1
|
Gaiaschi L, Bottone MG, De Luca F. Towards Effective Treatment of Glioblastoma: The Role of Combination Therapies and the Potential of Phytotherapy and Micotherapy. Curr Issues Mol Biol 2024; 46:14324-14350. [PMID: 39727987 DOI: 10.3390/cimb46120859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and difficult-to-treat brain tumors, with a poor prognosis due to its high resistance to conventional therapies. Current treatment options, including surgical resection, radiotherapy, and chemotherapy, have limited effectiveness in improving long-term survival. Despite the emergence of new therapies, monotherapy approaches have not shown significant improvements, highlighting the need for innovative therapeutic strategies. Combination therapies appear to be the most promising solution, as they target multiple molecular pathways involved in GBM progression. One area of growing interest is the incorporation of phytotherapy and micotherapy as complementary treatments, which offer potential benefits due to their anti-tumor, anti-inflammatory, and immunomodulatory properties. This review examines the current challenges in GBM treatment, discusses the potential of combination therapies, and highlights the promising role of phytotherapy and micotherapy as integrative therapeutic options for GBM management.
Collapse
Affiliation(s)
- Ludovica Gaiaschi
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Maria Grazia Bottone
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Fabrizio De Luca
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
2
|
Zentar H, Jannus F, Medina-O’Donnell M, El Mansouri AE, Fernández A, Justicia J, Alvarez-Manzaneda E, Reyes-Zurita FJ, Chahboun R. Synthesis of Tricyclic Pterolobirin H Analogue: Evaluation of Anticancer and Anti-Inflammatory Activities and Molecular Docking Investigations. Molecules 2023; 28:6208. [PMID: 37687037 PMCID: PMC10489156 DOI: 10.3390/molecules28176208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
Pterolobirin H (3), a cassane diterpene isolated from the roots of Pterolobium macropterum, exhibits important anti-inflammatory and anticancer properties. However, its relatively complex tetracyclic structure makes it difficult to obtain by chemical synthesis, thus limiting the studies of its biological activities. Therefore, we present here a short route to obtain a rational simplification of pterolobirin H (3) and some intermediates. The anti-inflammatory activity of these compounds was assayed in LPS-stimulated RAW 264.7 macrophages. All compounds showed potent inhibition of NO production, with percentages between 54 to 100% at sub-cytotoxic concentrations. The highest anti-inflammatory effect was shown for compounds 15 and 16. The simplified analog 16 revealed potential NO inhibition properties, being 2.34 higher than that of natural cassane pterolobirin H (3). On the other hand, hydroxyphenol 15 was also demonstrated to be the strongest NO inhibitor in RAW 264.7 macrophages (IC50 NO = 0.62 ± 0.21 μg/mL), with an IC50NO value 28.3 times lower than that of pterolobirin H (3). Moreover, the anticancer potential of these compounds was evaluated in three cancer cell lines: HT29 colon cancer cells, Hep-G2 hepatoma cells, and B16-F10 murine melanoma cells. Intermediate 15 was the most active against all the selected tumor cell lines. Compound 15 revealed the highest cytotoxic effect with the lowest IC50 value (IC50 = 2.45 ± 0.29 μg/mL in HT29 cells) and displayed an important apoptotic effect through an extrinsic pathway, as evidenced in the flow cytometry analysis. Furthermore, the Hoechst staining assay showed that analog 15 triggered morphological changes, including nuclear fragmentation and chromatin condensation, in treated HT29 cells. Finally, the in silico studies demonstrated that cassane analogs exhibit promising binding affinities and docking performance with iNOS and caspase 8, which confirms the obtained experimental results.
Collapse
Affiliation(s)
- Houda Zentar
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Fatin Jannus
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Marta Medina-O’Donnell
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Az-eddine El Mansouri
- Chemistry Department, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa;
| | - Antonio Fernández
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| | - José Justicia
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| | - Enrique Alvarez-Manzaneda
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| | - Fernando J. Reyes-Zurita
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (F.J.); (M.M.-O.)
| | - Rachid Chahboun
- Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; (H.Z.); (A.F.); (J.J.); (E.A.-M.)
| |
Collapse
|
3
|
Li Z, Chen M, Chen F, Li W, Huang G, Xu X, Wang S, Ma G, Cui P. Cucurbitane triterpenoid entities derived from Hemsleya penxianensis triggered glioma cell apoptosis via ER stress and MAPK signalling cross-talk. Bioorg Chem 2022; 127:106013. [PMID: 35841667 DOI: 10.1016/j.bioorg.2022.106013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
In the present study, six new cucurbitane type compounds, including three triterpenoids hemsleyacins P-R (6-7, 13) and three cucurbitane-type triterpenoid glycosides hemsleyaosides L-N (15-17), along with seventeen known cucurbitacin analogues were separated from the root tuber of Hemsleya penxianensis and elucidated based on NMR and HRESIMS. Then, 23 analogues of three types, namely, polyhydroxy-type (I) (1-7), monohydroxy-type (II) (8-13), and glycosides-type (III) (14-23), were assessed for their antitumor activity and structure-activity relationship analysis (SAR). We determined temozolomide (TMZ)-resistant GBM cell was the most sensitive to the tested compounds, and found hemsleyaoside N (HDN) displayed the best antineoplastic potency. Furthermore, we confirmed the anti-glioma activity of HDN in patient-derived recurrent GBM strains, GBM organoid (GBO) and orthotopic nude mouse models. Investigations exploring the mechanism made clear that HDN induced synchronous activation of UPR and MAPK signaling, which triggered deadly ER stress and apoptosis. Taken together, the potent antitumor activity of HDN warrants further comprehensive evaluation as a novel anti-glioma agent.
