1
|
Xu Q, Liu C, Wang H, Li S, Yan H, Liu Z, Chen K, Xu Y, Yang R, Zhou J, Yang X, Liu J, Wang L. Deciphering the impact of aggregated autophagy-related genes TUBA1B and HSP90AA1 on colorectal cancer evolution: a single-cell sequencing study of the tumor microenvironment. Discov Oncol 2024; 15:431. [PMID: 39259234 PMCID: PMC11390999 DOI: 10.1007/s12672-024-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer worldwide, with the tumor microenvironment (TME) playing a crucial role in its progression. Aggregated autophagy (AA) has been recognized as a factor that exacerbates CRC progression. This study aims to study the relationship between aggregated autophagy and CRC using single-cell sequencing techniques. Our goal is to explain the heterogeneity of the TME and to explore the potential for targeted personalized therapies. OBJECTIVE To study the role of AA in CRC, we employed single-cell sequencing to discern distinct subpopulations within the TME. These subpopulations were characterized by their autophagy levels and further analyzed to identify specific biological processes and marker genes. RESULTS Our study revealed significant correlations between immune factors and both clinical and biological characteristics of the tumor microenvironment (TME), particularly in cells expressing TUBA1B and HSP90AA1. These immune factors were associated with T cell depletion, a reduction in protective factors, diminished efficacy of immune checkpoint blockade (ICB), and enhanced migration of cancer-associated fibroblasts (CAFs), resulting in pronounced inflammation. In vitro experiments showd that silencing TUBA1B and HSP90AA1 using siRNA (Si-TUBA1B and Si-HSP90AA1) significantly reduced the expression of IL-6, IL-7, CXCL1, and CXCL2 and inhibition of tumor cell growth in Caco-2 and Colo-205 cell lines. This reduction led to a substantial alleviation of chronic inflammation and highlighted the heterogeneous nature of the TME. CONCLUSION This study marks an initial foray into understanding how AA-associated processes may potentiate the TME and weaken immune function. Our findings provide insights into the complex dynamics of the TME and highlight potential targets for therapeutic intervention, suggesting a key role for AA in the advancement of colorectal cancer.
Collapse
Affiliation(s)
- Qianping Xu
- Department of Gastrointestinal and Hernial Surgery, Meishan Hospital of West China Hospital of Sichuan University, Meishan City People's Hospital, Meishan, 620010, China
| | - Chao Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Hailin Wang
- Department of Hepatobiliary Surgery, Affliated Hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China
| | - Shujuan Li
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Hanshen Yan
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Ziyang Liu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Kexin Chen
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Yaoqin Xu
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Runqin Yang
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Jingfang Zhou
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China
| | - Xiaolin Yang
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, 635000, China.
| | - Lexin Wang
- General Hospital of Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
- Ningxia Medical University, Yinchuan, 750000, Ningxia, China.
| |
Collapse
|
2
|
He S, Hao L, Chen Y, Gong B, Xu X. Chinese herbal Jianpi Jiedu formula suppressed colorectal cancer growth in vitro and in vivo via modulating hypoxia-inducible factor 1 alpha-mediated fibroblasts activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118753. [PMID: 39209001 DOI: 10.1016/j.jep.2024.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Jiedu Formula (JPJDF) is a traditional Chinese medicinal decoction clinically used for its anti-cancer properties, particularly in colorectal cancer (CRC). AIM OF THE STUDY This study aims to investigate the therapeutic effects of JPJDF on CRC and elucidate its potential molecular mechanisms, with a focus on its impact on hypoxia-inducible factor 1 alpha (HIF1α) and cancer-associated fibroblasts (CAFs) both in vitro and in vivo. MATERIALS AND METHODS UPLC-Q-TOF-MS was used to identify the constituents of JPJDF. A chemical-induced colorectal cancer model was established and treated with JPJDF to evaluate its effects. Tumor size was measured, and histopathological analyses were performed to examine JPJDF's regulatory potential on CRC. The functional mechanism of JPJDF was predicted through network pharmacology, molecular docking, and transcriptomics. Co-culture techniques involving CRC cells and CCD-18Co fibroblasts were used to assess JPJDF's impact on fibroblast activation. The effects of HIF1α on CAFs were evaluated using CCK-8 proliferation, clonal formation, and apoptotic assays, with differential marker expression quantified via qPCR and Western blotting. RESULTS Pharmacodynamic assessment demonstrated that JPJDF reduced tumor size without affecting body weight, indicating its safety in the chemical-induced murine CRC model. Network pharmacology analysis, combined with molecular docking and transcriptomics, revealed that JPJDF regulates HIF-1 signaling pathways and identified HIF1α as a potential target for JPJDF's anti-CRC effect. JPJDF effectively suppressed CRC growth in vivo by attenuating fibroblast activation, reducing α-SMA expression and POSTN secretion through HIF1α inhibition. HIF1α knockdown in CRC cells inhibited fibroblast proliferation and clonal formation, while overexpression promoted these processes. Additionally, downregulating HIF1α suppressed α-SMA and POSTN expression in fibroblasts, whereas overexpression enhanced fibroblast activation. CONCLUSION JPJDF emerges as a promising therapeutic candidate for inhibiting CAFs activation by targeting HIF1α, offering potential avenues for modulating fibroblast activation towards CAFs in CRC therapy.
