Malang, East Java, Indonesia
| | - Agustina Tri Endharti
- Doctoral Program in Medical Science, Faculty of Medicine Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Parasitology, Faculty of Medicine Universitas Brawijaya, Malang, East Java, Indonesia
| | - Sinta Murlistyarini
- Doctoral Program in Medical Science, Faculty of Medicine Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Herwinda Brahmanti
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Anggun Putri Yuniaswan
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Dhany Prafita Ekasari
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Faradiani Rasyidi
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Nurul Laili Nahlia
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| | - Putri Rachma Safitri
- Department of Dermatology and Venereology, Faculty of Medicine Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang, East Java, Indonesia
| |
Collapse
|
33
|
Shen Y, Jiang B, Zhang C, Wu Q, Li L, Jiang P. Combined Inhibition of the TGF-β1/Smad Pathway by Prevotella copri and Lactobacillus murinus to Reduce Inflammation and Fibrosis in Primary Sclerosing Cholangitis. Int J Mol Sci 2023; 24:11010. [PMID: 37446187 DOI: 10.3390/ijms241311010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic disease characterized by inflammation and fibrosis of the bile ducts. Cholestasis may lead to hepatic inflammation and fibrosis, and amelioration of cholestasis may allow recovery from inflammatory and fibrotic pathological damage. Prevotella copri (P. copri) interventions have been reported to significantly improve cholestasis and liver fibrosis in 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced PSC mouse models. Even though P. copri treatment alone cannot bring about recovery from DDC-induced inflammation, it increases the abundance of Lactobacillus murinus (L. murinus) compared with DDC treatment, which has been reported to have anti-inflammatory effects. The abundance of L. murinus still not recovering to a normal level may underlie hepatic inflammation in P. copri + DDC mice. Separate or combined interventions of P. copri and L. murinus were used to investigate the molecular mechanism underlying the improvement in PSC inflammation and fibrosis. P. copri and L. murinus significantly reduced the hepatic inflammatory cell aggregation and inflammatory factor expression as well as the hepatic collagen content and fibrin factor expression in the PSC mice. Further analysis of phosphorylation and dephosphorylation levels revealed that treating the PSC mice with the P. copri and L. murinus combined intervention inhibited the activity of the DDC-activated TGF-β1/Smad pathway, thereby reducing liver inflammation and fibrosis. The combination of P. copri and L. murinus inhibits the TGF-β1/Smad pathway and reduces inflammation and fibrosis in PSC.
Collapse
Affiliation(s)
- Yu Shen
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Baorong Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Chenchen Zhang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ping Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
- Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| |
Collapse
|
34
|
Mohamed EH, Abo El-Magd NF, El Gayar AM. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci 2023; 324:121735. [PMID: 37142088 DOI: 10.1016/j.lfs.2023.121735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
AIMS Sorafenib (Sora) represents one of the few effective drugs for the treatment of advanced hepatocellular carcinoma (HCC), while resistance and cardiotoxicity limit its therapeutic efficacy. This study investigated the effect of transient receptor potential melastatin 7 (TRPM7) inhibitor, carvacrol (CARV), on overcoming Sora resistance and cardiotoxicity in thioacetamide (TAA) induced HCC in rats. MATERIALS AND METHODS TAA (200 mg/kg/twice weekly, intraperitoneal) was administered for 16 weeks to induce HCC. Rats were treated with Sora (10 mg/Kg/day; orally) and CARV (15 mg/kg/day; orally) alone or in combination, for six weeks after HCC induction. Liver and heart functions, antioxidant capacity, and histopathology were performed. Apoptosis, proliferation, angiogenesis, metastasis, and drug resistance were assessed by quantitative real time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. KEY FINDINGS CARV/Sora combination significantly improved survival rate, and liver functions, reduced Alpha-Fetoprotein level, and attenuated HCC progression compared with Sora group. CARV coadministration almost obviated Sora-induced changes in cardiac and hepatic tissues. The CARV/Sora combination suppressed drug resistance and stemness by downregulating ATP-binding cassette subfamily G member 2, NOTCH1, Spalt like transcription factor 4, and CD133. CARV boosted Sora antiproliferative and apoptotic activities by decreasing cyclin D1 and B-cell leukemia/lymphoma 2 and increasing BCL2-Associated X and caspase-3. SIGNIFICANCE CARV/Sora is a promising combination for tumor suppression and overcoming Sora resistance and cardiotoxicity in HCC by modulating TRPM7. To our best knowledge, this study represents the first study to investigate the efficiency of CARV/ Sora on the HCC rat model. Moreover, no previous studies have reported the effect of inhibiting TRPM7 on HCC.
