1
|
Liang X, Su W, Zhang W, Wang S, Wu X, Li X, Gao W. An overview of the research progress on Aconitum carmichaelii Debx.:active compounds, pharmacology, toxicity, detoxification, and applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118832. [PMID: 39306209 DOI: 10.1016/j.jep.2024.118832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/18/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconitum carmichaelii Debx. is the most widely distributed species of Aconitum plants in China and has a long history of medicinal use. Because of its toxicity, A. carmichaelii is classified as lower class in the Shennong Bencao Jing (Shennong's Classic of Materia Medica). According to the theory of Chinese medicine, the roots can be used to revive yang for resuscitation, dispel wind, remove dampness, and relieve pain. AIMS OF THE REVIEW This review focuses on summarizing the latest reports on the components, pharmacology, toxicity, detoxification mechanism and application of A. carmichaelii. It aims to provide ideas for in-depth research on activity mechanism of A. carmichaelii and expanding the value of exploitation and utilization. MATERIALS AND METHODS Information was collected from the following online scientific databases: PubMed, Web of Science, Wiley Online Library, SciFinder, Scopus, PubChem, China National Knowledge Internet (CNKI), etc. Additional data were obtained from other Chinese medicine books. RESULTS In this review, 224 compounds were categorized and new compounds discovered in the last five years were highlighted. The main components of A. carmichaelii are C19-diterpene alkaloids(C19-DAs), among which diester-type aconitine is the most toxic and also the main active ingredient, while monoester diterpene alkaloids (MDAs) and aminol diterpene alkaloids (ADAs) are greatly toxicity reduced due to the loss of ester bond. Heating and compatibility are the means to increase the efficiency and reduce the toxicity of A. carmichaelii. In addition, it also contains abundant C20-diterpene alkaloids (C20-DAs). Like C19-DAs, these compounds also have cardiotonic, anticancer, anti-inflammatory and analgesic pharmacological effects, but their toxicity is weaker. The above-ground part contains not only a variety of MDAs and ADAs, but also contains abundant non-diterpenoid alkaloids and active polysaccharides. In addition to pharmacological effects, we further summarized the mechanisms of cardiotoxicity, neurotoxicity and other toxicity of A. carmichaelii. What's more, the application prospects are also discussed. Polysaccharides and diterpenoid alkaloids in A. carmichaelii and related traditional prescriptions have great promising prospects for the development of new drugs. CONCLUSION A. carmichaelii has rich alkaloids and polysaccharides, but the new compounds discovered in recent years are only in the activity screening stage. The toxic differences between C19- and C20- DAs and the dose that affect toxicity of A. carmichaelii are still not clear. The non-traditional medicinal parts, such as stems and leaves, show great potential for development and utilization. More extensive and in-depth exploration of low-toxic active compounds, as well as the mechanism of efficacy-enhancement and toxicity-attenuation, will help A. carmichaelii to be better and safer used for clinical.
Collapse
Affiliation(s)
- Xv Liang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Wenya Su
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Weimei Zhang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Shirui Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xipei Wu
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
2
|
Luo M, Wang YM, Zhao FK, Luo Y. Recent Advances in Nanomaterial-Mediated Cell Death for Cancer Therapy. Adv Healthc Mater 2025; 14:e2402697. [PMID: 39498722 DOI: 10.1002/adhm.202402697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Indexed: 11/07/2024]
Abstract
Nanomedicine has shown great anticancer potential by disrupting redox homeostasis and increasing the levels of oxidative stress, but the therapeutic effect is limited by factors including the intrinsic self-protection mechanism of tumors. Cancer cell death can be induced by the exploration of different cell death mechanisms, such as apoptosis, pyroptosis, necroptosis, cuproptosis, and ferroptosis. The merging of nanotechnology with biomedicine has provided tremendous opportunities to construct cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only used for the targeted delivery of cell death inducers, but also as therapeutic components to induce cell death to achieve efficient tumor treatment. This review focuses on seven cell death modalities mediated by nanomaterials, such as apoptosis, pyroptosis, necroptosis, ferroptosis, cuprotosis, immunogenic cell death, and autophagy. The mechanisms of these seven cell death modalities are described in detail, as well as the preparation of nanomaterials that induce them and the mechanisms, they used to exert their effects. Finally, this work describes the potential future development based on the current knowledge related to cell death induced by nanomaterials.
Collapse
Affiliation(s)
- Min Luo
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yuan-Min Wang
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Fu-Kun Zhao
- Department of Clinical Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| | - Yong Luo
- Department of Neurology, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, 563000, China
| |
Collapse
|
3
|
Ren S, Liang P, Feng R, Yang W, Qiu T, Zhang J, Li Q, Yang G, Sun X, Yao X. The phosphorylation of Smad3 by CaMKIIγ leads to the hepatocyte pyroptosis under perfluorooctane sulfonate exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116924. [PMID: 39181077 DOI: 10.1016/j.ecoenv.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant and accumulated in the liver of mammals. PFOS exposure is closely associated with the development of pyroptosis. Nevertheless, the underlying mechanism is unclear. We found here that PFOS induced pyroptosis in the mice liver and L-02 cells as demonstrated by activation of the NOD-like receptor protein 3 inflammasome, gasdermin D cleavage and increased release of interleukin-1β and interleukin-18. The level of cytoplasmic calcium was accelerated in hepatocytes upon exposure to PFOS. The phosphorylated/activated form of calcium/calmodulin-dependent protein kinase II (CaMKII) was augmented by PFOS in vivo and in vitro. PFOS-induced pyroptosis was relieved by CaMKII inhibitor. Among various CaMKII subtypes, we identified that CaMKIIγ was activated specifically by PFOS. CaMKIIγ interacted with Smad family member 3 (Smad3) under PFOS exposure. PFOS increased the phosphorylation of Smad3, and CaMKII inhibitor or CaMKIIγ siRNA alleviated PFOS-caused phosphorylation of Smad3. Inhibiting Smad3 activity was found to alleviate PFOS-induced hepatocyte pyroptosis. This study puts forward that CaMKIIγ-Smad3 is the linkage between calcium homeostasis disturbance and pyroptosis, providing a mechanistic explanation for PFOS-induced pyroptosis.
Collapse
Affiliation(s)
- Siyu Ren
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Peiyao Liang
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Ruzhen Feng
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Wei Yang
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Tianming Qiu
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China.
| | - Jingyuan Zhang
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Qiujuan Li
- Department of Nutrition, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Guang Yang
- Department of Nutrition, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Xiance Sun
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China
| | - Xiaofeng Yao
- Department of Occupation and Environment Health, Dalian Medical University, 9 Lvshun South Road, Dalian, China.
| |
Collapse
|
4
|
Lai Y, Gao FF, Ge RT, Liu R, Ma S, Liu X. Metal ions overloading and cell death. Cell Biol Toxicol 2024; 40:72. [PMID: 39162885 PMCID: PMC11335907 DOI: 10.1007/s10565-024-09910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Cell death maintains cell morphology and homeostasis during development by removing damaged or obsolete cells. The concentration of metal ions whithin cells is regulated by various intracellular transporters and repositories to maintain dynamic balance. External or internal stimuli might increase the concentration of metal ions, which results in ions overloading. Abnormal accumulation of large amounts of metal ions can lead to disruption of various signaling in the cell, which in turn can produce toxic effects and lead to the occurrence of different types of cell deaths. In order to further study the occurrence and development of metal ions overloading induced cell death, this paper reviewed the regulation of Ca2+, Fe3+, Cu2+ and Zn2+ metal ions, and the internal mechanism of cell death induced by overloading. Furthermore, we found that different metal ions possess a synergistic and competitive relationship in the regulation of cell death. And the enhanced level of oxidative stress was present in all the processes of cell death due to metal ions overloading, which possibly due to the combination of factors. Therefore, this review offers a theoretical foundation for the investigation of the toxic effects of metal ions, and presents innovative insights for targeted regulation and therapeutic intervention. HIGHLIGHTS: • Metal ions overloading disrupts homeostasis, which in turn affects the regulation of cell death. • Metal ions overloading can cause cell death via reactive oxygen species (ROS). • Different metal ions have synergistic and competitive relationships for regulating cell death.