Collapse
Affiliation(s)
- Shenglan He
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lixiao Hao
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Biao Gong
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaowen Xu
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
5
|
Charoensedtasin K, Naksawat M, Norkaew C, Kheansaard W, Roytrakul S, Tanyong D. Menthol induces extracellular vesicle regulation of apoptosis via ATG3 and caspase-3 in acute leukemic cells. Heliyon 2024; 10:e33081. [PMID: 39021955 PMCID: PMC11252965 DOI: 10.1016/j.heliyon.2024.e33081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Leukemia is one of the most deadly cancers in Thailand. Natural compounds have been developed for cancer treatment. Menthol, a peppermint compound, has shown pharmacological properties such as anti-cancer activity. However, the mechanism of menthol inducing extracellular vesicles in leukemic cells is not yet understood. In this study, we investigated the effects of menthol on leukemic extracellular vesicles and their role in apoptosis. NB4 and Molt-4 leukemic cells were cultured with menthol in various concentrations and times. Bioinformatic analysis was used to investigate target proteins of extracellular vesicle and apoptosis, followed by mRNA and protein expression by RT‒PCR and western blotting, respectively. Our findings indicate that menthol inhibits leukemic cell proliferation and increases extracellular vesicles. Furthermore, menthol treated leukemic extracellular vesicles induce apoptosis and upregulate the expression of ATG3 and caspase-3 in both mRNA and protein levels. These results suggest that menthol has an antileukemic effect through ATG3 and caspase-3 in apoptosis of leukemic extracellular vesicles.
Collapse
Affiliation(s)
- Kantorn Charoensedtasin
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Mashima Naksawat
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chosita Norkaew
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Wasinee Kheansaard
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand, 73170, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Zhou J, Li L, Pu Y, Li H, Wu X, Wang Z, Sun J, Song Q, Zhou L, Ma X, Yang L, Ji Q. Astragaloside IV inhibits colorectal cancer metastasis by reducing extracellular vesicles release and suppressing M2-type TAMs activation. Heliyon 2024; 10:e31450. [PMID: 38831823 PMCID: PMC11145472 DOI: 10.1016/j.heliyon.2024.e31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Ethnopharmacological relevance Tumour-derived extracellular vesicles (TEVs) have been confirmed to facilitate colorectal cancer (CRC) metastasis by remodelling the tumour microenvironment (TME). Drugs targeted TEVs is considered as a promising therapeutic strategy for cancer treatment. Traditional Chinese medicine (TCM) plays a vital role in improving the prognosis of CRC patients and eventually CRC patients with distant metastasis. Although the anti-tumour effects of active compounds from TCM prescriptions are observed widely, the molecular mechanisms remain unknown. Aim of the study This study aims to investigate the effects of active compounds in our library of TCM on preventing CRC metastasis, and also explore the potential mechanisms from the perspective of TEVs. Materials and methods: The effects of active compounds on the proliferation of CRC cells were determined by CCK-8 assay. TEVs were extracted from MC38 cells by ultracentrifugation and characterized by electron microscopy, Nanosight NS300 and western blotting. The TEV particles were quantified by Nanosight NS300. The potential mechanism by which astragaloside IV (ASIV) reduced TEV secretion was determined by western blotting. RAW264.7 cells were cocultured with the conditioned medium (CM) of MC38 cells treated with or without ASIV, and the activation of tumour-associated macrophages (TAMs) was assessed by immunofluorescence and quantitative polymerase chain reaction (qPCR). The migration of CRC cells was measured by wound healing and Transwell assay. A spleen-to-liver metastasis model of colorectal cancer was used to confirm the efficiency of ASIV in vivo. Liver metastatic tumours of the mice were used for liver weight measures and H&E staining. Immunofluorescence was applied to observe the infiltration of TAMs, the expression of neutral sphingomyelinase 2 (nSMase2) and Rab27a. Results By screening our TCM monomer library, we found that ASIV, which is mainly extracted from Radix Astragali, reduced the release of TEVs from CRC cells in a time- and concentration-dependent manner. Mechanistically, ASIV inhibited the production and secretion of TEVs by downregulating nSMase2 and Rab27a expression in CRC cells. CM from ASIV-treated CRC cells reshaped the polarization of TAMs by decreasing M2-type polarization, increasing M1-type polarization. Consequently, the repolarization of M2-type to M1-type macrophages led to reduced invasion and migration of CRC cells. Moreover, we confirmed that ASIV inhibited the liver metastasis of CRC, reduced M2-type macrophage infiltration and decreased the expression of nSMase2 and Rab27a in liver metastases. Conclusions ASIV inhibited CRC metastasis by reducing EVs release and suppressing M2-type TAMs activation. All these findings reveal a new insight into the mechanisms of ASIV in preventing CRC progression and provide a promising approach for anti-tumour therapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Sun
