1
|
Gautam M, Gabrani R. Current Combinatorial Therapeutic Aspects: The Future Prospect for Glioblastoma Treatment. Curr Med Sci 2024; 44:1175-1184. [PMID: 39695017 DOI: 10.1007/s11596-024-2950-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/21/2024] [Indexed: 12/20/2024]
Abstract
There are several types of brain tumors but glioblastoma (GBM) is one of the highly malignant tumors. A primary concern with GBM is that the treatment is inadequate. Even after giving many multi-stacked combinations of therapies to patients, inclusive of chemotherapy, radiation, and surgery, the median survival rate remains poor. Due to its heterogeneous nature, the use of selective therapy for specific targeting of tumor cells is of particular importance. Although many treatment alternatives which include surgery with adjuvant chemotherapy and radiotherapy are available, the prognosis of the disease is very poor. Combination therapy is becoming the foundation of modern antitumor therapy and it is continuously evolving and developing innovative drug regimens as evidenced by ongoing preclinical and clinical trials. In this review, we discuss the current treatment options and emerging therapeutic approaches for the treatment of GBM. The prospects for alternative glioblastoma therapy are also discussed.
Collapse
Affiliation(s)
- Megha Gautam
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India
| | - Reema Gabrani
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, 201309, India.
| |
Collapse
|
2
|
Machado BG, Passos FRS, Antoniolli ÂR, Menezes Pereira EW, Santos TKB, Monteiro BS, de Souza Siqueira Lima P, Matos SS, Duarte MC, de Souza Araújo AA, da Silva Almeida JRG, Oliveira Júnior RG, Coutinho HDM, Quintans-Júnior LJ, de Souza Siqueira Quintans J. Enhancing orofacial pain relief: α-phellandrene complexed with hydroxypropyl-β-cyclodextrin mitigates orofacial nociception in rodents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03561-2. [PMID: 39495266 DOI: 10.1007/s00210-024-03561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Orofacial pain affects 10-15% of adults and can severely impact quality of life. Despite ongoing treatment challenges, monoterpene alpha-phellandrene (PHE) shows potential therapeutic benefits. This study aimed to develop and evaluate an inclusion complex of PHE with hydroxypropyl-beta-cyclodextrin (PHE-HPβCD) for treating orofacial pain. The PHE-HPβCD complex was created using physical mixing and characterized by differential scanning calorimetry (DSC) and high-performance liquid chromatography (HPLC) to determine encapsulation efficiency. The complex exhibited a 70.45% encapsulation efficiency. Male Swiss mice were used in models of orofacial pain induced by formalin, cinnamaldehyde, glutamate, and corneal nociception by hypertonic saline. Additionally, cytokine levels (TNF-α and IL-1β) were measured in the upper lip tissue of mice subjected to the formalin model. Both PHE and PHE-HPβCD showed significant antinociceptive effects at a 50 mg/kg dose during formalin-induced pain, reducing both neurogenic and inflammatory phases of pain. PHE-HPβCD also reduced TNF-α and IL-1β levels. For cinnamaldehyde and glutamate-induced nociception, both treatments reduced pain behavior, but only PHE-HPβCD decreased eye wipes in corneal nociception. These results suggest that PHE, especially in complexed form, alleviates orofacial pain by potentially modulating pain-related receptors (TRPA1 and TRPV1), mediators, like glutamate, and reducing pro-inflammatory cytokines. Further research is needed to explore the precise mechanisms of PHE in chronic orofacial pain models, but the study indicates promising avenues for new pain treatments.