Collapse
Affiliation(s)
- Yun Lai
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Fen Fen Gao
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Ruo Ting Ge
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Rui Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University, Wenzhou, China.
- South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
5
|
Guan X, Zhao R, Wang Y, Li W, Pan L, Yang Y, Mu W, Hou TZ. Ginsenoside Rb1 ameliorates apical periodontitis via suppressing macrophage pyroptosis. Oral Dis 2024. [PMID: 39155466 DOI: 10.1111/odi.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES The objectives of current study were to investigate the role and related mechanism of Ginsenoside Rb1 (GRb1) on regulating apical periodontitis (AP) prognosis. MATERIALS AND METHODS Clinical specimens were used to determine the involvement of calcium overload-induced macrophage pyroptosis in periapical tissues. Next, a calcium ion-chelating agent (BAPTA-AM) was applied to detect the suppression of intracellular calcium overload in macrophage pyroptosis. Then, network pharmacology, western blot (WB) analysis, and Fluo-4 calcium assay were conducted to explore the role of GRb1 on intracellular calcium overload. To gain a better understanding of GRb1 in calcium overload-induced macrophage pyroptosis linked AP, GRb1-treated AP models were established. RESULTS We discovered clinically and experimentally that calcium overload-dependent macrophage pyroptosis is involved in AP pathogenesis, and reducing calcium overload greatly decreased macrophage pyroptosis in an AP cell model. Next, based on GRb1's inhibitory role in aberrant intracellular calcium accumulation, we discovered that GRb1 alleviates AP by suppressing calcium-dependent macrophage pyroptosis in both in vitro and in vivo models. CONCLUSIONS GRb1 is an effective therapeutic strategy to rescue the periapical tissues from inflammation due to its anti-pyroptosis function. Thus, the present study supports further investigation of GRb1 as an adjuvant therapy for AP.
Collapse
Affiliation(s)
- Xiaoyue Guan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, Baoji Stomatological Hospital of Shaanxi, Baoji, China
| | - Yuting Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Wenlan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Lifei Pan
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yao Yang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Wenli Mu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Tie Zhou Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
- Department of Cariology and Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Zi-chang N, Xiao-ling H, Qi J, Ting L, Ming-hui O, Hao-ping M. Ginseng Radix et Rhizoma enhanced the effect of metoprolol in chronic heart failure by inhibiting autophagy in male C57BL/6J mice. PLoS One 2024; 19:e0301875. [PMID: 39141645 PMCID: PMC11324128 DOI: 10.1371/journal.pone.0301875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Ginseng Radix et Rhizoma (GS) is frequently used as an adjuvant therapy for patients with heart failure (HF). Metoprolol is widely used in patients with HF. However, there is no report on the combined effects of GS and metoprolol in patients with HF. OBJECTIVE This study investigated the combined effects of GS and metoprolol in male C57BL/6J mice with HF and the underlying mechanisms. MATERIALS AND METHODS We utilized a mouse myocardial HF model to measure the serum levels of creatine kinase (CK) and creatine kinase-MB form (CK-MB) using an automated biochemical analyzer. Lactate dehydrogenase (LDH) and cardiac troponin (cTnT) levels were determined using enzyme-linked immunosorbent assays. Autophagy of myocardial cells was evaluated using transmission electron microscopy, and changes in signal pathway proteins related to autophagy were analyzed by Western blotting. RESULTS GS combined with metoprolol improved heart function, reduced heart damage, and decreased serum levels of CK, CK-MB, LDH, and cTnT. The combination of GS and metoprolol decreased autophagy in myocardial cells by reducing the levels of autophagy-related proteins (LC3, p62, Beclin1, and Atg5) and increasing the ratios of p-PI3K/PI3K, p-Akt/Akt, and p-mTOR/mTOR. CONCLUSION GS enhanced the anti-heart failure effect of metoprolol. Its mechanism of action might be related to the inhibition of autophagy mediated by the activation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Niu Zi-chang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Han Xiao-ling
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Jin Qi
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Liu Ting
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Ouyang Ming-hui
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Mao Hao-ping
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulea, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| |
Collapse
|
7
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
8
|
Ji L, Han H, Shan X, Zhao P, Chen H, Zhang C, Xu M, Lu R, Guo W. Ginsenoside Rb1 ameliorates lipotoxicity-induced myocardial injury in diabetes mellitus by regulating Mfn2. Eur J Pharmacol 2024; 974:176609. [PMID: 38677536 DOI: 10.1016/j.ejphar.2024.176609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
PURPOSE Diabetic cardiomyopathy is a prevalent cardiovascular complication of diabetes mellitus. This study aimed to investigate the effects of ginsenoside Rb1 (GRb1) on the diabetic myocardium. METHODS Leptin receptor-deficient db/db mice and palmitic acid (PA)-treated cardiomyocyte models were utilized. Cardiac systolic and diastolic function, mitochondrial morphology, and respiratory chain function were determined. The expression of mitochondrial dynamics proteins was measured. Mitofusin 2 (Mfn2) overexpression and inhibition were achieved by lentiviral infection and small interfering RNA (siRNA) transfection. RESULTS In comparison to non-diabetic mice, db/db mice exhibited significant increases in body weight, blood glucose, blood lipids, and cardiac free fatty acid levels. This was accompanied by myocardial hypertrophy and left ventricular diastolic dysfunction, which were significantly ameliorated by GRb1 intervention. Stimulation with PA increased oxidative stress and apoptosis, and decreased viability in H9c2 cardiomyocytes. PA also reduced sarcomere contractility and relaxation in adult mice ventricular myocytes. PA-induced cellular and mitochondrial damage were reversed with GRb1 treatment. The cardiac tissue of db/db mice and PA-treated cardiomyocytes exhibited a decrease in Mfn2 expression, which was markedly improved by GRb1. Mfn2 overexpression reversed PA-induced mitochondrial fragmentation and functional damage in cardiomyocytes, while inhibition of Mfn2 expression by siRNA transfection blocked the protective effects of GRb1. CONCLUSION GRb1 alleviated myocardial lipid accumulation and mitochondrial injury, and attenuated ventricular diastolic dysfunction in diabetic mice. The regulation of Mfn2 was involved in the protective effects of GRb1 against lipotoxic myocardial injury.
Collapse
MESH Headings
- Animals
- Ginsenosides/pharmacology
- Ginsenosides/therapeutic use
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/drug therapy
- Diabetic Cardiomyopathies/pathology
- Mice
- GTP Phosphohydrolases/metabolism
- GTP Phosphohydrolases/genetics
- Male
- Palmitic Acid/pharmacology
- Apoptosis/drug effects
- Oxidative Stress/drug effects
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Rats
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Receptors, Leptin/deficiency
- Cell Line
- Mice, Inbred C57BL
- Myocardium/pathology
- Myocardium/metabolism
Collapse
Affiliation(s)
- Louyin Ji
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Han
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Chen Zhang
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Ming Xu
- Department of Physiology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wei Guo
- Department of Pathology, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
9
|
Zhang L, Ren C, Liu J, Huang S, Wu C, Zhang J. Development and therapeutic implications of small molecular inhibitors that target calcium-related channels in tumor treatment. Drug Discov Today 2024; 29:103995. [PMID: 38670255 DOI: 10.1016/j.drudis.2024.103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Calcium ion dysregulation exerts profound effects on various physiological activities such as tumor proliferation, migration, and drug resistance. Calcium-related channels play a regulatory role in maintaining calcium ion homeostasis, with most channels being highly expressed in tumor cells. Additionally, these channels serve as potential drug targets for the development of antitumor medications. In this review, we first discuss the current research status of these pathways, examining how they modulate various tumor functions such as epithelial-mesenchymal transition (EMT), metabolism, and drug resistance. Simultaneously, we summarize the recent progress in the study of novel small-molecule drugs over the past 5 years and their current status.