- Department of Peripheral Vascular Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215007, China
| | - Lihong Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinwen Ma
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
7
|
Sun J, Wei Y, Wang J, Hou M, Su L. Treatment of colorectal cancer by traditional Chinese medicine: prevention and treatment mechanisms. Front Pharmacol 2024; 15:1377592. [PMID: 38783955 PMCID: PMC11112518 DOI: 10.3389/fphar.2024.1377592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024] Open
Abstract
Colorectal cancer (CRC) is a significant global health burden, with high morbidity and mortality rates. It is often diagnosed at middle to advanced stage, affecting approximately 35% of patients at the time of diagnosis. Currently, chemotherapy has been used to improve patient prognosis and increase overall survival. However, chemotherapy can also have cytotoxic effects and lead to adverse reactions, such as inhibiting bone marrow hematopoiesis, causing digestive dysfunction, hand-foot syndrome, and even life-threatening conditions. In response to these adverse effects, researchers have proposed using Traditional Chinese Medicine (TCM) as an option to treat cancer. TCM research focuses on prescriptions, herbs, and components, which form essential components of the current research in Chinese medicine. The study and implementation of TCM prescriptions and herbs demonstrate its distinctive holistic approach to therapy, characterized by applying multi-component and multi-target treatment. TMC components have advantages in developing new drugs as they consist of single ingredients, require smaller medication dosages, have a precise measure of pharmacodynamic effects, and have a clear mechanism of action compared to TCM prescriptions and herbs. However, further research is still needed to determine whether TMC components can fully substitute the therapeutic efficacy of TCM prescriptions. This paper presents a comprehensive analysis of the research advancements made in TCM prescriptions, herbs, and components. The findings of this study can serve as a theoretical basis for researchers who are interested in exploring the potential of TCM for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Jiaxin Sun
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Ying Wei
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Jia Wang
- Department of Gynaecology, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia, China
| | - Mingxing Hou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Liya Su
- Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
Meng L, Zhang C, Yu P. Treating cancer through modulating exosomal protein loading and function: The prospects of natural products and traditional Chinese medicine. Pharmacol Res 2024; 203:107179. [PMID: 38615876 DOI: 10.1016/j.phrs.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.
Collapse
Affiliation(s)
- Lulu Meng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
9
|
Jia W, Liang S, Jin M, Li S, Yuan J, Zhang J, Lin W, Wang Y, Nie S, Ling C, Cheng B. Oleanolic acid inhibits hypoxic tumor-derived exosomes-induced premetastatic niche formation in hepatocellular carcinoma by targeting ERK1/2-NFκB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155208. [PMID: 38387275 DOI: 10.1016/j.phymed.2023.155208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND Pulmonary premetastatic niche (PMN) formation plays a key role in the lung metastasis of hepatocellular carcinoma (HCC). Hypoxia promotes the secretion of tumor-derived exosomes (TDEs) and facilitates the formation of PMN. However, the mechanisms remain unexplored. METHODS TDEs from normoxic (N-TDEs) or hypoxic (H-TDEs) HCC cells were used to induce fibroblast activation in vitro and PMN formation in vivo. Oleanolic acid (OA) was intragastrically administered to TDEs-preconditioned mice. Bioinformatics analysis and drug affinity responsive target stability (DARTS) assays were performed to identify targets of OA in fibroblasts. RESULTS H-TDEs induced activation of pulmonary fibroblasts, promoted formation of pulmonary PMN and subsequently facilitated lung metastasis of HCC. OA inhibited TDEs-induced PMN formation and lung metastasis and suppressed TDEs-mediated fibroblast activation. MAPK1 and MAPK3 (ERK1/2) were the potential targets of OA. Furthermore, H-TDEs enhanced ERK1/2 phosphorylation in fibroblasts in vitro and in vivo, which was suppressed by OA treatment. Blocking ERK1/2 signaling with its inhibitor abated H-TDEs-induced activation of fibroblasts and PMN formation. H-TDEs-induced phosphorylation of ERK1/2 in fibroblasts touched off the activation NF-κB p65, which was mitigated by OA. In addition, the ERK activator C16-PAF recovered the activation of ERK1/2 and NF-κB p65 in H-TDEs-stimulated MRC5 cells upon OA treatment. CONCLUSION The present study offers insights into the prevention of TDEs-induced PMN, which has been insufficiently investigated. OA suppresses the activation of inflammatory fibroblasts and the development of pulmonary PMN by targeting ERK1/2 and thereby has therapeutic potential in the prevention of lung metastasis of HCC.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Shufang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Jiaying Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Yuqian Wang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Shuchang Nie
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200043, China.