Collapse
Affiliation(s)
| | | | | | - Erik W Menezes Pereira
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Brenda Souza Monteiro
- Department of Physiology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Rong N, Huang L, Ye P, Pan H, Hu M, Bai M, Wu H. CgLS mediates limonene synthesis of main essential oil component in secretory cavity cells of Citrus grandis 'Tomentosa' fruits. Int J Biol Macromol 2024; 280:135671. [PMID: 39284463 DOI: 10.1016/j.ijbiomac.2024.135671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
d-Limonene is the predominant component of essential oil from Exocarpium Citri Grandis, known for its antibacterial, antioxidant, insecticidal, and anti-inflammatory properties. The synthesis, transport, and accumulation of d-limonene in Citrus grandis 'Tomentosa' fruits are regulated by limonene synthase (LS) and its associated regulatory genes. This study addresses the gap in understanding the spatiotemporal cytological changes of LS and its regulatory genes. Through cytochemical techniques, we investigated the distribution of essential oil in the plastids, endoplasmic reticulum, and vacuoles of secretory cavity cells. We identified the LS-encoding gene CgLS via transcriptomics and demonstrated in vitro that CgLS catalyzes the formation of d-limonene from geranyl diphosphate (GPP). Transient overexpression of CgLS increased monoterpene limonene accumulation, while TRV virus-induced gene silencing reduced it. CgLS expression levels and d-limonene content showed spatiotemporal consistency with fruit development, with in situ hybridization revealing predominant expression in secretory cavity cells. Immunocytochemical localization indicated that CgLS is primarily located in the endoplasmic reticulum, plastids, and vacuoles. Our findings suggest that CgLS is translated in the endoplasmic reticulum and transported to plastids and vacuoles where d-limonene synthesis occurs. This study provides comprehensive insights into the characteristics of CgLS and its role in d-limonene synthesis at the tissue, cellular, and molecular levels in C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Ning Rong
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huimin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mingli Hu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Youchenliu Road, Maoming 525000, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Developmentand Utilization of Forest Plant Germplasm, South China Agricultural University, Wushan Road, Guangzhou 510642, China; Center for Medicinal Plants Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Piriyaprasath K, Kakihara Y, Hasegawa M, Iwamoto Y, Hasegawa Y, Fujii N, Yamamura K, Okamoto K. Nutritional Strategies for Chronic Craniofacial Pain and Temporomandibular Disorders: Current Clinical and Preclinical Insights. Nutrients 2024; 16:2868. [PMID: 39275184 PMCID: PMC11397166 DOI: 10.3390/nu16172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/16/2024] Open
Abstract
This narrative review provides an overview of current knowledge on the impact of nutritional strategies on chronic craniofacial pain associated with temporomandibular disorders (TMDs). Individuals experiencing painful TMDs alter their dietary habits, avoiding certain foods, possibly due to chewing difficulties, which might lead to nutrient deficiencies. Our literature investigation revealed that the causal links between nutritional changes and craniofacial pain remain unclear. However, clinical and preclinical studies suggest that nutraceuticals, including vitamins, minerals, polyphenols, omega-3 fatty acids, isoprenoids, carotenoids, lectins, polysaccharides, glucosamines, and palmitoylethanolamides, could have beneficial effects on managing TMDs. This is described in 12 clinical and 38 preclinical articles since 2000. Clinical articles discussed the roles of vitamins, minerals, glucosamine, and palmitoylethanolamides. The other nutraceuticals were assessed solely in preclinical studies, using TMD models, mostly craniofacial inflammatory rodents, with 36 of the 38 articles published since 2013. Our investigation indicates that current evidence is insufficient to assess the efficacy of these nutraceuticals. However, the existing data suggest potential for therapeutic intervention in TMDs. Further support from longitudinal and randomized controlled studies and well-designed preclinical investigations is necessary to evaluate the efficacy of each nutraceutical intervention and understand their underlying mechanisms in TMDs.
