1
|
Xin J, He L, Li Y, Pu Q, Du X, Ban F, Han D. Sanguinarine chloride hydrate mitigates colitis symptoms in mice through the regulation of the intestinal microbiome and metabolism of short-chain fatty acids. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167579. [PMID: 39561858 DOI: 10.1016/j.bbadis.2024.167579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Sanguinarine constitutes the main components of Macleaya cordata, and exhibits diverse biological and pharmacological activities. This study investigated the effects of sanguinarine chloride hydrate (SGCH) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice. Five groups were designed to investigate the effects of SGCH on the pathological symptoms, the mRNA expression levels of inflammatory cytokines, colonic mucosal barrier damage, microbiota composition, and SCFAs metabolism in UC mice. The administration of SGCH in DSS-induced UC mice resulted in the amelioration of pathological symptoms, as evidenced by an increase in body weight, a decrease in disease activity index score, elongation of colon length, reduction in spleen index, and improvement in colon injury. SGCH can regulate the expression of inflammatory cytokines (IL-6, TNF-α, IL-1β and IL-10) and tight junction proteins (ZO-1 and Occludin) associated with UC. SGCH exhibited a significant decrease in NF-κB P65 mRNA expression levels, accompanied by a significantly reduced protein level of NF-κB P-P65/P65. Further studies revealed SGCH effectively reversed the decrease in intestinal microbiota diversity induced by UC, thereby promoting the growth of beneficial bacteria such as Akkermansia, Alistipes, and norank_o_Clostridia_UCG-014. Correlation analysis demonstrated a positive association between butanoic acid, propanoic acid, isobutyric acid, isovaleric acid, valeric acid, hexanoic acid with Colidextribacter, while Coriobacteriaceae_UCG-002 exhibited a negative correlation with butanoic acid, acetic acid and propanoic acid. In conclusion, the administration of SGCH can ameliorate clinical symptoms in UC mice, regulate the expression of inflammatory cytokines and tight junction proteins, modulate intestinal microbiota metabolism and SCFAs production.
Collapse
Affiliation(s)
- Jige Xin
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Lin He
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Yanlin Li
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Qiqi Pu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xuan Du
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Fuze Ban
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Diangang Han
- Technology Center of Kunming Customs, Kunming 650200, China.
| |
Collapse
|
2
|
Tang Y, Zhou D, Gan F, Yao Z, Zeng Y. Exploring the Mechanisms of Sanguinarine in the Treatment of Osteoporosis by Integrating Network Pharmacology Analysis and Deep Learning Technology. Curr Comput Aided Drug Des 2025; 21:83-93. [PMID: 38385487 DOI: 10.2174/0115734099282231240214095025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Sanguinarine (SAN) has been reported to have antioxidant, antiinflammatory, and antimicrobial activities with potential for the treatment of osteoporosis (OP). OBJECTIVE This work purposed to unravel the molecular mechanisms of SAN in the treatment of OP. METHODS OP-related genes and SAN-related targets were predicted from public databases. Differential expression analysis and VennDiagram were adopted to detect SAN-related targets against OP. Protein-protein interaction (PPI) network was served for core target identification. Molecular docking and DeepPurpose algorithm were further adopted to investigate the binding ability between core targets and SAN. Gene pathway scoring of these targets was calculated utilizing gene set variation analysis (GSVA). Finally, we explored the effect of SAN on the expressions of core targets in preosteoblastic MC3T3-E1 cells. RESULTS A total of 21 candidate targets of SAN against OP were acquired. Furthermore, six core targets were identified, among which CASP3, CTNNB1, and ERBB2 were remarkably differentially expressed in OP and healthy individuals. The binding energies of SAN with CASP3, CTNNB1, and ERBB2 were -6, -6.731, and -7.162 kcal/mol, respectively. Moreover, the GSVA scores of the Wnt/calcium signaling pathway were significantly lower in OP cases than in healthy individuals. In addition, the expression of CASP3 was positively associated with Wnt/calcium signaling pathway. CASP3 and ERBB2 were significantly lower expressed in SAN group than in DMSO group, whereas the expression of CTNNB1 was in contrast. CONCLUSION CASP3, CTNNB1, and ERBB2 emerge as potential targets of SAN in OP prevention and treatment.