Collapse
Affiliation(s)
- Linxi Zhang
- China Medical University-Queen's University of Belfast Joint College, China Medical University, Shenyang 110000, Liaoning, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Jiao Liu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu 611130, China
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chengyong Wu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
10
|
Yang C, Qu L, Wang R, Wang F, Yang Z, Xiao F. Multi-layered effects of Panax notoginseng on immune system. Pharmacol Res 2024; 204:107203. [PMID: 38719196 DOI: 10.1016/j.phrs.2024.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Recent research has demonstrated the immunomodulatory potential of Panax notoginseng in the treatment of chronic inflammatory diseases and cerebral hemorrhage, suggesting its significance in clinical practice. Nevertheless, the complex immune activity of various components has hindered a comprehensive understanding of the immune-regulating properties of Panax notoginseng, impeding its broader utilization. This review evaluates the effect of Panax notoginseng to various types of white blood cells, elucidates the underlying mechanisms, and compares the immunomodulatory effects of different Panax notoginseng active fractions, aiming to provide the theory basis for future immunomodulatory investigation.
Collapse
Affiliation(s)
- Chunhao Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Liping Qu
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Rui Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Feifei Wang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China; Innovation Materials Research and Development Center, Botanee Research Institute, Shanghai Jiyan Biomedical Development Co., Ltd., Shanghai 201702, China
| | - Zhaoxiang Yang
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China
| | - Fengkun Xiao
- Yunnan Characteristic Plant Extraction Laboratory, Yunnan Yunke Characteristic Plant Extraction Laboratory Co., Ltd., Kunming 650106, China; Yunnan Botanee Bio-Technology Group Co., Ltd., Kunming 650106, China.
| |
Collapse
|
11
|
Ma Q, Wu J, Li H, Ma X, Yin R, Bai L, Tang H, Liu N. The role of TRPV4 in programmed cell deaths. Mol Biol Rep 2024; 51:248. [PMID: 38300413 DOI: 10.1007/s11033-023-09199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Programmed cell death is a major life activity of both normal development and disease. Necroptosis is early recognized as a caspase-independent form of programmed cell death followed obviously inflammation. Apoptosis is a gradually recognized mode of cell death that is characterized by a special morphological changes and unique caspase-dependent biological process. Ferroptosis, pyroptosis and autophagy are recently identified non-apoptotic regulated cell death that each has its own characteristics. The transient receptor potential vanilloid 4 (TRPV4) is a kind of nonselective calcium-permeable cation channel, which is received more and more attention in biology studies. It is widely expressed in human tissues and mainly located on the membrane of cells. Several researchers have identified that the influx Ca2+ from TRPV4 acts as a key role in the loss of cells by apoptosis, ferroptosis, necroptosis, pyroptosis and autophagy via mediating endoplasmic reticulum (ER) stress, oxidative stress and inflammation. This effect is bad for the normal function of organs on the one hand, on the other hand, it is benefit for anticancer activities. In this review, we will summarize the current discovery on the role and impact of TRPV4 in these programmed cell death pathological mechanisms to provide a new prospect of gene therapeutic target of related diseases.
Collapse
Affiliation(s)
- Qingjie Ma
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Jilin Wu
- Department of Anesthesiology, Kunming Children's Hospital, Kunming, 650034, China
| | - Huixian Li
- Department of Anesthesiology, The People's Hospital of Wenshan Zhuang and Miao Minority Autonomous Prefecture, Wenshan, 663099, China
| | - Xiaoshu Ma
- The Second Clinical Medical College of Binzhou Medical College, Binzhou, 256699, China
| | - Renwan Yin
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Liping Bai
- Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Heng Tang
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China
| | - Na Liu
- Department of Anesthesiology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, China.
| |
Collapse
|
12
|
Zhao P, Tian Y, Geng Y, Zeng C, Ma X, Kang J, Lu L, Zhang X, Tang B, Geng F. Aconitine and its derivatives: bioactivities, structure-activity relationships and preliminary molecular mechanisms. Front Chem 2024; 12:1339364. [PMID: 38318112 PMCID: PMC10839071 DOI: 10.3389/fchem.2024.1339364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Aconitine (AC), which is the primary bioactive diterpene alkaloid derived from Aconitum L plants, have attracted considerable interest due to its unique structural feature. Additionally, AC demonstrates a range of biological activities, such as its ability to enhance cardiac function, inhibit tumor growth, reduce inflammation, and provide analgesic effects. However, the structure-activity relationships of AC are remain unclear. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with AC. In line with these challenges, this paper summarized the structural characteristics of AC and relevant functional and bioactive properties and the structure-activity relationships presented in biomedical applications. The primary temporal scope of this review was established as the period spanning from 2010 to 2023. Subsequently, the objective of this review was to provide a comprehensive understanding of the specific action mechanism of AC, while also exploring potential novel applications of AC derivatives in the biomedical field, drawing upon their structural characteristics. In conclusion, this review has provided a comprehensive analysis of the challenges and prospects associated with AC in the elucidation of structure-bioactivity relationships. Furthermore, the importance of exploring modern biotechnology approaches to enhance the potential biomedical applications of AC has been emphasized.