Collapse
Affiliation(s)
- Eman H Mohamed
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, Damietta 34511, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amal M El Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
35
|
Liu R, Feng L, Tang S, Liu Y, Yang Q. The impact and mechanism of TET3 overexpression on the progression of hepatic fibrosis. Epigenomics 2023; 15:577-591. [PMID: 37464780 DOI: 10.2217/epi-2023-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Aims: To investigate whether TET3 regulates hepatic stellate cell apoptosis and understand the role of demethylation in hepatic fibrosis (HF). Methods: LX-2T cells were infected with TET3 lentivirus. After TET3 adenovirus infection, the degree of HF in each group was analyzed. Chromatin immunoprecipitation was used to verify the targeting relationship between TET3 and CBP, and finally the expression of various proteins was detected. Results: TET3 overexpression activated the CBP/FOXO1-BIM pathway, increased the expression of apoptotic proteins and accelerated the apoptosis of activated LX-2 cells. The degree of HF was improved in the TET3 upregulation group. Conclusion: TET3 can activate the CBP/FOXO1-BIM pathway to accelerate the apoptosis of activated hepatic stellate cells and ultimately alleviate HF.
Collapse
Affiliation(s)
- Ranyang Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Linlin Feng
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
- Clinical Laboratory Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou Province, China
| | - Shuang Tang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Yin Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| | - Qin Yang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guiyang, 550025, China
| |
Collapse
|
36
|
Zheng Y, Xie L, Yang D, Luo K, Li X. Small-molecule natural plants for reversing liver fibrosis based on modulation of hepatic stellate cells activation: An update. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154721. [PMID: 36870824 DOI: 10.1016/j.phymed.2023.154721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Liver fibrosis (LF) is a trauma repair process carried out by the liver in response to various acute and chronic liver injuries. Its primary pathological characteristics are excessive proliferation and improper dismissal of the extracellular matrix, and if left untreated, it will progress into cirrhosis, liver cancer, and other diseases. Hepatic stellate cells (HSCs) activation is intimately associated to the onset of LF, and it is anticipated that addressing HSCs proliferation can reverse LF. Plant-based small-molecule medications have anti-LF properties, and their mechanisms of action involve suppression of extracellular matrix abnormally accumulating as well as anti-inflammation and anti-oxidative stress. New targeting HSC agents will therefore be needed to provide a potential curative response. PURPOSE The most recent HSC routes and small molecule natural plants that target HSC described domestically and internationally in recent years were examined in this review. METHODS The data was looked up using resources including ScienceDirect, CNKI, Web of Science, and PubMed. Keyword searches for information on hepatic stellate cells included "liver fibrosis", "natural plant", "hepatic stellate cells", "adverse reaction", "toxicity", etc. RESULTS: We discovered that plant monomers can target and control various pathways to prevent the activation and proliferation of HSC and promote the apoptosis of HSC in order to achieve the anti-LF effect in this work by compiling the plant monomers that influence many common pathways of HSC in recent years. It demonstrates the wide-ranging potential of plant monomers targeting different routes to combat LF, with a view to supplying new concepts and new strategies for natural plant therapy of LF as well as research and development of novel pharmaceuticals. The investigation of kaempferol, physalin B, and other plant monomers additionally motivated researchers to focus on the structure-activity link between the main chemicals and LF. CONCLUSION The creation of novel pharmaceuticals can benefit greatly from the use of natural components. They are often harmless for people, non-target creatures, and the environment because they are found in nature, and they can be employed as the starting chemicals for the creation of novel medications. Natural plants are valuable resources for creating new medications with fresh action targets because they feature original and distinctive action mechanisms.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Long Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