Collapse
Affiliation(s)
- Yonghong Tang
- Department of Orthopedics, The Sixth People's Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Daoqing Zhou
- Department of Orthopedics, Pan'an Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, China
| | - Fengping Gan
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhicheng Yao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuqing Zeng
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Liu XZ, Du XY, Xie WS, Ding J, Zhu MZ, Feng ZQ, Wang H, Feng Y, Yu MJ, Liu SM, Liu WT, Zhu XH, Liang JH. Redesigning Berberines and Sanguinarines to Target Soluble Epoxide Hydrolase for Enhanced Anti-Inflammatory Efficacy. J Med Chem 2024; 67:22168-22190. [PMID: 39658523 DOI: 10.1021/acs.jmedchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Amino-berberine has remained underexplored due to limited biological evaluation and total synthesis approaches. In inflammation therapy, soluble Epoxide Hydrolase (sEH) is a promising target, yet natural scaffolds remain underutilized. Our study advances the field by redesigning natural compounds─berberine and sanguinarine─with strategic urea modifications and hydrogenated frameworks, creating novel sEH inhibitors with enhanced in vivo efficacy. Through total synthesis and structure-activity relationship studies of amino-berberine derivatives, chiral tetrahydroberberine (R)-14i (coded LXZ-42) emerged as the most potent lead, with an IC50 value of 1.20 nM. (R)-14i showed reduced CYP enzyme impact, potent therapeutic effects on acute pancreatitis, no acute in vivo toxicity, and superior pharmacokinetic properties, with an oral bioavailability of 89.3%. Structural insights from crystallography of (R)-14i bound to sEH revealed key interactions: three with the tetrahydroberberine framework and three hydrogen bonds with the urea group, highlighting (R)-14i as a novel lead for sEH-targeted therapies in inflammation.
Collapse
Affiliation(s)
- Xing-Zhou Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Yu Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
4
|
Xu F, Li X, Wang X, Wu H, Chen S, Chen J, Kong X, Yang Z. Revealing therapeutic targets and drugs from Chinese medicine for ulcerative colitis using bioinformatics. J Biomol Struct Dyn 2024:1-11. [PMID: 39693490 DOI: 10.1080/07391102.2024.2440651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/03/2024] [Indexed: 12/20/2024]
Abstract
Pathogenesis and therapeutic drugs for ulcerative colitis (UC) have plagued researchers worldwide. In this study, therapeutic targets, and drugs from Chinese medicines for UC were screened using bioinformatics. We downloaded five datasets from the GEO database and three machine learning algorithms were used for screening diagnostic biomarkers of UC. Combined with the differential genes for UC, gene sets related to bile acid metabolism, short-chain fatty acids, apoptosis, pyroptosis, G-protein-coupled receptors, mitochondria, and autophagy were collected to screen the core targets, and analyze the association of therapeutic genes (diagnostic biomarkers and core targets) with immune cells. In addition, screening ingredients of Chinese medicines based on UC therapeutic targets was performed. Molecular docking, molecular dynamics simulation, and literature validation were also performed. The screening yielded 37 key therapeutic targets, including 5 diagnostic biomarkers (CCL11, CXCL1, PDZK1IP1, TIMP1, and UGT2A3) and 32 core targets based on hot gene sets. Immune cell infiltration was strongly associated with therapeutic targets in UC, especially neutrophils, macrophages, mast cells, and dendritic cells. Furthermore, a total of 33 compounds with high safety had been recognized as having potential to mitigate UC by reverse prediction from Chinese medicines, and molecular docking, molecular dynamics simulation, and literature reports preliminarily validated the screening results. Although further experimental validation is needed, this work provides some potential therapeutic targets and drugs from Chinese medicines against UC.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaofen Li
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Song Chen
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jianyang Chen
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiangxi Kong
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenglin Yang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Yan W, Ni T, Zhang Q, Sun X, Xu Z, Li X, Yi M, Wang Y, Zhang H, Shi J, Zhu Z. MCC950 promotes diabetic wound healing through modulating macrophage polarization in an MDSC-dependent manner. Int Immunopharmacol 2024; 142:112983. [PMID: 39217887 DOI: 10.1016/j.intimp.2024.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Diabetic foot ulcers (DFUs) are serious skin injuries whereby the wound healing process is frequently stalled in the inflammatory phase. Currently, there is a lack of effective therapeutic strategies. MCC950, a highly selective nod-like receptor family pyrin domain containing 3 (NLRP3) inhibitor, has been reported to show strong anti-inflammation effects in many diseases. In this study, we unveiled the role of MCC950 in DFU mice model and its underlying molecular mechanisms. MCC950 could significantly accelerate diabetic wound healing, as shown by shortened healing time and better healing quality. Moreover, increased M2 phenotype macrophages and decreased pro-inflammatory genes were observed in MCC950-treated DFU mice. Additionally, myeloid-derived suppressor cells (MDSCs) were significantly increased in blood, spleen and wound tissues at different time courses. Specifically, MCC950 could recruit more MDSCs in an early phase in DFU mice, exerting an anti-inflammation effect. We identified the cell crosstalk between macrophages and MDSCs with MCC950 treatment process. Depleting MDSCs in vivo could eliminate the therapeutic effect of MCC950 on diabetic wound healing through inhibiting M2 macrophage polarization. Besides, MDSCs isolated from the wounds of MCC950 or saline treated mice were cocultured with bone marrow derived macrophage (BMDM) in a transwell system. Results confirmed that MDSCs sorted from MCC950 treated mice caused a significant increased percentage of M2 macrophages. Collectively, our findings suggest that the administration of MCC950 has the potential to accelerate diabetic wound healing by promoting M2 macrophage polarization in an MDSC-dependent manner. This study provides valuable insights into the utilization of pharmacological agents for DFU treatment.