Collapse
Affiliation(s)
- Pengyu Zhao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ye Tian
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Yuefei Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Chenjuan Zeng
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Xiuying Ma
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Jie Kang
- Guizhou Yunfeng Pharmaceutical Co., Ltd., Qianxinan Buyi and Miao Autonomous Prefecture, China
| | - Lin Lu
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Xin Zhang
- Sichuan Good Doctor Pharmaceutical Group, Chengdu, China
| | - Bo Tang
- Sichuan Engineering Research Center for Medicinal Animals, Chengdu, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
13
|
Gao X, Gao LF, Zhang ZY, Jia S, Meng CY. miR-99b-3p/Mmp13 axis regulates NLRP3 inflammasome-dependent microglial pyroptosis and alleviates neuropathic pain via the promotion of autophagy. Int Immunopharmacol 2024; 126:111331. [PMID: 38061116 DOI: 10.1016/j.intimp.2023.111331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND Neuropathic pain significantly impairs quality of life, and effective interventions are limited. NOD-like receptor thermal protein domain associated protein 3 (NLRP3)-mediated microglial pyroptosis and the subsequent proinflammatory cytokine production are critical in exacerbating pain. Considering microglial pyroptosis as a potential target for developing specific analgesic interventions for neuropathic pain, our study investigated the pathogenesis and therapeutic targets in this condition. METHODS In vitro experiments involved the co-culture of the immortalized BV-2 microglia cell line with lipopolysaccharide (LPS) to induce microglial pyroptosis. Differentially expressed microRNAs (miRNAs) were identified using high-throughput sequencing analysis. The downstream target genes of these miRNAs were determined through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, and the downstream target genes, combined with miRNAs, were predicted and verified through dual luciferase reporter gene assays. In vivo experiments were conducted to construct a chronic constriction injury (CCI) neuropathic pain model in rats and evaluate the analgesic effects of intrathecal injection of an adeno-associated virus vector (AAV) carrying miR-99b-3p. Gene expression was modulated through mimic or siRNA transfection. Western blot analysis assessed the expression of microglial pyroptosis and autophagy-related proteins, whereas RT-qPCR measured changes in proinflammatory cytokines expression. RESULTS LPS-stimulated up-regulation of proinflammatory cytokines in microglia, accompanied by NLRP3-dependent pyroptosis, including increased NLRP3, GSDMD-N, Caspase1-p20, and mature-IL-1β expression. High-throughput sequencing analysis revealed 16 upregulated and 10 downregulated miRNAs in LPS-stimulated microglia, with miR-99b-3p being the most downregulated. KEGG analysis revealed that the target genes of these miRNAs are primarily enriched in calcium, FoxO, and mitogen-activated protein kinase (MAPK) signal pathways. Furthermore, overexpression of miR-99b-3p through mimic transfection significantly inhibited the inflammatory response and NLRP3-mediated pyroptosis by promoting autophagy levels in activated microglia. In addition, we predicted that the 3' untranslated region (UTR) of matrix metalloproteinase-13 (Mmp13) could bind to miR-99b-3p, and knockdown of Mmp13 expression through siRNA transfection similarly ameliorated enhanced proinflammatory cytokines expression and microglial pyroptosis by enhancing autophagy. In vivo, Mmp13 was co-localized with spinal dorsal horn microglia and was suppressed by intrathecal injection of the AAV-miR-99b-3p vector. Moreover, overpressed miR-99b-3p alleviated CCI-induced mechanical allodynia and neuroinflammation while suppressing pyroptosis by enhancing autophagy in the spinal cord of CCI rats. CONCLUSION miR-99b-3p exerts analgesic effects on neuropathic pain by targeting Mmp13. These antinociceptive effects are, at least in part, attributed to the promotion of autophagy, thereby inhibiting neuroinflammation and NLRP3-mediated pyroptosis in activated microglia.
Collapse
Affiliation(s)
- Xu Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China
| | - Long-Fei Gao
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China
| | - Zhen-Yu Zhang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China
| | - Shu Jia
- Clinical Research Team of Spine & Spinal Cord Diseases, Medical Research Center, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, Shandong Province 272000, China
| | - Chun-Yang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 129 Hehua Road, Jining, Shandong Province 272000, China.
| |
Collapse
|
14
|
Abstract
Shock is the clinical manifestation of acute circulatory failure, which results in inadequate utilization of cellular oxygen. It is a common condition with high mortality rates in intensive care units. The intravenous administration of Shenfu Injection (SFI) may attenuate inflammation, regulate hemodynamics and oxygen metabolism; inhibit ischemia-reperfusion responses; and have adaptogenic and antiapoptotic effects. In this review, we have discussed the clinical applications and antishock pharmacological effects of SFI. Further in-depth and large-scale multicenter clinical studies are warranted to determine the therapeutic effects of SFI on shock.
Collapse
Affiliation(s)
- Ming-Qing Zhang
- Department of Emergency Medicine, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Chun-Sheng Li
- Department of Emergency Medicine, Critical Care Center, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, 100050, China.
| |
Collapse
|
15
|
Li Y, Li J, Yang L, Ren F, Dong K, Zhao Z, Duan W, Wei W, Guo R. Ginsenoside Rb1 protects hippocampal neurons in depressed rats based on mitophagy-regulated astrocytic pyroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155083. [PMID: 37722244 DOI: 10.1016/j.phymed.2023.155083] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Astrocytes play a vital role in offering functional support for neurons, which are related to the pathogenic mechanism of depression. Ginsenoside Rb1 (GRb1) is demonstrated with antidepressant-like activities. PURPOSE We aimed to investigate whether GRb1 can inhibit mitophagy-mediated astrocytic pyroptosis to protect neurons in depression. STUDY DESIGN Model rats were subjected to chronic unpredictable mild stress (CUMS) for determining the in vivo antidepressant activity of GRb1. METHODS The mitophagy-mediated antipyroptosis role of GRb1 was assessed in lipopolysaccharide (LPS) + ATP-stimulated astrocytes. The mechanism by which GRb1 protects synaptic plasticity was investigated using hippocampal neurons incubated in an astrocyte medium. The rat depressive-like behaviors were determined through sucrose preference, forced swimming, and the open-field tests. Escitalopram was used in the anti-depression control of GRb1. Cyclosporin A (CsA), a mitophagy inhibitor, and interleukin (IL)-1β were used to reverse the role of GRb1 in mitophagy and pyroptosis, respectively. RESULTS GRb1 inhibited LPS-induced inflammation and activation in the astrocytes and repressed nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. Also, GRb1 repressed LPS + ATP-promoted astrocytic pyroptosis. During GRb1 treatment, the activation of mitophagy with a decrease in ROS was observed in LPS + ATPs-stimulated astrocytes. CsA enhanced GRb1-decreased ROS and promoted astrocytic pyroptosis. The GRb1-treated astrocyte medium suppressed neuron death and increased neuron viability and synaptic density. Escitalopram and GRb1 improved the depressive-like behaviors of the rats. GRb1 activated mitophagy and inhibited astrocytic activation and pyroptosis in rats with depression. It also reduced impairments in synaptic structures and increased synaptic density in depressive-like rats. IL-1β increased astrocytic pyroptosis and reversed GRb1-enhanced synaptic plasticity in the rats exposed to CUMS. There were no statistical changes in depressive-like behaviors between GRb1 and Escitalopram groups. CONCLUSION GRb1 modulates mitophagy and the NF-κB pathway to inhibit astrocytic pyroptosis, thereby maintaining neurological homeostasis by repressing inflammation and enhancing synaptic plasticity.
Collapse
Affiliation(s)
- Yannan Li
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Junnan Li
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Lixuan Yang
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Feifei Ren
- Department of Neurology, Shanxi Province Hospital of Chinese Medicine, Xi'an 710003, China
| | - Kaiqiang Dong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhonghui Zhao
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Wenzhe Duan
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Wei Wei
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China
| | - Rongjuan Guo
- Department of Neurology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
16
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
17
|
Jiang C, Shen J, Wang C, Huang Y, Wang L, Yang Y, Hu W, Li P, Wu H. Mechanism of aconitine mediated neuronal apoptosis induced by mitochondrial calcium overload caused by MCU. Toxicol Lett 2023; 384:86-95. [PMID: 37506855 DOI: 10.1016/j.toxlet.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Aconitine is a crucial toxic component in Chinese herbal medicines such as Aconitum, Aconitum coreanum, and Aconitum soongaricum. The poisoning symptoms of the central nervous system and cardiovascular system caused by it are relatively common in China, and there are many studies on cardiovascular system diseases caused by aconitine. However, the specific mechanism of neurotoxicity induced by aconitine is still unclear. This study explored the effect and mechanism of mitochondrial calcium uniporter on mitochondrial energy metabolism disorder in aconitine poisoning hippocampal neurons. The results showed that after treatment with 400μmol/L aconitine, mitochondrial energy metabolism was abnormal in rat hippocampal neuron cells, the expression of MCU in mitochondria was up-regulated, calcium overload in mitochondria, ATP production decreased, and mitochondrial membrane potential Changes, increased expression of the apoptosis gene Cleaved-Caspase-3. After treatment with the MCU agonist spermine, mitochondrial energy metabolism was significantly abnormal, and cell apoptosis was increased considerably. However, pretreatment with calcium ion channel inhibitor Ruthenium Red (RR) effectively promoted the generation of ATP, thereby improving mitochondrial energy metabolism disorders and reducing cell apoptosis. These results suggest that aconitine induces mitochondrial energy metabolism dysfunction in hippocampal neurons, which may be related to the increased expression of MCU.