37
|
Zhao Y, Yang W, Zhang X, Lv C, Lu J. Icariin, the main prenylflavonoid of Epimedii Folium, ameliorated chronic kidney disease by modulating energy metabolism via AMPK activation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116543. [PMID: 37088241 DOI: 10.1016/j.jep.2023.116543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedii Folium is a famous traditional Chinese medicine (TCM) widely used in classic formulas, Chinese patent drugs and health care products for treating kidney diseases. Therefore, we speculated that icariin, its main component, might also have a good therapeutic effect on chronic kidney disease (CKD). AIM OF STUDY To investigate the efficacy and potential mechanism of icariin on CKD. MATERIALS AND METHODS A CKD model was established by intragastric administration of adenine (200 mg/kg/d) to adult male SD rats for 28 consecutive days. TGF-β1-induced fibrotic HK-2 cells were applied to establish the renal fibrosis model in vitro. Biochemical determination, pathological staining, flow cytometry and ELISA were performed to preliminarily evaluate the renoprotection of icariin. The intervention effect of icariin on renal fibrosis progression was assessed by cell stiffness determination and multiple immunological methods. The potential mechanism of icariin on CKD was revealed by means of 1H NMR metabolomics, qRT-PCR and Western blotting analysis. RESULTS Icariin at the dosage of 100 mg/kg/d and 200 mg/kg/d markedly ameliorated rat renal function in a dose-dependent manner. Based on renal pathological features, the mechanism of icariin intervention in CKD was initially revealed by metabolomics, which was closely related to energy metabolism pathways. Furthermore, the detection results of AMPK and related factors in its mediated signaling pathways indicated that icariin exerted a therapeutic effect on CKD by attenuating inflammation and oxidative stress responses and retarding renal fibrosis progression through regulating AMPK/SIRT1/NF-κB and AMPK/ACC signaling pathways. CONCLUSION It was the first time to demonstrate that icariin could treat adenine-induced CKD by modulating energy metabolism via AMPK activation in a dose-dependent manner.
Collapse
Affiliation(s)
- Yudan Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Wanyue Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
38
|
Zhao Y, Zhang X, Wang G, Wu H, Chen R, Zhang Y, Yang S, Liu L. LXA4 inhibits TGF-β1-induced airway smooth muscle cells proliferation and migration by suppressing the Smad/YAP pathway. Int Immunopharmacol 2023; 118:110144. [PMID: 37030120 DOI: 10.1016/j.intimp.2023.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
The aims of the present study were to examine the signaling mechanisms for transforming growth factor-β1 (TGF-β1)-induced rat airway smooth muscle cells (ASMCs) proliferation and migration and to determine the effect of lipoxin A4 (LXA4) on TGF-β1-induced rat ASMCs proliferation and migration and its underlying mechanisms. TGF-β1 upregulated transcriptional coactivator Yes-associated protein (YAP) expression by activating Smad2/3 and then upregulated cyclin D1, leading to rat ASMCs proliferation and migration. This effect was reversed after treatment with the TGF-β1 receptor inhibitor SB431542. YAP is a critical mediator of TGF-β1-induced ASMCs proliferation and migration. Knockdown of YAP disrupted the pro-airway remodeling function of TGF-β1. Preincubation of rat ASMCs with LXA4 blocked TGF-β1-induced activation of Smad2/3 and changed its downstream targets, YAP and cyclin D1, resulting in the inhibition of rat ASMCs proliferation and migration. Our study suggests that LXA4 suppresses Smad/YAP signaling to inhibit rat ASMCs proliferation and migration and therefore has potential value in the prevention and treatment of asthma by negatively modulating airway remodeling.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Xiangli Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Ruilin Chen
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Yongqing Zhang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China
| | - Lu Liu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, Shaanxi 710068, PR China.