| |
Collapse
|
10
|
Ai S, Li Y, Zheng H, Zhang M, Tao J, Liu W, Peng L, Wang Z, Wang Y. Collision of herbal medicine and nanotechnology: a bibliometric analysis of herbal nanoparticles from 2004 to 2023. J Nanobiotechnology 2024; 22:140. [PMID: 38556857 PMCID: PMC10983666 DOI: 10.1186/s12951-024-02426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Herbal nanoparticles are made from natural herbs/medicinal plants, their extracts, or a combination with other nanoparticle carriers. Compared to traditional herbs, herbal nanoparticles lead to improved bioavailability, enhanced stability, and reduced toxicity. Previous research indicates that herbal medicine nanomaterials are rapidly advancing and making significant progress; however, bibliometric analysis and knowledge mapping for herbal nanoparticles are currently lacking. We performed a bibliometric analysis by retrieving publications related to herbal nanoparticles from the Web of Science Core Collection (WoSCC) database spanning from 2004 to 2023. Data processing was performed using the R package Bibliometrix, VOSviewers, and CiteSpace. RESULTS In total, 1876 articles related to herbal nanoparticles were identified, originating from various countries, with China being the primary contributing country. The number of publications in this field increases annually. Beijing University of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, and Saveetha University in India are prominent research institutions in this domain. The Journal "International Journal of Nanomedicine" has the highest number of publications. The number of authors of these publications reached 8234, with Yan Zhao, Yue Zhang, and Huihua Qu being the most prolific authors and Yan Zhao being the most frequently cited author. "Traditional Chinese medicine," "drug delivery," and "green synthesis" are the main research focal points. Themes such as "green synthesis," "curcumin," "wound healing," "drug delivery," and "carbon dots" may represent emerging research areas. CONCLUSIONS Our study findings assist in identifying the latest research frontiers and hot topics, providing valuable references for scholars investigating the role of nanotechnology in herbal medicine.
Collapse
Affiliation(s)
- Sinan Ai
- China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China
| | - Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Huijuan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meiling Zhang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayin Tao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Beijing, China.
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Medical Science, China-Japan Friendship Hospital, Beijing, China.
| | - Zhen Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Ou QL, Cheng L, Chang YL, Liu JH, Zhang SF. Jianpi Jiedu decoction reverses 5-fluorouracil resistance in colorectal cancer by suppressing the xCT/GSH/GPX4 axis to induce ferroptosis. Heliyon 2024; 10:e27082. [PMID: 38455561 PMCID: PMC10918199 DOI: 10.1016/j.heliyon.2024.e27082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/30/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Innate and acquired chemoresistance in colorectal cancer (CRC) often results in 5-fluorouracil (5-FU) treatment failure. This study aimed to investigate the potential of Jianpi Jiedu (JPJD) decoction to reverse 5-FU resistance in CRC and clarify its potential mechanism of action. Methods The CCK-8 assay was employed to assess cell activity. Flow cytometry was employed to assess various parameters including cell apoptosis, cell cycle distribution, P-glycoprotein (P-gp) activity, reactive oxygen species levels, and lipid peroxidation. Metabolomics analysis was conducted to identify differentially expressed metabolites. Western blotting was utilized for protein expression analysis. Results In this study, we demonstrated that the combined JPJD and 5-FU treatment reversed 5-FU resistance in HCT8/5-FU cells, inducing cell apoptosis, causing G2/M-phase cell cycle arrest, and reducing P-gp protein expression and activity. Metabolomics analysis revealed ferroptosis as a key pathway in the development of 5-FU resistance. Furthermore, the combination treatment reversed drug resistance primarily by impacting ferroptosis and triggering critical ferroptosis events through the suppression of the cystine/glutamate transporter (xCT)/glutathione (GSH)/glutathione peroxidase (GPX4) axis. Conclusion JPJD decoction primarily suppressed the xCT/GSH/GPX4 axis to trigger ferroptosis, thereby effectively reversing 5-FU resistance in colorectal cancer (CRC).