Collapse
Affiliation(s)
- Chen Jiang
- Kunming Medical University, Kunming, China
| | - Jun Shen
- Kunming Medical University, Kunming, China
| | - Chun Wang
- Kunming Medical University, Kunming, China
| | - Yongjie Huang
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Linbo Wang
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Yiran Yang
- Kunming Medical University, Kunming, China
| | - Wen Hu
- Kunming Medical University, Kunming, China
| | - Ping Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Haiying Wu
- Department of Emergency and Intensive Care Unit, First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
18
|
Li Y, Wu J, Zhuo N. Ginsenoside compound K alleviates osteoarthritis by inhibiting NLRP3‑mediated pyroptosis. Exp Ther Med 2023; 26:406. [PMID: 37522058 PMCID: PMC10375444 DOI: 10.3892/etm.2023.12105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/28/2023] [Indexed: 08/01/2023] Open
Abstract
Ginsenoside compound K (GCK) has been previously reported to be a potent antiarthritic and bone-protective agent. Therefore, the present study aimed to explore the potential effects of GCK on osteoarthritis and its regulatory effects on the pyroptosis of chondrocytes. Primary mouse chondrocytes (PMCs) were used for in vitro analysis. ELISA assays revealed that compared with the untreated cells, TNF-α induced a significant increase in IL-6, MMP13, A disintegrin and metalloproteinase with thrombospondin motifs 5 and MMP3 expression but induced a significant decrease in aggrecan and collagen II expression. By contrast, GCK reversed the aforementioned alterations in a dose-dependent manner. Experimental osteoarthritis was subsequently induced in mice through transection of the medial meniscotibial ligament and medial collateral ligament in the right knee [destabilization of the medial meniscus (DMM) mice]. GCK was found to reduce cartilage degradation in vivo in DMM mice, which was assessed using the Osteoarthritis Research Society International (OARSI) score, collagen II and MMP13 expression. Cartilage degradation is associated with higher OARSI score, decreased collagen II and increased MMP13 expression. In PMCs, TNF-α treatment stimulated an increase in the expression of NLR family pyrin domain containing 3 (NLRP3), Gasdermin D-N terminal (GSDMD-NT), cleaved caspase-1 and mature IL-1β, markers that indicate the occurrence of pyroptosis. However, GCK treatment suppressed the increase of the aforementioned proteins in a dose-dependent manner. Immunohistochemistry staining of the knee joint tissue sections from the DMM mice confirmed that GCK attenuated the NLRP3 and GSDMD-NT expression that was induced by DMM surgery. In conclusion, the present study revealed that GCK can reduce cartilage degradation in an osteoarthritis model by inhibiting the NLRP3-inflammasome activation and subsequent pyroptosis.
Collapse
Affiliation(s)
- Yuguo Li
- School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiang Wu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
- Department of Orthopedic Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Naiqiang Zhuo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
19
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
20
|
Yang SJ, Wang JJ, Cheng P, Chen LX, Hu JM, Zhu GQ. Ginsenoside Rg1 in neurological diseases: From bench to bedside. Acta Pharmacol Sin 2023; 44:913-930. [PMID: 36380226 PMCID: PMC10104881 DOI: 10.1038/s41401-022-01022-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ginseng has been used in China as a superior medicinal material for thousands of years that can nourish the five internal organs, calm the mind and benefit wisdom. Due to its anti-inflammatory, antioxidant and neuroprotective activities, one of the active components of ginseng, ginsenoside Rg1, has been extensively investigated in the remedy of brain disorders, especially dementia and depression. In this review, we summarized the research progress on the action mechanisms of Rg1 ameliorating depression-like behaviors, including inhibition of hyperfunction of hypothalamic-pituitary-adrenal (HPA) axis, regulation of synaptic plasticity and gut flora. Rg1 may alleviate Alzheimer's disease in the early phase, as well as in the middle-late phases through repairing dendrite, axon and microglia- and astrocyte-related inflammations. We also proposed that Rg1 could regulate memory state (the imbalance of working and aversive memory) caused by distinct stimuli. These laboratory studies would further the clinical trials on Rg1. From the prospective of drug development, we discussed the limitations of the present investigations and proposed our ideas to increase permeability and bioavailability of Rg1. Taken together, Rg1 has the potential to treat neuropsychiatric disorders, but a future in-depth investigation of the mechanisms is still required. In addition, drug development will benefit from the clinical trials in one specific neuropsychiatric disorder.
Collapse
Affiliation(s)
- Shao-Jie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing-Ji Wang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, 230061, China.
| | - Ping Cheng
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li-Xia Chen
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jia-Min Hu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Guo-Qi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
21
|
Liu P, Zhang Z, Cai Y, Yang Y, Yuan J, Chen Q. Inhibition of the pyroptosis-associated inflammasome pathway: The important potential mechanism of ginsenosides in ameliorating diabetes and its complications. Eur J Med Chem 2023; 253:115336. [PMID: 37031528 DOI: 10.1016/j.ejmech.2023.115336] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/01/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Diabetes mellitus (DM) and its complications have become an important global public health issue, affecting human health and negatively impacting life and lifespan. Pyroptosis is a recently discovered form of pro-inflammatory programmed cell death (PCD). To date, pyroptosis-associated inflammasome pathways have been identified primarily in the canonical and non-canonical inflammasome pathway, apoptotic caspase-mediated pathway, granzyme-mediated pathway, and streptococcal pyrogenic exotoxin B (SpeB)-mediated pathway. The activation of diabetes-mediated pyroptosis-associated factors play an important role in the pathophysiology of DM and its complications. Studies have shown that ginsenosides exert significant protective effects on DM and its complications. Through inhibiting the activation of pyroptosis-associated inflammasome pathways, and then the DM and its complications are improved. This review summarizes the subtypes of ginsenosides and their chemical characteristics, pharmacokinetics and side effects, the main pyroptosis-associated inflammasome pathways that have been discovered to date, and the potential mechanism of different subtypes of ginsenosides in the treatment of DM and its complications (such as diabetic cardiomyopathy, diabetic nephropathy, diabetic liver injury, diabetic retinopathy, and diabetic ischemic stroke) via anti-pyroptosis-associated inflammasome pathways. These findings may provide ideas for further research to explore ginsenoside mechanism in improving DM and its complications. However, many pyroptosis-associated inflammasome pathways and targets involved in the occurrence and development of DM and its complications are still unknown. In the future, further studies using in vitro cell models, in vivo animal models, and human disease models can be used to further elucidate the mechanism of ginsenosides in the treatment of DM and its complications.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, PR China
| | - Yichen Cai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Yunjiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Jun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
22
|
Bao Y, Zhang R, Jiang X, Liu F, He Y, Hu H, Hou X, Hao L, Pei X. Detoxification mechanisms of ginseng to aconite: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116009. [PMID: 36516908 DOI: 10.1016/j.jep.2022.116009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aconite (Fuzi, FZ), the processed root tuber of Aconitum carmichaelii Debx., is utilized as a classic medicine to treat diseases of the cardiovascular system and immune system. Resulting from the narrow margin of safety between a therapeutic dose and a toxic dose, FZ often causes cardiotoxicity including hypotension, palpitation, and bradycardia. Contributing to the detoxification effects of the other famous herbal medicine ginseng (Renshen, RS), which is the dried root and rhizome of Panax ginseng C. A. Meyer, people broadly combine FZ and RS as compatibility more than 1800 years to attenuate the toxicity of FZ. However, the systematic detoxification mechanisms of RS to FZ have not been fully revealed. AIM OF THE REVIEW Aiming to provide a comprehensive interpretation of the attenuation processes of FZ via RS, this review summarizes the up-to-date information about regulatory mechanisms of RS to FZ to shed the light on the essence of detoxification. MATERIALS AND METHODS Literature was searched in electronic databases, including PubMed, Web of Science ScienceDirect, Google Scholar, CNKI and WanFang Data. Relevant studies on detoxification mechanisms were included while irrelevant and duplicate studies were excluded. According to the study design, subject, intervention regime, outcome, first author and year of publication of included data, detoxification mechanisms of RS to FZ were summarized and visualized. RESULTS A total of 144 studies were identified through databases from their inception up to Oct. 2022. Included information indicated that diester-diterpenoid alkaloids (DDAs) were the main toxic substances of FZ. The main mechanisms that RS attenuates the toxicity of FZ were transforming toxic compounds of FZ, affecting the absorption and metabolism of FZ as well as the FZ-induced cell toxicity alleviation. CONCLUSION FZ, as a famous traditional Chinese medicine, has good prospects for utilization. The narrow margin of safety between a therapeutic dose and a toxic dose of FZ limits its clinical effect and safety while RS is always combined with FZ to alleviate its toxicity. However, mechanisms responsible for the detoxification process have not been well identified. Therefore, detoxification mechanisms of RS to FZ are reviewed to ensure the safety and effectiveness of FZ.