| |
Collapse
|
39
|
Lu R, Xu H, Deng X, Wang Y, He Z, Xu S, Liang S, Huang X, You H, Guo F, Cheng P, Chen AM. Physalin A alleviates intervertebral disc degeneration via anti-inflammatory and anti-fibrotic effects. J Orthop Translat 2023; 39:74-87. [PMID: 36788965 PMCID: PMC9898579 DOI: 10.1016/j.jot.2023.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Background The incidence of intervertebral disc degeneration (IVDD) is a common degenerative disease with inflammation, decreased autophagy, and progression of fibrosis as its possible pathogenesis. Physalin A (PA) is a widely studied anti-inflammatory drug. However, its therapeutic effects on IVDD remain unexplored. Therefore, we aimed to explore the therapeutic potential of PA in IVDD progression. Materials and methods In vivo, we investigated PA bioactivity using a puncture-induced IVDD rat model. IVDD signals and height changes were detected using X-ray, micro-CT, and MRI, and structural and molecular lesions using histological staining and immunohistochemistry of intervertebral disc sections. In vivo, interleukin-1 beta (IL-1β) and TGF-β1 were employed to establish inflammation fibrotic nucleus pulposus (NP) cells. The PA effect duration, concentration, influence pathways, and pathological changes in IVDD treatment were elucidated using western blotting, real-time PCR, and immunofluorescence. Results PA exerted significant effects on IVDD remission due to anti-inflammation, fibrosis reduction, and autophagy enhancement. In vitro, PA improved inflammation by blocking the NF-κB and MAPK pathways, whereas it promoted autophagy via the PI3K/AKT/mTOR pathway and affected fibrotic progression by regulating the SMAD2/3 pathway. Moreover, PA improved the disc degeneration process in IVDD model. Conclusions PA exhibited significant anti-inflammatory and anti-fibrotic effects and improved autophagy in vivo and in vitro IVDD models, thus effectively relieving IVDD progression, indicating it is a promising agent for IVDD treatment. The translational potential of this article This study successfully reveals that PA, a natural bioactive withanolide, effectively relieved IVDD progression via inflammation inhibition, fibrosis reduction, and autophagy enhancement, indicating it is a promising agent for IVDD treatment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haoran Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430030, China
| | - Yingguang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyi He
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shimeng Xu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Liang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojian Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongbo You
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Cheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - An-min Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
40
|
Wang Y, Deng X, Liu Y, Wang Y, Luo X, Zhao T, Wang Z, Cheng G. Protective effect of Anneslea fragrans ethanolic extract against CCl4-induced liver injury by inhibiting inflammatory response, oxidative stress and apoptosis. Food Chem Toxicol 2023; 175:113752. [PMID: 37004906 DOI: 10.1016/j.fct.2023.113752] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Anneslea Fragrans Wall. (AF) is a medicinal and edible plant distributed in China. Its leaves and bark generally used for the treatments of diarrhea, fever, and liver diseases. While its ethnopharmacological application against liver diseases has not been fully studied. This study was aimed to evaluate the hepatoprotective effect of ethanolic extract from A. fragrans (AFE) on CCl4 induced liver injury in mice. The results showed that AFE could effectively reduce plasma activities of ALT and AST, increase antioxidant enzymes activities (SOD and CAT) and GSH level, and decrease MDA content in CCl4 induced mice. AFE effectively decreased the expressions of inflammatory cytokines (IL-1β, IL-6, TNF-α, COX-2 and iNOS), cell apoptosis-related proteins (Bax, caspase-3 and caspase-9) and increased Bcl-2 protein expression via inhibiting MAPK/ERK pathway. Additionally, TUNEL staining, Masson and Sirius red staining, immunohistochemical analyses revealed that AFE could inhibit the CCl4-induced hepatic fibrosis formation via reducing depositions of α-SMA, collagen I and collagen III. Conclusively, the present study demonstrated that AFE had an hepatoprotective effect by MAPK/ERK pathway to inhibit oxidative stress, inflammatory response and apoptosis in CCl4-induced liver injury mice, suggesting that AFE might be served as a hepatoprotective ingredient in the prevention and treatment of liver injury.