Collapse
Affiliation(s)
- Wei Yan
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Tianyi Ni
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Xiaowei Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Zibo Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Xiangyu Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Min Yi
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Yingying Wang
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Jingping Shi
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| | - Zhechen Zhu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, PR China.
| |
Collapse
|
6
|
Yang X, Xin Y, Gu Y, Wang Y, Hu X, Ying G, Zhang Q, He X. Total alkaloids of Aconitum carmichaelii Debx alleviate cisplatin-induced acute renal injury by inhibiting inflammation and oxidative stress related to gut microbiota metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156128. [PMID: 39442279 DOI: 10.1016/j.phymed.2024.156128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Cisplatin-induced acute kidney injury (AKI) is a complex and serious clinical issue, representing a major cause of hospital-acquired AKI. Alkaloids are the main active constituents of Aconitum carmichaelii Debx, which exhibit protective effects in several kidney disease models and against other acute organ injuries. However, its activity and mechanism of action in AKI treatment remain unclear. PURPOSE This study aimed to elucidate the effect of Aconitum carmichaelii Debx (ACA) in a model of cisplain-induced AKI and comprehensively investigate its underlying mechanisms. METHODS The major alkaloids in ACA were analyzed using high-performance liquid chromatography. Blood urea nitrogen (BUN) and serum creatine levels were measured using automated biochemical instruments. 16S rRNA sequencing, short-chain fatty acid (SCFA) analysis, fecal microbiota transplantation (FMT), non-targeted metabolomics, and transcriptomics were performed to systematically identify prospective biomarkers after ACA treatment. Anti-inflammatory and anti-oxidative stress activities were monitored using ELISA and western blotting. RESULTS Four main compounds (fuziline, neoline, talatisamine, and songorine) were identified in ACA. ACA significantly alleviated cisplatin-induced AKI by reducing (BUN) and serum creatine levels and improving histopathological scores. Moreover, ACA balanced cisplatin-mediated confoundments in microbial composition and function, including decreasing the levels of Escherichia-Shigella, Clostridium, and Ruminococcus, as well as increasing Ligilactobacillus, Anaerotruncus, Bacteroides and Desulfovibrio levels, accompanied by uremic toxin reduction, and augmenting serum SCFAs. The FMT experiments further confirmed that ACA exerts anti-AKI effects by affecting gut microbiota. A multi-omics study has shown that ACA regulates glutathione and tryptophan metabolism and mediates pathways that trigger inflammatory responses. Finally, ACA reduced serum levels of inflammatory factors (IL-1β, IL-6, and TNF-α), restored enzymes of the antioxidative system (SOD and CAT) and GSH values, and decreased monoester diterpene alkaloid levels in the kidney by inhibiting the expression of NF-κB pathway-related proteins and increasing Nrf2/HO-1 pathway-related protein expression. CONCLUSION ACA protects against cisplatin-induced AKI through its anti-inflammatory and antioxidant functions, which may be associated with the restoration of gut microbiota metabolism. ACA is a potential drug for AKI and other forms of organ damage related to the disruption of the gut microbiota.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yijing Xin
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Yanzhi Gu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Youlei Wang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China
| | - Guanghui Ying
- Department of Nephrology, The People's Hospital of Beilun District, The Branch Hospital of First Affiliated Hospital, Zhejiang University School of Medicine, Ningbo 315000, China.