Collapse
Affiliation(s)
- Yiwen Bao
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Xinyi Jiang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China.
| | - Yao He
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China.
| | - Huiling Hu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| | - Xinlian Hou
- Huarun Sanjiu (Ya'an) Pharmaceutical Group Co., LTD, Ya'an, 625000, PR China
| | - Li Hao
- Huarun Sanjiu (Ya'an) Pharmaceutical Group Co., LTD, Ya'an, 625000, PR China
| | - Xu Pei
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, 611137, PR China
| |
Collapse
|
23
|
Li XL, Yin Q, Wang W, Ma RH, Ni ZJ, Thakur K, Zhang JG, Wei ZJ. Effect of ginsenoside CK combined with cisplatin on the proliferation and migration of human cervical cancer HeLa cells via Ras/ERK/MAPK pathway. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
24
|
Li C, Zhang X, Li J, Liang L, Zeng J, Wen M, Pan L, Lv D, Liu M, Cheng Y, Huang H. Ginsenoside Rb1 promotes the activation of PPARα pathway via inhibiting FADD to ameliorate heart failure. Eur J Pharmacol 2023; 947:175676. [PMID: 37001580 DOI: 10.1016/j.ejphar.2023.175676] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE Ginsenoside Rb1 (GRb1), a dammarane-type triterpene saponin compound mainly distributed in ginseng (Panax ginseng), has been demonstrated to ameliorate cardiovascular diseases. However, it remains unclear whether GRb1 alleviates heart failure (HF) by maintaining cardiac energy metabolism balance. Therefore, this work aimed to investigate the cardiac benefits of GRb1 against cardiac energy deficit and explore its mechanism of action. METHODS AND RESULTS Isoproterenol (ISO) induced HF Sprague-Dawley rats were administrated with GRb1 or fenofibrate for 6 weeks. ISO-induced primary neonatal rat cardiomyocytes (NRCMs) were used as the in vitro model. In vivo, GRb1 significantly improved the structural and metabolic disorder, as demonstrated by the restoration of cardiac function, inhibition of cardiac hypertrophy and fibrosis, and increased adenosine triphosphate (ATP) generation. In vitro, GRb1 effectively protected mitochondrial function and scavenged excessive reactive oxygen species. Moreover, in ISO-induced NRCMs, GRb1 significantly inhibited the abnormal upregulation of Fas-associated death domain (FADD), promoted transcriptional activation of peroxisome proliferator-activated receptor-alpha (PPARα), improved the aberrant expression of cardiac energy metabolism-related enzymes and cardiac fatty acid oxidation, and subsequently increased the synthesis of ATP. Noticeably, GRb1 could inhibit the increased binding between FADD and PPARα, which contributed to the activation of PPARα. Furthermore, GRb1 strengthened the thermal stabilization of FADD and might bind to FADD directly. CONCLUSIONS Collectively, it's part of the in-depth mechanism of GRb1's cardio-protection that GRb1 could directly bind to FADD and counteract its negative role in the transcription of PPARα thus ameliorating cardiac energy derangement and HF.
Collapse
Affiliation(s)
- Chuting Li
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xuting Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jie Li
- Medical Research Center, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Liyin Liang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jingran Zeng
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Wen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Linjie Pan
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dongxin Lv
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Liu
- Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, 510405, China.
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
25
|
Liu X, Tao H, Tian R, Huang W, Zhang T, Liu Y, Zhang Y, Meng X. Hezi inhibits Tiebangchui-induced cardiotoxicity and preserves its anti-rheumatoid arthritis effects by regulating the pharmacokinetics of aconitine and deoxyaconitine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115915. [PMID: 36375646 DOI: 10.1016/j.jep.2022.115915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tiebangchui (TBC, dried roots of Aconitum pendulum Busch. and Aconitum flavum Hand.-Mazz.) is a well-known Tibetan medicine for dispelling cold and relieving pain. In China, it is widely used in prevention and treatment of various diseases, such as rheumatoid arthritis (RA), traumatic injury, and fracture. However, its cardiotoxicity and neurotoxicity seriously restrict its clinical application. Traditionally, Hezi (HZ, dry ripe fruit of Terminalia chebula Retz. and Terminalia chebula Retz. var. tomentella Kurt.) is generally used in combination with TBC for the purpose of toxicity reducing and efficacy enhancing, but so far we still can't clearly elucidate the compatibility effect and mechanism of the classical herbal pair. AIM OF STUDY To investigate the compatibility effect and mechanism of TBC co-administered with HZ. METHODS In the present study, we clarified the cardioprotective role of HZ on the cardiotoxicity induced by TBC. The electrocardiogram, the levels of serum cardiac troponin T (cTnT), the activities of cardiac superoxide dismutase (SOD), malonaldehyde (MDA), and histopathology of heart tissue have been determined in each group. Meanwhile, the anti-RA effect of each group was investigated by paw swelling measurement and histopathological examination of synovial. To explore the underlying mechanism, we performed the pharmacokinetic studies of aconitine (AC) and deoxyaconitine (DE) in TBC group and TBC + HZ group by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) system. RESULTS TBC co-administered with HZ could significantly inhibit the increased heart rate and the prolonged QTc interval induced by TBC (p < 0.01). And TBC + HZ group had lower levels of serum cTnT, cardiac MDA, and higher levels of cardiac SOD compared with TBC group (p < 0.01). In addition, the combination of TBC and HZ could preserve the anti-RA effect of TBC. Both TBC administration alone and TBC + HZ combination administration could effectively alleviate the paw swelling (p < 0.01). Furthermore, TBC co-administered with HZ could significantly decrease the area under the concentration-time curve (AUC(0-∞)) and maximum concentration (Cmax) of AC and DE comapred with TBC administration alone (p < 0.01 or p < 0.05). Meanwhile, it was observed that the time to reach the peak concentration (Tmax), elimination half-life (t1/2), mean retention time (MRT) of AC and DE in TBC group were significantly higher than those in TBC + HZ group (p < 0.01 or p < 0.05). CONCLUSIONS TBC co-administered with HZ could reduce TBC-induced cardiotoxicty and preserve its anti-RA efficacy. The underlying mechanism is associated with the change of pharmacokinetic process of AC and DE.