Collapse
Affiliation(s)
- Yudan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming, 650500, China
| | - Xiaocui Deng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Yifen Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaodong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, China
| | - Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
41
|
Salvianolic acid B exerts an anti-hepatocellular carcinoma effect by regulating the Hippo/YAP pathway and promoting pSmad3L to pSmad3C simultaneously. Eur J Pharmacol 2023; 939:175423. [PMID: 36509132 DOI: 10.1016/j.ejphar.2022.175423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Salvianolic acid B (Sal B) is a component obtained from Salvia miltiorrhiza and is empirically used for liver diseases. The TGF-β/Smad and Hippo/YAP pathways may interact with each other in hepatocellular carcinoma (HCC). Previously, we found that Sal B mediates the TGF-β/Smad pathway in mice and delays liver fibrosis-carcinoma progression by promoting the conversion of pSmad3L to pSmad3C, but the effect of Sal B on the Hippo/YAP pathway has not been determined. Therefore, we used a DEN/CCl4/C2H5OH-induced liver cancer model in mice to analyze liver index and tumor incidence, detect AST and ALT serological markers, observe liver pathology and the number of Ki67-positive cells to evaluate the anti-HCC effect of Sal B in vivo. We used a TGF-β1-induced HepG2 cell model, and applied an MST1/2 inhibitor, XMU-MP-1, to detect the changes in pSmad3C/pSmad3L signaling induced by MST1/2 inhibition. Sal B significantly inhibited tumorigenesis in DEN/CCl4/C2H5OH-induced mice in vivo, and suppressed the growth of HepG2 cells by inhibiting cell proliferation and migration in vitro. Here, our study also validated the role of Sal B in reversing XMU-MP-1-induced proliferation and migration of HepG2 cells in vitro. Most importantly, we elucidated for the first time the potential mechanism of Sal B against HCC via the Hippo/YAP pathway, which may be specifically related to upregulation of MST1 and inhibition of its downstream effector protein YAP. In conclusion, these findings indicate that Sal B possesses anti- HCC effects both in vivo and in vitro by regulating the Hippo/YAP pathway and promoting pSmad3L to pSmad3C synchronously.
Collapse
|
42
|
Yang T, Wu E, Zhu X, Leng Y, Ye S, Dong R, Liu J, Zhong J, Zheng Y, Xu W, Luo J, Kong L, Zhang H. TKF, a mexicanolide-type limonoid derivative, suppressed hepatic stellate cells activation and liver fibrosis through inhibition of the YAP/Notch3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154466. [PMID: 36182796 DOI: 10.1016/j.phymed.2022.154466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/02/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Liver fibrosis is a common scarring response and may ultimately lead to liver cancer, unfortunately, there is currently no effective antifibrotic drug approved for human use. Limonoids exhibit a broad spectrum of biological activities; however, the potential role of limonoids against fibrosis is largely unknown. PURPOSE This study investigates the antifibrotic activities and potential mechanisms of TKF (3-tigloyl-khasenegasin F), a natural mexicanolide-type limonoid derivative. STUDY DESIGN/METHODS Two well-established mouse models (CCl4 challenge and bile duct ligation) were used to assess anti-fibrotic effects of TKF in vivo. Human hepatic stellate cell (HSC) line LX-2 and mouse primary hepatic stellate cells (pHSCs) also served as in vitro liver fibrosis models. RESULT TKF administration significantly attenuated hepatic histopathological injury and collagen accumulation and suppressed fibrogenesis-associated gene expression including Col1a1, Acta2, and Timp1. In LX-2 cells and mouse pHSCs, TKF dose-dependently suppressed HSC activation and the expression levels of fibrogenic markers. Mechanistic studies showed that TKF inhibited Notch3-Hes1 and YAP signalings in vivo and in vitro. Furthermore, YAP inhibition or knockdown downregulated the Notch3 expression; however, Notch3 inhibition or knockdown did not affect the level of YAP in activated HSC. We revealed that TKF inhibited Notch3-Hes1 activation and downregulated hepatic fibrogenic gene expression via inhibiting YAP. CONCLUSION The therapeutic benefit of TKF against liver fibrosis results from inhibition of YAP and Notch3-Hes1 pathways, indicating that TKF may be a novel therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Ting Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Enyi Wu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoyun Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingrong Leng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengtao Ye
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruirui Dong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaman Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiawen Zhong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ying Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjun Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hao Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