Collapse
Affiliation(s)
- Zongyang Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Meiying Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Fanfan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Weiping Li
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Ping Cui
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen 518038, China.
| |
Collapse
|
4
|
Chen XM, Lu W, Zhang ZH, Zhang JY, Tuong TML, Liu LL, Kim YH, Li CH, Gao JM. Cassane diterpenoids from the aerial parts of Caesalpinia pulcherrima and their antibacterial and anti-glioblastoma activity. PHYTOCHEMISTRY 2022; 196:113082. [PMID: 35051786 DOI: 10.1016/j.phytochem.2021.113082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Sixteen cassane diterpenoids (CAs), including four undescribed lactam-type, four unreported lactone-type, along with eight known ones, were isolated from the aerial parts of Caesalpinia pulcherrima (L.) Sw. Their structures were characterized by comprehensive spectroscopic analyses (including NMR and HRESIMS). The absolute configuration of pulcherritam A was finally established by single-crystal X-ray diffraction with Cu Kα radiation. Notably, pulcherritam s A-D were elucidated as a group of rare CAs bearing an α, β-unsaturated γ-lactam ring rather than a typical lactone moiety. Almost all compounds were examined for their antibacterial. The results reveal that pulcherritam H exhibited significant antibacterial activities against Bacillus cereus, Staphylococcus aureus, as well as Pseudomonas syringae pv. actinidae (Psa) with the MIC from 6.25 to 12.5 μM, while pulcherritams A and C displayed potent antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA). Then, all isolates were evaluated for their anti-glioblastoma activities. Pulcherritam A and Pulcherrimin G illustrated moderate inhibitory activity against glioblastoma multiforme (GBM) U87MG cell, and the other compounds did not show obvious inhibitory activity against GBM U87MG cell. Furthermore, the preliminary structure-activity relationship and their biosynthetic pathway were also discussed.
Collapse
Affiliation(s)
- Xiu-Mei Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Wang Lu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Zi-Han Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Jia-Yao Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Thi Mai Luong Tuong
- Insititute of Scientific Research and Technological Development, Thu Dau Mot University, Binh Duong, Viet Nam
| | - Ling-Li Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China
| | - Young Ho Kim
- Chungnam Natl Univ, College of Pharmacy, South Korea
| | - Chun-Huan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, PR China.
| |
Collapse
|
5
|
Sun Z, Chen D, Li L, Hou Y, Chen M, Huang G, Ma G, Li Z. Clavipyrrine A, a unique polycyclic nitrogenous meroterpenoid with promising anti-glioma effects isolated from the fungus Clitocybe clavipes. Bioorg Chem 2021; 117:105468. [PMID: 34768204 DOI: 10.1016/j.bioorg.2021.105468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/22/2022]
Abstract
Clavipyrrine A (1), a novel polycyclic nitrogenous meroterpenoid with a pyrrolo[1,2-a]imidazole and a 10-membered carbocycle fused with an α,β-epoxy-γ-lactone, was isolated from Clitocybe clavipes, a basidiomycete. X-ray crystallography and spectroscopic analysis were used to fully elucidate its structure. The biosynthetic origin of the pyrrole unit in this nitrogenous meroterpenoid was identified by incorporating 15N-labeled γ-aminobutyric acid. Compound 1 displayed promising anti-glioma activities and induced glioma cell apoptosis through inhibiting the JAK/STAT3 pathway and reinforcing SOCS1/3.
Collapse
Affiliation(s)
- Zhaocui Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Deli Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Hainan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medicinal Sciences & Peking Union Medical College (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Haikou 570311, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yong Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Meiying Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Guoxu Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China; Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China; Hainan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medicinal Sciences & Peking Union Medical College (Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine), Haikou 570311, China.
| | - Zongyang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| |
Collapse
|
6
|
Russo CA, Torti MF, Marquez AB, Sepúlveda CS, Alaimo A, García CC. Antiviral bioactivity of resveratrol against Zika virus infection in human retinal pigment epithelial cells. Mol Biol Rep 2021; 48:5379-5392. [PMID: 34282543 PMCID: PMC8289713 DOI: 10.1007/s11033-021-06490-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
Resveratrol (RES) is a polyphenol with increasing interest for its inhibitory effects on a wide variety of viruses. Zika virus (ZIKV) is an arbovirus which causes a broad spectrum of ophthalmological manifestations in humans. Currently there is no certified therapy or vaccine to treat it, thus it has become a major global health threat. Retinal pigment epithelium (RPE) is highly permissive and susceptible to ZIKV. This work explored the protective effects of RES on ZIKV-infected human RPE cells. RES treatment resulted in a significant reduction of infectious viral particles in infected male ARPE-19 and female hTERT-RPE1 cells. This protection was positively influenced by the action of RES on mitochondrial dynamics. Also, docking studies predicted that RES has a high affinity for two enzymes of the rate-limiting steps of pyrimidine and purine biosynthesis and viral polymerase. This evidence suggests that RES might be a potential antiviral agent to treat ZIKV-induced ocular abnormalities.
Collapse
Affiliation(s)
- Constanza A Russo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - María F Torti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Agostina B Marquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Claudia S Sepúlveda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina
| | - Cybele C García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina. .,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires (UBA), Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|