Collapse
Affiliation(s)
- Xianfeng Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Honglin Tao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Ruimin Tian
- Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, Sichuan, PR China
| | - Wenge Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Tao Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, PR China.
| |
Collapse
|
26
|
Chen J, Wei X, Zhang Q, Wu Y, Xia G, Xia H, Wang L, Shang H, Lin S. The traditional Chinese medicines treat chronic heart failure and their main bioactive constituents and mechanisms. Acta Pharm Sin B 2023; 13:1919-1955. [DOI: 10.1016/j.apsb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/13/2023] Open
|
27
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
28
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
29
|
Wei S, Feng M, Zhang S. Molecular Characteristics of Cell Pyroptosis and Its Inhibitors: A Review of Activation, Regulation, and Inhibitors. Int J Mol Sci 2022; 23:ijms232416115. [PMID: 36555757 PMCID: PMC9783510 DOI: 10.3390/ijms232416115] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Pyroptosis is an active and ordered form of programmed cell death. The signaling pathways of pyroptosis are mainly divided into canonical pathways mediated by caspase-1 and noncanonical pathways mediated by caspase-11. Cell pyroptosis is characterized by the activation of inflammatory caspases (mainly caspase-1, 4, 5, 11) and cleavage of various members of the Gasdermin family to form membrane perforation components, leading to cell membrane rupture, inflammatory mediators release, and cell death. Moderate pyroptosis is an innate immune response that fights against infection and plays an important role in the occurrence and development of the normal function of the immune system. However, excessive pyroptosis occurs and leads to immune disorders in many pathological conditions. Based on canonical pathways, research on pyroptosis regulation has demonstrated several pyroptotic inhibitors, including small-molecule drugs, natural products, and formulations of traditional Chinese medicines. In this paper, we review the characteristics and molecular mechanisms of pyroptosis, summarize inhibitors of pyroptosis, and propound that herbal medicines should be a focus on the research and development for pyroptosis blockers.
Collapse
Affiliation(s)
| | | | - Shidong Zhang
- Correspondence: ; Tel.: +86-931-211-5256; Fax: +86-931-211-5191
| |
Collapse
|
30
|
Luan F, Lei Z, Peng X, Chen L, Peng L, Liu Y, Rao Z, Yang R, Zeng N. Cardioprotective effect of cinnamaldehyde pretreatment on ischemia/ reperfusion injury via inhibiting NLRP3 inflammasome activation and gasdermin D mediated cardiomyocyte pyroptosis. Chem Biol Interact 2022; 368:110245. [DOI: 10.1016/j.cbi.2022.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/29/2022]
|
31
|
Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Biomed Pharmacother 2022; 156:113903. [PMID: 36279722 DOI: 10.1016/j.biopha.2022.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 12/06/2022] Open
|
32
|
Liu Y, Zhang J, Zhang D, Yu P, Zhang J, Yu S. Research Progress on the Role of Pyroptosis in Myocardial Ischemia-Reperfusion Injury. Cells 2022; 11:cells11203271. [PMID: 36291138 PMCID: PMC9601171 DOI: 10.3390/cells11203271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) results in the aggravation of myocardial injury caused by rapid recanalization of the ischemic myocardium. In the past few years, there is a growing interest in investigating the complex pathophysiological mechanism of MIRI for the identification of effective targets and drugs to alleviate MIRI. Currently, pyroptosis, a type of inflammatory programmed death, has received greater attention. It is involved in the MIRI development in combination with other mechanisms of MIRI, such as oxidative stress, calcium overload, necroptosis, and apoptosis, thereby forming an intertwined association between different pathways that affect MIRI by regulating common pathway molecules. This review describes the pyroptosis mechanism in MIRI and its relationship with other mechanisms, and also highlights non-coding RNAs and non-cardiomyocytes as regulators of cardiomyocyte pyroptosis by mediating associated pathways or proteins to participate in the initiation and development of MIRI. The research progress on novel small molecule drugs, clinical drugs, traditional Chinese medicine, etc. for regulating pyroptosis can play a crucial role in effective MIRI alleviation. When compared to research on other mature mechanisms, the research studies on pyroptosis in MIRI are inadequate. Although many related protective drugs have been identified, these drugs generally lack clinical applications. It is necessary to further explore and verify these drugs to expand their applications in clinical setting. Early inhibition of MIRI by targeted regulation of pyroptosis is a key concern that needs to be addressed in future studies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Jun Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
| | - Shuchun Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang 330000, China
- Correspondence:
| |
Collapse
|
33
|
Zeng M, Zhang R, Yang Q, Guo L, Zhang X, Yu B, Gan J, Yang Z, Li H, Wang Y, Jiang X, Lu B. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed Pharmacother 2022; 155:113696. [PMID: 36116247 DOI: 10.1016/j.biopha.2022.113696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Secondary insult from cerebral ischemia-reperfusion injury (CIRI) is a major risk factor for poor prognosis of cerebral ischemia. Saponins are steroid or triterpenoid glycosides with various pharmacological activities that are effective in treating CIRI. By browsing the literature from 2001 to 2021, 55 references involving 24 kinds of saponins were included. Saponins were shown to relieve CIRI by inhibiting oxidation stress, neuroinflammation, and apoptosis, restoring BBB integrity, and promoting neurogenesis and angiogenesis. This review summarizes and classifies several common saponins and their mechanisms in relieving CIRI. Information provided in this review will benefit researchers to design, research and develop new medicines to treat CIRI-related conditions with saponins.
Collapse
Affiliation(s)
- Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qiuyue Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bin Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhen Yang
- School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Lu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
34
|
Qiliqiangxin Capsule Modulates Calcium Transients and Calcium Sparks in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9361077. [PMID: 36082183 PMCID: PMC9448542 DOI: 10.1155/2022/9361077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022]
Abstract
Background The therapeutic effects of Qiliqiangxin capsule (QLQX), a Chinese patent medicine, in patients with chronic heart failure are well established. However, whether QLQX modulates cardiac calcium (Ca2+) signals, which are crucial for the heart function, remains unclear. Aim of the Study. This study aimed to evaluate the role of QLQX in modulating Ca2+ signals in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Materials and Methods Fluorescence imaging was used to monitor Ca2+ signals in the cytosol and nuclei of hiPSC-CMs. For Ca2+ spark measurements, the line-scan mode of a confocal microscope was used. Results The QLQX treatment substantially decreased the frequency of spontaneous Ca2+ transients, whereas the amplitude of Ca2+ transients elicited by electrical stimulation did not change. QLQX increased the Ca2+ spark frequency in both the cytosol and nuclei without changing the sarcoplasmic reticulum Ca2+ content. Interestingly, QLQX ameliorated abnormal Ca2+ transients in CMs differentiated from hiPSCs derived from patients with long-QT syndrome. Conclusions Our findings provide the first line of evidence that QLQX directly modulates cardiac Ca2+ signals in a human cardiomyocyte model.
Collapse
|
35
|
Habimana O, Modupe Salami O, Peng J, Yi GH. Therapeutic Implications of Targeting Pyroptosis in Cardiac-related Etiology of Heart Failure. Biochem Pharmacol 2022; 204:115235. [PMID: 36044938 DOI: 10.1016/j.bcp.2022.115235] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Heart failure remains a considerable clinical and public health problem, it is the dominant cause of death from cardiovascular diseases, besides, cardiovascular diseases are one of the leading causes of death worldwide. The survival of patients with heart failure continues to be low with 45-60% reported deaths within five years. Apoptosis, necrosis, autophagy, and pyroptosis mediate cardiac cell death. Acute cell death is the hallmark pathogenesis of heart failure and other cardiac pathologies. Inhibition of pyroptosis, autophagy, apoptosis, or necrosis reduces cardiac damage and improves cardiac function in cardiovascular diseases. Pyroptosis is a form of inflammatory deliberate cell death that is characterized by the activation of inflammasomes such as NOD-like receptors (NLR), absent in melanoma 2 (AIM2), interferon-inducible protein 16 (IFI-16), and their downstream effector cytokines: Interleukin IL-1β and IL-18 leading to cell death. Recent studies have shown that pyroptosis is also the dominant cell death process in cardiomyocytes, cardiac fibroblasts, endothelial cells, and immune cells. It plays a crucial role in the pathogenesis of cardiac diseases that contribute to heart failure. This review intends to summarize the therapeutic implications targeting pyroptosis in the main cardiac pathologies preceding heart failure.