43
|
Dong Y, Zhang Y, Feng Y, An W. The protective roles of augmenter of liver regeneration in hepatocytes in the non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:928606. [PMID: 36304168 PMCID: PMC9592723 DOI: 10.3389/fphar.2022.928606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) occurs in 25% of the global population and manifests as lipid deposition, hepatocyte injury, activation of Kupffer and stellate cells, and steatohepatitis. Predominantly expressed in hepatocytes, the augmenter of liver regeneration (ALR) is a key factor in liver regulation that can alleviate fatty liver disease and protect the liver from abnormal liver lipid metabolism. ALR has three isoforms (15-, 21-, and 23-kDa), amongst which 23-kDa ALR is the most extensively studied. The 23-kDa ALR isoform is a sulfhydryl oxidase that resides primarily in the mitochondrial intermembrane space (IMS), whereby it protects the liver against various types of injury. In this review, we describe the role of ALR in regulating hepatocytes in the context of NAFLD. We also discuss questions about ALR that remain to be explored in the future. In conclusion, ALR appears to be a promising therapeutic target for treating NAFLD.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuejie Zhang
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yingmei Feng
- Department of Science and Technology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| | - Wei An
- Department of Cell Biology, Capital Medical University and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Beijing, China
- *Correspondence: Yingmei Feng, ; Wei An,
| |
Collapse
|
44
|
Cao PR, Li M, Zhang JS, Zheng YL, Chen J, Zhao YQ, Qi XD, Zhu PH, Gu YC, Kong LY, Yang MH. Epicoccanes A-D, Four Oxidative Dimers of Pyrogallol Analogues from Epicoccum nigrum. Org Lett 2022; 24:6789-6793. [PMID: 36094854 DOI: 10.1021/acs.orglett.2c02666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Epicoccanes A-D (1-4) are four novel metabolites of an endophytic fungus Epicoccum nigrum. Their distinct unprecedented structures are hypothesized as oxidative dimers of pyrogallol analogues. Compounds 1 and 2 possess a novel spirobicyclo[3.2.1]octane-6,1'-cyclopentane or -cyclohexane core skeleton. Compound 3 is of a unique cage-like pentacyclic system, which unusually contained three continuous spiro-carbons. Compound 4 is a highly rearranged dimer with five contiguous chiral centers. The absolute structures of 1 and 2 were deduced by electronic circular dichroism (ECD) calculations, and those of 3 and 4 were determined by X-ray crystallography. Compounds 1 and 4 showed potential antiliver fibrosis activity.
Collapse
Affiliation(s)
- Peng-Ran Cao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Min Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jing-Shu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yi-Lei Zheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jie Chen
- The Third People's Hospital of Kunming, 357 Wujing Road, Guandu District, Kunming 650000, People's Republic of China
| | - Yong-Qin Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Dong Qi
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Pan-Hu Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|
45
|
Ma T, Cheng H, Li T, Chen Y, Cai T, Bai J, Wu Z, Xia X, Liang T, Du Y, Fu W. N-Acetyl-l-tryptophan inhibits CCl4-induced hepatic fibrogenesis via regulating TGF-β1/SMAD and Hippo/YAP1 signal. Bioorg Chem 2022; 126:105899. [DOI: 10.1016/j.bioorg.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
46
|
Chen D, Zhang H, Zhang X, Sun X, Qin Q, Hou Y, Jia M, Chen Y. Roles of Yes-associated protein and transcriptional coactivator with PDZ-binding motif in non-neoplastic liver diseases. Biomed Pharmacother 2022; 151:113166. [PMID: 35609372 DOI: 10.1016/j.biopha.2022.113166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022] Open
Abstract
The prevalence of liver disease has been increasing worldwide. Moreover, the burden of end-stage liver disease, including cirrhosis and liver cancer, is high because of high mortality and suboptimal treatment. The pathological process of liver disease includes steatosis, hepatocyte death, and fibrosis, which ultimately lead to cirrhosis and liver cancer. Clinical and preclinical evidence indicates that non-neoplastic liver diseases, particularly cirrhosis, are major risk factors for liver cancer, although the mechanism underlying this association remains unclear. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional activators that regulate organ size and cancer development. YAP and TAZ play important roles in liver development, regeneration, and homeostasis. Abnormal YAP and TAZ levels have also been implicated in non-neoplastic liver diseases (e.g., non-alcoholic fatty liver disease, alcoholic liver disease, liver injury, and liver fibrosis). Here, we review recent findings on the roles of YAP and TAZ in non-neoplastic liver diseases and discuss directions for future research. This review provides a basis for the study of non-neoplastic liver diseases.