Collapse
Affiliation(s)
- Qin-ling Ou
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| | - Lin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yong-long Chang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jin-hui Liu
- College of Integrated Traditional Chinese & Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan, 410208, China
| | - Si-fang Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, Hunan, 410011, China
| |
Collapse
|
12
|
Li Y, Zheng Y, Tan X, Du Y, Wei Y, Liu S. Extracellular vesicle-mediated pre-metastatic niche formation via altering host microenvironments. Front Immunol 2024; 15:1367373. [PMID: 38495881 PMCID: PMC10940351 DOI: 10.3389/fimmu.2024.1367373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
The disordered growth, invasion and metastasis of cancer are mainly attributed to bidirectional cell-cell interactions. Extracellular vesicles (EVs) secreted by cancer cells are involved in orchestrating the formation of pre-metastatic niches (PMNs). Tumor-derived EVs mediate bidirectional communication between tumor and stromal cells in local and distant microenvironments. EVs carrying mRNAs, small RNAs, microRNAs, DNA fragments, proteins and metabolites determine metastatic organotropism, enhance angiogenesis, modulate stroma cell phenotypes, restructure the extracellular matrix, induce immunosuppression and modify the metabolic environment of organs. Evidence indicates that EVs educate stromal cells in secondary sites to establish metastasis-supportive microenvironments for seeding tumor cells. In this review, we provide a comprehensive overview of PMN formation and the underlying mechanisms mediated by EVs. Potential approaches to inhibit cancer metastasis by inhibiting the formation of PMNs are also presented.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zheng
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yongxing Du
- Department of Pancreatic and Gastric Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Shen K, Xia W, Wang K, Li J, Xu W, Liu H, Yang K, Zhu J, Wang J, Xi Q, Shi T, Li R. ITGBL1 promotes anoikis resistance and metastasis in human gastric cancer via the AKT/FBLN2 axis. J Cell Mol Med 2024; 28:e18113. [PMID: 38332530 PMCID: PMC10853594 DOI: 10.1111/jcmm.18113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
The resistance to anoikis plays a critical role in the metastatic progression of various types of malignancies, including gastric cancer (GC). Nevertheless, the precise mechanism behind anoikis resistance is not fully understood. Here, our primary focus was to examine the function and underlying molecular mechanism of Integrin beta-like 1 (ITGBL1) in the modulation of anoikis resistance and metastasis in GC. The findings of our investigation have demonstrated that the overexpression of ITGBL1 significantly augmented the resistance of GC cells to anoikis and promoted their metastatic potential, while knockdown of ITGBL1 had a suppressive effect on both cellular processes in vitro and in vivo. Mechanistically, we proved that ITGBL1 has a role in enhancing the resistance of GC cells to anoikis and promoting metastasis through the AKT/Fibulin-2 (FBLN2) axis. The inhibition of AKT/FBLN2 signalling was able to reverse the impact of ITGBL1 on the resistance of GC cells to anoikis and their metastatic capability. Moreover, the expression levels of ITGBL1 were found to be significantly elevated in the cancerous tissues of patients diagnosed with GC, and there was a strong correlation observed between high expression levels of ITGBL1 and worse prognosis among individuals diagnosed with GC. Significantly, it was revealed that within our cohort of GC patients, individuals exhibiting elevated ITGBL1 expression and diminished FBLN2 expression experienced the worst prognosis. In conclusion, the findings of our study indicate that ITGBL1 may serve as a possible modulator of resistance to anoikis and the metastatic process in GC.
Collapse
Affiliation(s)
- Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Xia
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wei Xu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Haoran Liu
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Qinhua Xi
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Rui Li
- Jiangsu Key Laboratory of Clinical ImmunologySoochow UniversitySuzhouChina
- Department of GastroenterologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
14
|
Zhang R, Chen X, Miao C, Chen Y, Li Y, Shen J, Yuan M, Chen M, Cheng J, Liu S, Sun Q, Wu J. Tumor-associated macrophage-derived exosomal miR-513b-5p is a target of jianpi yangzheng decoction for inhibiting gastric cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117013. [PMID: 37572927 DOI: 10.1016/j.jep.2023.117013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/16/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Yangzheng decoction (JPYZ) possesses a potential anti-tumor activity in gastric cancer. However, potential effect of JPYZ on regulating tumor-associated macrophage (TAM)-derived exosomes to affect gastric cancer is still unclear. AIM OF STUDY We aimed to clarify the role of tumor-associated macrophage derived exosomes (TAM-exos) in invasive and metastasis of gastric cancer and the mechanism of JPYZ regulate TAM-exos against gastric cancer. MATERIALS AND METHODS Flow cytometry was performed to demonstrate whether JPYZ involved in TAM polarization. After JPYZ treatment, TAM conditioned medium (TAM-CM)/TAM-exos were co-cultured with gastric cancer cells and were detected by wound healing and transwell assay. Transcriptome sequencing and bioinformatics analysis predicted the exosomal miRNA after JPYZ intervention in TAM. miRNA mimic and inhibitor were used to verify the effect of miRNA in exosomes on gastric cancer cells. Q-PCR and luciferase reporter assay were employed to clarify the targeting relationship between miRNA and target gene. Western blot assay detected the expression levels of epithelial-mesenchymal transition (EMT) markers and related signaling pathways proteins. RESULTS We firstly demonstrated that TAM-CM intervened by JPYZ significantly inhibited the invasion and migration of gastric cancer. Furthermore, exosomes in TAM supernatants play a key role in migration of gastric cancer. Meanwhile, transcriptome sequencing and q-PCR revealed that miR-513b-5p expression was significantly reduced in TAM-exos intervened by JPYZ. And miR-513b-5p in TAM aggravated TAM-exos mediated invasion and migration of gastric cancer cells, the inhibitor of miR-513b-5p reversed TAM-exos mediated promotion. Bioinformatics analysis and luciferase reporter assay confirmed that PTEN was a direct target of miR-513b-5p in gastric cancer. MiR-513b-5p inhibited PTEN to activate AKT/mTOR signaling pathway thus promoting gastric cancer invasion and metastasis in vivo and in vitro. Importantly, JPYZ inhibited TAM derived exosomal miR-513b-5p, and alleviated AKT/mTOR activation by PTEN depended manner in gastric cancer. CONCLUSION TAM-exos containing miR-513b-5p lead to gastric cancer invasion and migration. Our findings clarify a novel TAM-exos mechanism of JPYZ for inhibiting gastric cancer progression.