Collapse
Affiliation(s)
- Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | | | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
36
|
Fan K, Huang H, Zhao Y, Xie T, Zhu ZY, Xie ML. Osthole Increases the Sensitivity of Liver Cancer to Sorafenib by Inhibiting Cholesterol Metabolism. Nutr Cancer 2022; 74:3640-3650. [PMID: 35706361 DOI: 10.1080/01635581.2022.2087885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Osthole is a natural product that has an inhibitory effect on liver cancer, but its effect on the sensitivity of liver cancer to sorafenib is poorly understood. Here, we investigated the effect of osthole and possible sensitization mechanisms. Our results showed that the combination of 2.5 μM sorafenib and 10 μM osthole had significantly synergistic inhibitory effects on proliferation, colony formation, and migration of HCCLM3, sorafenib-resistant HCCLM3 (HCCLM3-SR), and SK-Hep-1 cells. After treatment of HCCLM3 cells-inoculated subcutaneous xenotransplanted tumor mice with 100 mg/kg osthole, 70 mg/kg sorafenib or their combination for 24 day, the tumor volume, tumor weight, and tumor weight coefficient were significantly lower in the osthole + sorafenib group than in the sorafenib group. Compared with the control group, the total cholesterol and low density lipoprotein-cholesterol contents in serum and tumor tissue were significantly decreased in the osthole or osthole + sorafenib groups, the sterol regulatory element binding protein (SREBP)-2c, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), and low-density lipoprotein receptor (LDLR) protein expressions in tumor tissue were significantly downregulated as well. In conclusion, osthole can increase the sensitivity of liver cancer to sorafenib, and the mechanism is related to the downregulations of SREBP-2c, HMGCR, and LDLR protein expressions and subsequent inhibition of cholesterol metabolism.
Collapse
Affiliation(s)
- Ke Fan
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Hui Huang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| | - Ying Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China.,Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Zeng-Yan Zhu
- Department of Pharmacy, Children's Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Mei-Lin Xie
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
37
|
Li X, Wang X, Wang B, Chi W, Li Z, Zhang M, Shen Y, Liu X, Lu Y, Liu Y. Dihydromyricetin protects against Doxorubicin-induced cardiotoxicity through activation of AMPK/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154027. [PMID: 35278898 DOI: 10.1016/j.phymed.2022.154027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective broad-spectrum antitumor agent, but its clinical administration is limited by self-induced cardiotoxicity. Dihydromyricetin (DHM) is a flavonoid compound extracted from the Japanese raisin tree. Evidence that DHM has neovascular protective properties makes it a candidate for studying cardiotoxicity prevention strategy. However, it remains unknown if DHM can protect against cardiotoxicity caused by DOX. PURPOSE The present study was performed to evaluate the protective effect of DHM on DOX-induced cardiotoxicity in vivo and in vitro. METHODS C57BL/6 mice were intraperitoneally injected with DOX to construct cardiac injury model in vivo, and AC16 cells were exposed to DOX to induce cell injury in vitro. Left ventricular function of mice were detected by echocardiography, the apoptosis of mice cardiac tissue and AC16 cells were detected by TUNEL and Hoechst33342/PI double staining. The expression of apoptosis and autophagy related proteins were detected by western blotting, immunohistochemical staining and immunofluorescence staining. RESULTS Echocardiographic results showed that DOX-induced cardiotoxicity were significantly alleviated by DHM pretreatment. DOX induced cardiotoxicity of mice by inhibiting AMPK activation, increasing apoptosis and decreasing autophagy. However, under the same conditions, the heart tissue of DHM-pretreated mice showed increased autophagy and decreased apoptosis via activation AMPK/mTOR pathway. The same results were observed in vitro, and it was also found that DHM can inhibit the production of intracellular ROS in vitro. CONCLUSION DHM protects against cardiotoxicity by inhibiting apoptosis and oxidative stress and it can allevate theautophagy inhibition caused by DOX through AMPK/mTOR pathway. DHM preconditioning may be a breakthrough in protecting DOX-induced cardiotoxicity in the future clinical applications.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Binyu Wang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weiqun Chi
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangyi Li
- Department of Biochemistry and Life Sciences, Faculty of Arts and Sciences, Queen's University, Kingston, Ontario, Canada
| | - Min Zhang
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifu Shen
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Liu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Youmei Lu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Liu
- Department of Blood Transfusion and Laboratory Medicine, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
38
|
Peng H, You L, Yang C, Wang K, Liu M, Yin D, Xu Y, Dong X, Yin X, Ni J. Ginsenoside Rb1 Attenuates Triptolide-Induced Cytotoxicity in HL-7702 Cells via the Activation of Keap1/Nrf2/ARE Pathway. Front Pharmacol 2022; 12:723784. [PMID: 35046796 PMCID: PMC8762226 DOI: 10.3389/fphar.2021.723784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.
Collapse
Affiliation(s)
- Hulinyue Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Kaixin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Manting Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongge Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuchen Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
39
|
Zhao Y, Huang H, Jia CH, Fan K, Xie T, Zhu ZY, Xie ML. Apigenin increases radiosensitivity of glioma stem cells by attenuating HIF-1α-mediated glycolysis. Med Oncol 2021; 38:131. [PMID: 34554338 DOI: 10.1007/s12032-021-01586-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Apigenin, a natural flavonoid compound present in a variety of edible plants and health foods, has an anti-tumor effect and inhibits hypoxia inducible factor-lα (HIF-1α) expression in hypertrophic cardiac tissues. However, whether or not apigenin has a radiosensitization effect on glioma stem cells (GSCs) is unknown. Our present study aimed to investigate the effect of apigenin and its possible mechanisms. The human GSCs SU3 and its radioresistance line SU3-5R were treated with apigenin, radiation, or their combination, and the cell proliferation, migration, colony formation, and intracellular lactic acid and glycolytic related protein expressions were determined. Additionally, a cell model with hypoxia-induced HIF-1α expression was used and treated with apigenin. The current results displayed that the combination of apigenin and radiation could synergically reduce the viability, colony formation, and migration of the both GSCs. Moreover, this combination could also decrease the radiation-induced increments of glycolytic production lactic acid in the both GSCs and related protein expressions, including HIF-1α, glucose transporter (GLUT)-1/3, nuclear factor kappa B (NF-κB) p65, and pyruvate kinase isozyme type M2 (PKM2). Further study confirmed that after treatment of hypoxia-cultured SU3 or SU3-5R cells with apigenin, the expression levels of HIF-1α, GLUT-1/3, NF-κB p65, and PKM2 proteins were reduced. These results demonstrated that apigenin could increase the radiosensitivity of GSCs and its radiosensitization mechanisms were attributable to the attenuation of glycolysis, which might result from the inhibition of HIF-1α expression and subsequent reductions of GLUT-1/3, NF-κB, and PKM2 expressions.
Collapse
Affiliation(s)
- Ying Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hui Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chang-Hao Jia
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ke Fan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Tao Xie
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| | - Zeng-Yan Zhu
- Department of Pharmacy, The Affiliated Children's Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Mei-Lin Xie
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|