Collapse
Affiliation(s)
- Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi 710077, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
47
|
Ma C, Wang X, Zhang J, Zhao Y, Hua Y, Zhang C, Zheng G, Yang G, Guan J, Li H, Li M, Kang L, Xiang J, Fan G, Yang S. Exploring Ganweikang Tablet as a Candidate Drug for NAFLD Through Network Pharmacology Analysis and Experimental Validation. Front Pharmacol 2022; 13:893336. [PMID: 35774609 PMCID: PMC9239345 DOI: 10.3389/fphar.2022.893336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is defined as liver disease in which more than 5% of hepatocytes are steatotic with little or no alcohol consumption. NAFLD includes benign nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). Importantly, NASH is an advanced progression of NAFL and is characterized by steatosis, hepatocyte ballooning, lobular inflammation, and fibrosis. However, to date, no drugs specifically targeting NAFLD have been approved by the FDA. Therefore, a new drug or strategy for NAFLD treatment is necessary. However, the pathogenesis of NAFLD is complex and no single-target drugs have achieved the desired results. Noticeably, traditional Chinese medicine formulations are a complex system with multiple components, multiple targets, and synergistic effects between components. The Ganweikang tablet is a compound formula based on traditional Chinese medicine theory and clinical experience. In this study, network pharmacology analysis indicates Ganweikang tablet as a candidate for NAFLD treatment. Furthermore, we evaluated the therapeutic effects of Ganweikang tablet on the NAFL and NASH and tried to clarify the underlying molecular mechanisms in animal models and cell experiments. As expected, Ganweikang tablet was found to improve NAFL and NASH by modulating inflammation, apoptosis, and fatty acid oxidation by inhibiting NFκB, caspase-8, and activating PPARα, which not only indicates that Ganweikang tablet as a drug candidate but also provides a theoretical basis of Ganweikang tablet for the treatment of NAFL and NASH.
Collapse
Affiliation(s)
- Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chao Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jianli Guan
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Huahuan Li
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Meng Li
- Henan Fusen Pharmaceutical Co., Ltd., Henan, China
| | - Lin Kang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- The Biobank of National Innovation Center for Advanced Medical Devices, Shenzhen People’s Hospital, Shenzhen, China
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| | - Shu Yang
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
- *Correspondence: Shu Yang, ; Guanwei Fan, ; Jiaqing Xiang,
| |
Collapse
|
48
|
Wu B, Tian X, Wang W, Zhu J, Lu Y, Du J, Xiao Y. Upregulation of cadherin-11 contributes to cholestatic liver fibrosis. Pediatr Investig 2022; 6:100-110. [PMID: 35774522 PMCID: PMC9218970 DOI: 10.1002/ped4.12317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Importance Cadherin-11 (CDH11), a cell-to-cell adhesion molecule, is implicated in the fibrotic process of several organs. Biliary atresia (BA) is a common cholestatic liver disease featuring cholestasis and progressive liver fibrosis in children. Cholestatic liver fibrosis may progress to liver cirrhosis and lacks effective therapeutic strategies. Currently, the role of CDH11 in cholestatic liver fibrosis remains unclear. Objective This study aimed to explore the functions of CDH11 in cholestatic liver fibrosis. Methods The expression of CDH11 in BA livers was evaluated by database analysis and immunostaining. Seven BA liver samples were used for immunostaining. The wild type (Wt) and CDH11 knockout (CDH11-/- ) mice were subjected to bile duct ligation (BDL) to induce cholestatic liver fibrosis. The serum biochemical analysis, liver histology, and western blotting were used to assess the extent of liver injury and fibrosis as well as activation of transforming growth factor-β (TGF-β)/Smad pathway. The effect of CDH11 on the activation of hepatic stellate cell line LX-2 cells was investigated. Results Analysis of public RNA-seq datasets showed that CDH11 expression levels were significantly increased in livers of BA, and CDH11 was correlated with liver fibrosis in BA. BDL-induced liver injury and liver fibrosis were attenuated in CDH11-/- mice compared to Wt mice. The protein expression levels of phosphorylated Smad2/3 were decreased in livers of CDH11-/- BDL mice compared to Wt BDL mice. CDH11 knockdown inhibited the activation of LX-2 cells. Interpretation CDH11 plays an important role in cholestatic liver fibrosis and may represent a potential therapeutic target for cholestatic liver disease, such as BA.