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China.
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Dai N, Yang X, Pan P, Zhang G, Sheng K, Wang J, Liang X, Wang Y. Bacillus paralicheniformis, an acetate-producing probiotic, alleviates ulcerative colitis via protecting the intestinal barrier and regulating the NLRP3 inflammasome. Microbiol Res 2024; 287:127856. [PMID: 39079268 DOI: 10.1016/j.micres.2024.127856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Ulcerative colitis (UC) presents a challenging scenario in digestive health, characterized by recurrent inflammation that is often hard to manage. Bacteria capable of producing short-chain fatty acids (SCFAs) play a pivotal role in mitigating UC symptoms, rendering them promising candidates for probiotic therapy. In this investigation, we assessed the impact of Bacillus paralicheniformis HMPM220325 on dextran sodium sulfate (DSS)-induced UC in mice. Genomic analysis of the strain revealed the presence of protease genes associated with acetate and butyrate synthesis, with acetic acid detected in its fermentation broth. Administration of B. paralicheniformis HMPM220325 to UC mice ameliorated pathological manifestations of the condition and restored intestinal barrier function. Furthermore, B. paralicheniformis HMPM220325 suppressed the activation of the NLRP3 inflammasome signaling pathway and modulated the composition of the intestinal microbiota. These findings shed significant light on the potential of B. paralicheniformis as a probiotic candidate, offering a novel avenue for the prevention and therapeutic intervention of colitis.
Collapse
Affiliation(s)
- Nini Dai
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xinting Yang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Peilong Pan
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China
| | - Xiao Liang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China; Anhui Province Joint Construction Discipline Key Laboratory of Nanobody Technology, Hefei, China.
| |
Collapse
|
8
|
Shen X, Zhang A, Zhao R, Yin L, Yin D, Dai Y, Hou H, Wang J, Hu X, Pan X, Zhang D, Liu W, Liu Y, Zhan K. Effects of adding antibiotics to an inactivated oil-adjuvant avian influenza vaccine on vaccine characteristics and chick health. Poult Sci 2024; 103:104135. [PMID: 39106695 PMCID: PMC11343057 DOI: 10.1016/j.psj.2024.104135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024] Open
Abstract
During poultry immunization, antibiotics are typically added to inactivated oil-adjuvant avian influenza (AI) vaccines. Here, we evaluated the effects of adding ceftiofur, a third-generation cephalosporin, to an AI vaccine on vaccine stability and structure and on chick growth, immune efficacy, blood concentrations, biochemical and immunological indices, and gut microbiota. The results demonstrated that neither aqueous ceftiofur sodium nor ceftiofur hydrochloride oil emulsion formed a stable mixture with the vaccine. Adding ceftiofur formulations, particularly ceftiofur hydrochloride, at >4% significantly destabilized the vaccine's water-in-oil structures. Adding ceftiofur also increased vaccine malabsorption at the injection site; specifically, adding ceftiofur hydrochloride reduced H5N8 and H7N9 antibody titers after the first immunization (P < 0.05) and H7N9 antibody titers after the second immunization (P < 0.01). Serum drug concentrations did not differ significantly between the groups with ceftiofur sodium and hydrochloride addition. Ceftiofur addition increased postvaccination chick weight loss; compared with the vaccine alone, ceftiofur sodium-vaccine mixture increased chick weight significantly (P < 0.05). Ceftiofur addition also increased stress indices and reduced antioxidant capacity significantly (P < 0.05 or P < 0.01). Vaccination-related immune stress reduced gut microbiota diversity in chicks; ceftiofur addition reversed this change. AI vaccine immunization significantly reduced the relative abundance of Lactobacillus and Muribaculaceae but significantly increased that of Bacteroides and Eubacterium coprostanoligenes group. Ceftiofur addition restored the gut microbiota structure; in particular, ceftiofur hydrochloride addition significantly increased the abundance of the harmful gut microbes Escherichia-Shigella and Enterococcus, whereas ceftiofur sodium addition significantly reduced it. The changes in gut microbiota led to alterations in metabolic pathways related to membrane transport, amino acids, and carbohydrates. In conclusion, adding ceftiofur to the AI vaccine had positive effects on chick growth and gut microbiota modulation; however, different antibiotic concentrations and formulations may disrupt vaccine structure, possibly affecting vaccine safety and immunization efficacy. Thus, the addition of antibiotics to oil-adjuvant vaccines is associated with a risk of immunization failure and should be applied to poultry with caution.