Collapse
Affiliation(s)
- Ruijuan Zhang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Xu Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Chunrun Miao
- Department of Gastroenterology, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, Jiangsu, 224299, China
| | - Yuxuan Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yaqi Li
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Junyu Shen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Mengyun Yuan
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Menglin Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jian Cheng
- BD Bioscience, Becton, Dickinson and Company, Shanghai, 201200, China
| | - Shenlin Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China
| | - Qingmin Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| | - Jian Wu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
15
|
Cheng L, Xu L, Yuan H, Zhao Q, Yue W, Ma S, Wu X, Gu D, Sun Y, Shi H, Xu J. Jianpi Jiedu Recipe Inhibits Proliferation through Reactive Oxygen Species-Induced Incomplete Autophagy and Reduces PD-L1 Expression in Colon Cancer. Integr Cancer Ther 2024; 23:15347354241268064. [PMID: 39155544 PMCID: PMC11331576 DOI: 10.1177/15347354241268064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Jianpi Jiedu Recipe has been used to treat digestive tract tumors in China since ancient times, and its reliability has been proven by clinical research. Currently, the specific biological mechanism of JPJDR in treating tumors is unclear. METHODOLOGY CCK-8 assay was used to detect cell viability. Clone formation assay and EdU assay were used to detect cell proliferation potential. DCFH-DA probe and JC-1 probe were used to detect total intracellular reactive oxygen species and mitochondrial membrane potential, respectively. Western blotting and immunofluorescence were used to detect protein expression level and subcellular localization of cells. The RFP-GFP-LC3B reporter system was used to observe the type of autophagy in cells. The xenograft tumor model was used to study the therapeutic effect of JPJDR in vivo. RESULTS JPJDR has an excellent inhibitory effect on various colorectal cancer cells and effectively reduces the proliferation ability of HT29 cells. After treatment with JPJDR, the amount of reactive oxygen species in HT29 cells increased significantly, and the mitochondrial membrane potential decreased. JPJDR induced the accumulation of autophagosomes in HT29 cells and was shown to be incomplete autophagy. At the same time, JPJDR reduced the expression of PD-L1. Meanwhile, JPJDR can exert an excellent therapeutic effect in xenograft tumor mice. CONCLUSION JPJDR is a low-toxicity and effective anti-tumor agent that can effectively treat colon cancer in vitro and in vivo. Its mechanism may be inducing mitochondrial dysfunction and incomplete autophagy injury to inhibit the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Lingling Cheng
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Liangfeng Xu
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Hua Yuan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Qihao Zhao
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Wei Yue
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Shuang Ma
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Xiaojing Wu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Dandan Gu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Yurong Sun
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Haifeng Shi
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Jianlin Xu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
16
|
Chang Y, Chen L, Tang J, Chen G, Ji J, Xu M. USP7-mediated JUND suppresses RCAN2 transcription and elevates NFATC1 to enhance stem cell property in colorectal cancer. Cell Biol Toxicol 2023; 39:3121-3140. [PMID: 37535148 DOI: 10.1007/s10565-023-09822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
Cancer stem cells (CSCs) encompass a subset of highly aggressive tumor cells that are involved in tumor initiation and progression. This study investigates the function of regulator of calcineurin 2 (RCAN2) in the stem cell property in colorectal cancer (CRC). By analyzing four GEO datasets, we obtained RCAN2 as a stemness-related gene in CRC. RCAN2 was poorly expressed in CRC tissues and cells, especially in CSCs. RCAN2 restoration reduced calcineurin activity and promoted phosphorylation and degradation of nuclear factor of activated T cells 1 (NFATC1) protein, leading to reduced stemness of CSCs. JunD proto-oncogene (JUND), whose protein level was increased in CRC samples and CRC stem cells, bound to RCAN2 and suppressed its transcription. The abundant ubiquitin specific peptidase 7 (USP7) in CSCs enhanced JUND protein stability through deubiquitination modification. Lentivirus-mediated knockdown of USP7 or JUND also blocked the calcineurin-NFATC1 signaling and reduced the protein levels of stemness-related proteins. Moreover, the USP7 knockdown weakened the colony/sphere formation ability as well as the tumorigenicity of CSCs, and it reduced the CSC content in xenograft tumors. However, further restoration of JUND rescued the stemness of the CSCs. Overall, this study demonstrates that USP7-mediated JUND suppresses RCAN2 transcription and activates NFATC1 to enhance stem cell property in CRC. 1. RCAN2 is poorly expressed in CRC tissues and cells and especially in CSCs. 2. RCAN2 reduces stemness of CSCs by blocking calcineurin-NFATC1 signal transduction. 3. JUND binds to RCAN2 promoter to suppresses RCAN2 transcription. 4. USP7 enhances JUND protein stability via deubiquitination modification. 5. Downregulation of USP7 or JUND restores RCAN2 level and suppresses stemness of CSCs.