Collapse
Affiliation(s)
- Bo Wu
- Department of Pediatric Surgery, Xin Hua HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Xinbei Tian
- Department of Pediatric Surgery, Xin Hua HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Weipeng Wang
- Department of Pediatric Surgery, Xin Hua HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Jing Zhu
- Department of Pediatric Surgery, Xin Hua HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Ying Lu
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Jun Du
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| | - Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua HospitalSchool of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Pediatric Gastroenterology and NutritionShanghai Institute of Pediatric ResearchShanghaiChina
- Shanghai Key Laboratory of Pediatric Gastroenterology and NutritionShanghaiChina
| |
Collapse
|
49
|
Pathogenesis of Liver Fibrosis and Its TCM Therapeutic Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5325431. [PMID: 35529927 PMCID: PMC9071861 DOI: 10.1155/2022/5325431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
Collapse
|
50
|
Pang C, Wen C, Liang Y, Luo H, Wei L, Liu H, Qin T, Tan H, He C, Liu Y, Chen Y, Zeng S, Zhou C. Asperosaponin VI protects mice from sepsis by regulating Hippo and Rho signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154010. [PMID: 35228043 DOI: 10.1016/j.phymed.2022.154010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the novel protective effect of Asperosaponin VI (AVI) on sepsis and its potential mechanism. METHODS In in vitro experiments, bone marrow mononuclear cells and THP-1-derived cells were used to evaluate the viability of AVI treatment. Besides, the quantitative real-time PCR and Western blot were adopted to explore the protective effect of AVI on LPS-induced inflammation. For in vivo work, the effect of AVI on mice was evaluated by using both CLP-induced and the LPS-induced sepsis mice model. The fluctuation of anal temperature and the behavior of mice were recorded after surgery. Further, the content of bacteria in peritoneal lavage fluid was detected, as well as the levels of ALT, AST, LD and LDH in serum with ELISA. H&E staining and real-time PCR were used to evaluate the histopathology of liver, spleen and lung. Finally, relevant signaling pathways were detected by Western blot, real-time PCR and immunohistochemistry. RESULTS AVI inhibited the expression of inflammatory factors in both CLP-induced and LPS-induced sepsis mice models, and reduced the number of bacteria in abdominal lavage fluid. The preventive treatment with AVI alleviated sepsis-induced organ injuries, reduced inflammatory responses, which was through inhibiting Hippo and Rho signaling pathway. CONCLUSIONS This study indicated that AVI effectively protected mice from sepsis by down-regulating the activation of Hippo signaling and Rho family, and reducing inflammation and organ damage. However, conventional treatment was using antibiotics, and its mechanism was different with AVI.
Collapse
Affiliation(s)
- Caixia Pang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Cailing Wen
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Yanxiang Liang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Hui Luo
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Linlin Wei
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China; Deparment of Pharmacy, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou 510317, China
| | - Haiqian Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Tian Qin
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Huijing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Chonghua He
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Ying Liu
- School of Pharmacy, Guangzhou Xinhua University, Guangzhou 510520, China
| | - Yang Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Siyu Zeng
- Deparment of Pharmacy, Guangdong Second Provincial General Hospital, No. 466 Xingang Middle Road, Haizhu District, Guangzhou 510317, China.
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|