Collapse
Affiliation(s)
- Xuehuai Shen
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Anyun Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ruihong Zhao
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Lei Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Dongdong Yin
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yin Dai
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Hongyan Hou
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Jieru Wang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaomiao Hu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Xiaocheng Pan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Danjun Zhang
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Wei Liu
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Livestock and Poultry Epidemic Diseases Research Center of Anhui Province, Institute of Animal Husbandry and Veterinary Science, Anhui Academy of Agricultural Science, Hefei 230031, China.
| |
Collapse
|
9
|
Zhang Y, Zhang L, Li Z, Liu X, He P, Gu Y, Liu L, Jin Y, Cheng S, Zhou F, Jia Y. Gualou-Xiebai-Banxia-Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155320. [PMID: 38901285 DOI: 10.1016/j.phymed.2023.155320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 06/22/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS), characterized by obesity, hyperglycemia, and abnormal blood lipid levels, is the pathological basis of many cardiovascular diseases. Gualou-Xiebai-Banxia-Tang decoction (GT) was first described in the Synopsis of the Golden Chamber, the earliest traditional Chinese medicine (TCM) monograph on diagnosis and treatment of miscellaneous diseases in China. According to TCM precepts, based on its ability to activate yang to release stagnation, activate qi to reduce depression, remove phlegm, and broaden the chest, GT has been used for more than 2,000 years to treat cardiovascular ailments. However, the molecular bases of its therapeutic mechanisms remain unclear. PURPOSE The aim of this study was to identify lipid- and glucose-related hepatic genes differentially regulated by GT, and to assess GT impact on gut microbiota composition, in mice with high-fat diet (HFD)-induced MetS. STUDY DESIGN AND METHODS ApoE-/- mice were fed with an HFD for 24 weeks, with or without concurrent GT supplementation, to induce MetS. At the study's end, body weight, visceral fat weight, blood lipid levels, and insulin sensitivity were measured, and histopathological staining was used to evaluate hepatosteatosis and intestinal barrier integrity. Liver transcriptomics was used for analysis of differentially expressed genes in liver and prediction of relevant regulatory pathways. Hepatic lipid/glucose metabolism-related genes and proteins were detected by RT-qPCR and western blotting. Gut microbial composition was determined by 16S rRNA gene sequencing. RESULTS GT administration reduced MetS-related liver steatosis and weight gain, promoted insulin sensitivity and lipid metabolism, and beneficially modulated gut microbiota composition by decreasing the relative abundance of g_Lachnospiraceae_NK4A136_group and increasing the relative abundance of g_Alistipes. Liver transcriptomics revealed that GT regulated the expression of genes related to lipid and glucose metabolism (Pparγ, Igf1, Gpnmb, and Trem2) and of genes encoding chemokines/chemokine receptors (e.g. Cxcl9 and Cx3cr1). Significant, positive correlations were found for Ccr2, Ccl4, Ccr1, and Cx3cr1 and the g_Lachnospiraceae_NK4A136_group, and between Cxcl9, Ccr2, Ccl4, and Cx3cr1 and g_Desulfovibrio. GT treatment downregulated the protein expressions of SCD1 and CX3CR1 and upregulated the expression of PCK1 protein. CONCLUSION GT supplementation alleviates HFD-induced MetS in mice by improving hepatic lipid and glucose metabolism. The anti-metabolic syndrome effects of GT may be related to the regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Yaxin Zhang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lifang Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhaoyong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoyu Liu
- Pingshan General Hospital (Shenzhen Pingshan District Medical Healthcare Group), Southern Medical University, Shenzhen, Guangdong Province, China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyan Gu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - LinLing Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yao Jin
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Fenghua Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
10
|
Huang Y, Wu Q, Li S, Lin X, Yang S, Zhu R, Fu C, Zhang Z. Harnessing nature's pharmacy: investigating natural compounds as novel therapeutics for ulcerative colitis. Front Pharmacol 2024; 15:1394124. [PMID: 39206263 PMCID: PMC11349575 DOI: 10.3389/fphar.2024.1394124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