Collapse
Affiliation(s)
- Kajita Piriyaprasath
- Department of Restorative Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok 650000, Thailand
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoshito Kakihara
- Division of Dental Pharmacology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| | - Mana Hasegawa
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of General Dentistry and Dental Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata 951-8514, Japan
| | - Yuya Iwamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yoko Hasegawa
- Division of Comprehensive Prosthodontics, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Noritaka Fujii
- Division of Dental Clinical Education, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kensuke Yamamura
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Keiichiro Okamoto
- Division of Oral Physiology, Faculty of Dentistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
- Sakeology Center, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
5
|
Heimfarth L, Dos Santos KS, Monteiro BS, de Souza Oliveira AK, Coutinho HDM, Menezes IRA, Dos Santos MRV, de Souza Araújo AA, Picot L, de Oliveira Júnior RG, Grougnet R, de Souza Siqueira Quintans J, Quintans-Júnior LJ. The protective effects of naringenin, a citrus flavonoid, non-complexed or complexed with hydroxypropyl-β-cyclodextrin against multiorgan damage caused by neonatal endotoxemia. Int J Biol Macromol 2024; 264:130500. [PMID: 38428770 DOI: 10.1016/j.ijbiomac.2024.130500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Endotoxemia is a severe and dangerous clinical syndrome that results in elevated morbidity, especially in intensive care units. Neonates are particularly susceptible to endotoxemia due to their immature immune systems. There are few effective treatments for neonatal endotoxemia. One group of compounds with potential in the treatment of neonatal inflammatory diseases such as endotoxemia is the flavonoids, mainly due to their antioxidant and anti-inflammatory properties. Among these, naringenin (NGN) is a citrus flavonoid which has already been reported to have anti-inflammatory, antioxidant, anti-nociceptive and anti-cancer effects. Unfortunately, its clinical application is limited by its low solubility and bioavailability. However, cyclodextrins (CDs) have been widely used to improve the solubility of nonpolar drugs and enhance the bioavailability of these natural products. OBJECTIVE We, therefore, aimed to investigate the effects of NGN non-complexed and complexed with hydroxypropyl-β-cyclodextrin (HPβCD) on neonatal endotoxemia injuries in a rodent model and describe the probable molecular mechanisms involved in NGN activities. METHOD We used exposure to a bacterial lipopolysaccharide (LPS) to induce neonatal endotoxemia in the mice. RESULTS It was found that NGN (100 mg/kg i.p.) exposure during the neonatal period reduced leukocyte migration and decreased pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) levels in the lungs, heart, kidneys or cerebral cortex. In addition, NGN upregulated IL-10 production in the lungs and kidneys of neonate mice. The administration of NGN also enhanced antioxidant enzyme catalase and SOD activity, reduced lipid peroxidation and protein carbonylation and increased the reduced sulfhydryl groups in an organ-dependent manner, attenuating the oxidative damage caused by LPS exposure. NGN decreased ERK1/2, p38MAPK and COX-2 activation in the lungs of neonate mice. Moreover, NGN complexed with HPβCD was able to increase the animal survival rate. CONCLUSION NGN attenuated inflammatory and oxidative damage in the lungs, heart and kidneys caused by neonatal endotoxemia through the MAPK signaling pathways regulation. Our results show that NGN has beneficial effects against neonatal endotoxemia and could be useful in the treatment of neonatal inflammatory injuries.
Collapse
Affiliation(s)
- Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Katielen Silvana Dos Santos
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Brenda Souza Monteiro
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | - Anne Karoline de Souza Oliveira
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil
| | | | - Irwin R A Menezes
- Universidade Regional do Cariri - URCA, Departmento de Química Biológica, Crato, CE, Brazil
| | | | | | - Laurent Picot
- UMR CNRS 7266 LIENSs, La Rochelle Université, 17042 La Rochelle, France
| | - Raimundo Gonçalves de Oliveira Júnior
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France; CiTCoM UMR 8038 CNRS, Faculté Pharmacie, Université Paris Cité, 75006, Paris, France
| | - Raphaël Grougnet
- Laboratoire de Pharmacognosie-UMR CNRS 8638, Faculté de Pharmacie, Université Paris Cité, Paris, France
| | - Jullyana de Souza Siqueira Quintans
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| | - Lucindo José Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assay (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe CEP: 49100-000, Brazil; Graduate Program of Health Sciences, Federal University of Sergipe, Aracaju, Sergipe CEP 49060-025, Brazil
| |
Collapse
|
6
|
Dragomanova S, Andonova V, Volcho K, Salakhutdinov N, Kalfin R, Tancheva L. Therapeutic Potential of Myrtenal and Its Derivatives-A Review. Life (Basel) 2023; 13:2086. [PMID: 37895468 PMCID: PMC10608190 DOI: 10.3390/life13102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The investigation of monoterpenes as natural products has gained significant attention in the search for new pharmacological agents due to their ability to exhibit a wide range in biological activities, including antifungal, antibacterial, antioxidant, anticancer, antispasmodic, hypotensive, and vasodilating properties. In vitro and in vivo studies reveal their antidepressant, anxiolytic, and memory-enhancing effects in experimental dementia and Parkinson's disease. Chemical modification of natural substances by conjugation with various synthetic components is a modern method of obtaining new biologically active compounds. The discovery of new potential drugs among monoterpene derivatives is a progressive avenue within experimental pharmacology, offering a promising approach for the therapy of diverse pathological conditions. Biologically active substances such as monoterpenes, for example, borneol, camphor, geraniol, pinene, and thymol, are used to synthesize compounds with analgesic, anti-inflammatory, anticonvulsive, antidepressant, anti-Alzheimer's, antiparkinsonian, antiviral and antibacterial (antituberculosis) properties. Myrtenal is a perspective monoterpenoid with therapeutic potential in various fields of medicine. Its chemical modifications often lead to new or more pronounced biological effects. As an example, the conjugation of myrtenal with the established pharmacophore adamantane enables the augmentation of several of its pivotal properties. Myrtenal-adamantane derivatives exhibited a variety of beneficial characteristics, such as antimicrobial, antifungal, antiviral, anticancer, anxiolytic, and neuroprotective properties, which are worth examining in more detail and at length.