Collapse
Affiliation(s)
- Yunli Chang
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Lingling Chen
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Jie Tang
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Guoyu Chen
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Jieru Ji
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China
| | - Ming Xu
- Department of Gastroenterology, Pudong New Area People's Hospital, No. 490, Chuanhuan South Road, Pudong New Area, Shanghai, 201299, People's Republic of China.
| |
Collapse
|
17
|
Li S, Qu Y, Liu L, Wang C, Yuan L, Bai H, Wang J. Tumour-derived exosomes in liver metastasis: A Pandora's box. Cell Prolif 2023; 56:e13452. [PMID: 36941028 PMCID: PMC10542622 DOI: 10.1111/cpr.13452] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/23/2023] Open
Abstract
The liver is a common secondary metastasis site of many malignant tumours, such as the colorectum, pancreas, stomach, breast, prostate, and lung cancer. The clinical management of liver metastases is challenging because of their strong heterogeneity, rapid progression, and poor prognosis. Now, exosomes, small membrane vesicles that are 40-160 nm in size, are released by tumour cells, namely, tumour-derived exosomes (TDEs), and are being increasingly studied because they can retain the original characteristics of tumour cells. Cell-cell communication via TDEs is pivotal for liver pre-metastatic niche (PMN) formation and liver metastasis; thus, TDEs can provide a theoretical basis to intensively study the potential mechanisms of liver metastasis and new insights into the diagnosis and treatment of liver metastasis. Here, we systematically review current research progress about the roles and possible regulatory mechanisms of TDE cargos in liver metastasis, focusing on the functions of TDEs in liver PMN formation. In addition, we discuss the clinical utility of TDEs in liver metastasis, including TDEs as potential biomarkers, and therapeutic approaches for future research reference in this field.
Collapse
Affiliation(s)
- Sini Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yan Qu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Lihui Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chao Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- CAMS Key Laboratory of Translational Research on Lung Cancer, State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
18
|
Chen Z, Dong Y, Yan Q, Li Q, Yu C, Lai Y, Tan J, Fan M, Xu C, Li L, Shen W, Gu J, Cheng H, Sun D. Liquid chromatography-tandem mass spectrometry analysis of a ratio-optimized drug pair of Sophora flavescens Aiton and Coptis chinensis Franch and study on the mechanism of anti-colorectal cancer effect of two alkaloids thereof. Front Oncol 2023; 13:1198467. [PMID: 37404762 PMCID: PMC10316516 DOI: 10.3389/fonc.2023.1198467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/15/2023] [Indexed: 07/06/2023] Open
Abstract
The drug pair consisting of Sophora flavescens Aiton (Sophorae flavescentis radix, Kushen) and Coptis chinensis Franch. (Coptidis rhizoma, Huanglian), as described in Prescriptions for Universal Relief (Pujifang), is widely used to treat laxation. Matrine and berberine are the major active components of Kushen and Huanglian, respectively. These agents have shown remarkable anti-cancer and anti-inflammatory effects. A mouse model of colorectal cancer was used to determine the most effective combination of Kushen and Huanglian against anti-colorectal cancer. The results showed that the combination of Kushen and Huanglian at a 1:1 ratio exerted the best anti-colorectal cancer effect versus other ratios. Moreover, the anti-colorectal cancer effect and potential mechanism underlying the effects of matrine and berberine were evaluated by the analysis of combination treatment or monotherapy. In addition, the chemical constituents of Kushen and Huanglian were identified and quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 67 chemical components were identified from the Kushen-Huanglian drug pair (water extraction), and the levels of matrine and berberine were 129 and 232 µg/g, respectively. Matrine and berberine reduced the growth of colorectal cancer and relieved the pathological conditions in mice. In addition, the combination of matrine and berberine displayed better anti-colorectal cancer efficacy than monotherapy. Moreover, matrine and berberine reduced the relative abundance of Bacteroidota and Campilobacterota at phylum level and that of Helicobacter, Lachnospiraceae_NK4A136_group, Candidatus_Arthromitus, norank_f_Lachnospiraceae, Rikenella, Odoribacter, Streptococcus, norank_f_Ruminococcaceae, and Anaerotruncus at the genus level. Western blotting results demonstrated that treatment with matrine and berberine decreased the protein expressions of c-MYC and RAS, whereas it increased that of sirtuin 3 (Sirt3). The findings indicated that the combination of matrine and berberine was more effective in inhibiting colorectal cancer than monotherapy. This beneficial effect might depend on the improvement of intestinal microbiota structure and regulation of the RAS/MEK/ERK-c-MYC-Sirt3 signaling axis.