Backgrounds Ulcerative colitis (UC) is a form of chronic inflammatory bowel disease, and UC diagnosis rates continue to rise throughout the globe. The research and development of new drugs for the treatment of UC are urgent, and natural compounds are an important source. However, there is a lack of systematic summarization of natural compounds and their mechanisms for the treatment of UC. Methods We reviewed the literature in the databases below from their inception until July 2023: Web of Science, PubMed, China National Knowledge Infrastructure, and Wanfang Data, to obtain information on the relationship between natural compounds and UC. Results The results showed that 279 natural compounds treat UC through four main mechanisms, including regulating gut microbiota and metabolites (Mechanism I), protecting the intestinal mucosal barrier (Mechanism II), regulating intestinal mucosal immune response (Mechanism III), as well as regulating other mechanisms (Mechanism Ⅳ) such as cellular autophagy modulation and ferroptosis inhibition. Of these, Mechanism III is regulated by all natural compounds. The 279 natural compounds, including 62 terpenoids, 57 alkaloids, 52 flavonoids, 26 phenols, 19 phenylpropanoids, 9 steroids, 9 saponins, 8 quinonoids, 6 vitamins, and 31 others, can effectively ameliorate UC. Of these, terpenoids, alkaloids, and flavonoids have the greatest potential for treating UC. It is noteworthy to highlight that a total of 54 natural compounds exhibit their therapeutic effects by modulating Mechanisms I, II, and III. Conclusion This review serves as a comprehensive resource for the pharmaceutical industry, researchers, and clinicians seeking novel therapeutic approaches to combat UC. Harnessing the therapeutic potential of these natural compounds may significantly contribute to the improvement of the quality of life of patients with UC and promotion of disease-modifying therapies in the future.
Collapse
Affiliation(s)
- You Huang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuhong Wu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sha Li
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Lin
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shasha Yang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Zhu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaomei Fu
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Hu Y, Tang J, Xie Y, Xu W, Zhu W, Xia L, Fang J, Yu D, Liu J, Zheng Z, Zhou Q, Shou Q, Zhang W. Gegen Qinlian decoction ameliorates TNBS-induced ulcerative colitis by regulating Th2/Th1 and Tregs/Th17 cells balance, inhibiting NLRP3 inflammasome activation and reshaping gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117956. [PMID: 38428658 DOI: 10.1016/j.jep.2024.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese herbal medicine Gegen Qinlian Decoction (GQD) has been clinically shown to be an effective treatment of ulcerative colitis (UC) in China. However, the underlying mechanism of GQD's anti-ulcerative colitis properties and its effect on gut microbiota still deserve further exploration. AIM OF THE STUDY This study observed the regulatory effects of GQD on Th2/Th1 and Tregs/Th17 cells balance, the NOD-like receptor family pyrin domain containing 3 (NLRP3) infammasome and gut microbiota in TNBS-induced UC in BALB/c mice. MATERIALS AND METHODS 61 main chemical compounds in the GQD were determined by UPLC-Q-TOF/MS. The UC BALB/c model was established by intrarectal administration of trinitrobenzene sulfonic acid (TNBS), and GQD was orally administered at low and high dosages of 2.96 and 11.83 g/kg/day, respectively. The anti-inflammatory effects of GQD for ulcerative colitis were evaluated by survival rate, body weight, disease activity index (DAI) score, colonic weight and index, spleen index, hematoxylin-eosin (HE) staining and histopathological scores. Flow cytometry was used to detect the percentage of CD4, Th1, Th2, Th17 and Tregs cells. The levels of Th1-/Th2-/Th17-/Tregs-related inflammatory cytokines and additional proinflammatory cytokines (IL-1β, IL-18) were detected by CBA, ELISA, and RT-PCR. The expressions of GATA3, T-bet, NLRP3, Caspase-1, IL-Iβ, Occludin and Zonula occludens-1 (ZO-1) on colon tissues were detected by Western blot and RT-PCR. Transcriptome sequencing was performed using colon tissue and 16S rRNA gene sequencing was performed on intestinal contents. Fecal microbiota transplantation (FMT) was employed to assess the contribution of intestinal microbiota and its correlation with CD4 T cells and the NLRP3 inflammasome. RESULTS GQD increased the survival rate of TNBS-induced