Collapse
Affiliation(s)
- Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 A Tsar Osvoboditel Blvd., 9002 Varna, Bulgaria;
| | - Konstantin Volcho
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Nariman Salakhutdinov
- Department of Medicinal Chemistry, Novosibirsk Institute of Organic Chemistry of the Russian Academy of Sciences, 9 Lavrentiev Av., 630090 Novosibirsk, Russia; (K.V.); (N.S.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
- Department of Healthcare, South-West University, 66 Ivan Mihailov St., 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 23, 1113 Sofia, Bulgaria;
| |
Collapse
|
7
|
Eddin LB, Azimullah S, Jha NK, Nagoor Meeran MF, Beiram R, Ojha S. Limonene, a Monoterpene, Mitigates Rotenone-Induced Dopaminergic Neurodegeneration by Modulating Neuroinflammation, Hippo Signaling and Apoptosis in Rats. Int J Mol Sci 2023; 24:ijms24065222. [PMID: 36982297 PMCID: PMC10049348 DOI: 10.3390/ijms24065222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Rotenone (ROT) is a naturally derived pesticide and a well-known environmental neurotoxin associated with induction of Parkinson’s disease (PD). Limonene (LMN), a naturally occurring monoterpene, is found ubiquitously in citrus fruits and peels. There is enormous interest in finding novel therapeutic agents that can cure or halt the progressive degeneration in PD; therefore, the main aim of this study is to investigate the potential neuroprotective effects of LMN employing a rodent model of PD measuring parameters of oxidative stress, neuro-inflammation, and apoptosis to elucidate the underlying mechanisms. PD in experimental rats was induced by intraperitoneal injection of ROT (2.5 mg/kg) five days a week for a total of 28 days. The rats were treated with LMN (50 mg/kg, orally) along with intraperitoneal injection of ROT (2.5 mg/kg) for the same duration as in ROT-administered rats. ROT injections induced a significant loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and DA striatal fibers following activation of glial cells (astrocytes and microglia). ROT treatment enhanced oxidative stress, altered NF-κB/MAPK signaling and motor dysfunction, and enhanced the levels/expressions of inflammatory mediators and proinflammatory cytokines in the brain. There was a concomitant mitochondrial dysfunction followed by the activation of the Hippo signaling and intrinsic pathway of apoptosis as well as altered mTOR signaling in the brain of ROT-injected rats. Oral treatment with LMN corrected the majority of the biochemical, pathological, and molecular parameters altered following ROT injections. Our study findings demonstrate the efficacy of LMN in providing protection against ROT-induced neurodegeneration.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
8
|
Marinho YY, P. Silva EA, Oliveira JY, Santos DM, Lima BS, Souza DS, Macedo FN, Santos AC, Araujo AA, Vasconcelos CM, Santos LA, Batista MV, Quintans JS, Quintans-Junior LJ, de Santana-Filho VJ, Barreto AS, Santos MR. Preparation, physicochemical characterization, docking and antiarrhythmic effect of d-limonene and d-limonene hydroxypropyl-β-cyclodextrin complex. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|