Collapse
Affiliation(s)
- Zihan Chen
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Dong
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Qiuying Yan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Qin Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengtao Yu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Minmin Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Liu Li
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Junfei Gu
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| | - Dongdong Sun
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Prevention and Treatment of Tumor Research Center for Theory and Application of Cancer Toxin Pathogenesis, Nanjing, China
| |
Collapse
|
19
|
Jia W, Yuan J, Cheng B, Ling C. Targeting tumor-derived exosome-mediated premetastatic niche formation: The metastasis-preventive value of traditional Chinese medicine. Cancer Lett 2023:216261. [PMID: 37302563 DOI: 10.1016/j.canlet.2023.216261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
Tumor-derived exosome (TDE)-mediated premetastatic niche (PMN) formation is a potential mechanism underlying the organotropic metastasis of primary tumors. Traditional Chinese medicine (TCM) has shown considerable success in preventing and treating tumor metastasis. However, the underlying mechanisms remain elusive. In this review, we discussed PMN formation from the perspectives of TDE biogenesis, cargo sorting, and TDE recipient cell alterations, which are critical for metastatic outgrowth. We also reviewed the metastasis-preventive effects of TCM, which act by targeting the physicochemical materials and functional mediators of TDE biogenesis, regulating the cargo sorting machinery and secretory molecules in TDEs, and targeting the TDE-recipient cells involved in PMN formation.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Jiaying Yuan
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| | - Changquan Ling
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200043, China.
| |
Collapse
|
20
|
Extracellular Vesicles in Colorectal Cancer: From Tumor Growth and Metastasis to Biomarkers and Nanomedications. Cancers (Basel) 2023; 15:cancers15041107. [PMID: 36831450 PMCID: PMC9953945 DOI: 10.3390/cancers15041107] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Colorectal cancer (CRC) is a leading public health concern due to its incidence and high mortality rates, highlighting the requirement of an early diagnosis. Evaluation of circulating extracellular vesicles (EVs) might constitute a noninvasive and reliable approach for CRC detection and for patient follow-up because EVs display the molecular features of the cells they originate. EVs are released by almost all cell types and are mainly categorized as exosomes originating from exocytosis of intraluminal vesicles from multivesicular bodies, ectosomes resulting from outward budding of the plasma membrane and apoptotic bodies' ensuing cell shrinkage. These vesicles play a critical role in intercellular communications during physiological and pathological processes. They facilitate CRC progression and premetastatic niche formation, and they enable transfer of chemotherapy resistance to sensitive cells through the local or remote delivery of their lipid, nucleic acid and protein content. On another note, their stability in the bloodstream, their permeation in tissues and their sheltering of packaged material make engineered EVs suitable vectors for efficient delivery of tracers and therapeutic agents for tumor imaging or treatment. Here, we focus on the physiopathological role of EVs in CRCs, their value in the diagnosis and prognosis and ongoing investigations into therapeutic approaches.
Collapse
|
21
|
Wu J, Cui N, Li Z, Wu Y, Hao T, Li L. Clinical characteristics and survival outcomes in patients aged 75 years or older with advanced colorectal cancer treated using traditional Chinese medicine: an observational retrospective study. Front Pharmacol 2023; 14:1099659. [PMID: 37153772 PMCID: PMC10157214 DOI: 10.3389/fphar.2023.1099659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
Limited evidence suggests that elderly patients with advanced colorectal cancer (ACRC) may benefit from traditional Chinese medicine (TCM). This study investigated the efficacy and safety of TCM in old ACRC patients treated in the Oncology Department of Xiyuan Hospital between January 2012 and December 2021. The clinical characteristics of these patients were retrospectively reviewed. Their progression-free survival (PFS) and total duration of TCM therapy (TTCM) were analyzed using the Kaplan-Meier curve. Forty-eight patients (F:M 13:35) with a mean age of 78.75 ± 2.99 years (range, 75-87) met the inclusion criteria. There were 18 cases of rectal cancer and 30 of colon cancer. The median PFS was 4 months (range, 1-26; 95% CI 3.26-4.73). The median TTCM was 5.5 months (range, 1-50; 95% CI 1.76-8.24). Subgroup analysis revealed that PFS and TTCM were shorter in patients with bone metastases and an ECOG performance status score of 2-3 (p < 0.05). No hematological toxicity or serious adverse reactions occurred during the study period. This real-world study demonstrates that TCM may be a potentially beneficial therapy for old ACRC patients, including when the ECOG performance status score is 2-3.
Collapse
Affiliation(s)
| | | | | | - Yu Wu
- *Correspondence: Yu Wu, , Tengteng Hao,
| | | | | |
Collapse
|