UC in BALB/c mice, and significantly improved their body weight, DAI score, colonic weight and index, spleen index, and histological characteristics. The intestinal barrier dysfunction was repaired after GQD administration through promoting the expression of tight junction proteins (Occludin and ZO-1). GQD restored the balance of Th2/Th1 and Tregs/Th17 cells immune response of colitis mice, primarily inhibiting the increase in Th2/Th1 ratio and their transcription factor production (GATA3 and T-bet). Morever, GQD changed the secretion of Th1-/Th2-/Th17-/Tregs-related cytokines (IL-2, IL-12, IL-5, IL-13, IL-6, IL-10, and IL-17A) and reduced the expressions of IL-1β, IL-18. Transcriptome results suggested that GQD could also remodel the immune inflammatory response of colitis by inhibiting NOD-like receptor signaling pathway, and Western blot, immunohistochemistry and RT-PCR further revealed that GQD exerted anti-inflammatory effects by inhibiting the NLRP3 inflammasome, such as down-regulating the expression of NLRP3, Caspase-1 and IL-1β. More interestingly, GQD regulated gut microbiota dysbiosis, suppressed the overgrowth of conditional pathogenic gut bacteria like Helicobacter, Proteobacteria, and Mucispirillum, while the probiotic gut microbiota, such as Lactobacillus, Muribaculaceae, Ruminiclostridium_6, Akkermansia, and Ruminococcaceae_unclassified were increased. We further confirmed that GQD-treated gut microbiota was sufficient to relieve TNBS-induced colitis by FMT, involving the modulation of Th2/Th1 and Tregs/Th17 balance, inhibition of NLRP3 inflammasome activation, and enhancement of colonic barrier function. CONCLUSIONS GQD might alleviate TNBS-induced UC via regulating Th2/Th1 and Tregs/Th17 cells Balance, inhibiting NLRP3 inflammasome and reshaping gut microbiota, which may provide a novel strategy for patients with colitis.
Collapse
Affiliation(s)
- Yingnan Hu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingyi Tang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yongfeng Xie
- Department of Burn Plastic Surgery, Huai'an Hospital Affiliated to Xuzhou Medical University, Jiangsu, 223001, China
| | - Wenjun Xu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weihan Zhu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Linying Xia
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jintao Fang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Dian Yu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jingjing Liu
- Department of General Surgery, Haining City Central Hospital, Jiaxing, 314408, China
| | - Zhipeng Zheng
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiujing Zhou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Qiyang Shou
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| | - Wei Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China; The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China.
| |
Collapse
|
12
|
Wu M, Wang Q, Li X, Yu S, Zhao F, Wu X, Fan L, Liu X, Zhao Q, He X, Li W, Zhang Q, Hu X. Gut microbiota-derived 5-hydroxyindoleacetic acid from pumpkin polysaccharides supplementation alleviates colitis via MAPKs-PPARγ/NF-κB inhibition. Int J Biol Macromol 2024; 264:130385. [PMID: 38395290 DOI: 10.1016/j.ijbiomac.2024.130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Polysaccharides from Pumpkin (Cucurbita moschata Duchesne) (PPs) have many pharmacological activities, including anti-oxidant, immune, and intestinal microbiota regulation. These activities have provided some reminders of its potential therapeutic effect on ulcerative colitis (UC), but this has not yet been confirmed. This study preliminarily confirmed its significant anti-UC activity superior to Salicylazosulfapyridine. The average molecular weight of PPs was 3.10 × 105 Da, and PPs mainly comprised Mannose, Rhamnose, Galacturonic acid, Galactosamine, Glucose, and Xylose with molar ratios of 1.58:3.51:34.54:1.00:3.25:3.02. PPs (50, 100 mg/kg) could significantly resist dextran sodium sulfate induced UC on C57BL/6 mice by improving gut microbiota dysbiosis, such as the changes of relative abundance of Bacteroides, Culturomica, Mucispirillum, Escherichia-Shigella, Alistipes and Helicobacter. PPs also reverse the abnormal inflammatory reaction, including abnormal level changes of TNF-α, IFN-γ, IL-1β, IL-4, IL-6, IL-10, and IL-18. Metabolomic profiling showed that PPs supplementation resulted in the participation of PPAR and MAPK pathways, as well as the increase of 5-hydroxyindole acetic acid (5-HIAA) level. 5-HIAA also exhibited individual and synergistic anti-UC activities in vivo. Furthermore, combination of PPs and 5-HIAA could also elevate the levels of PPARγ in nuclear and inhibit MAPK/NF-ĸB pathway in the colon. This study revealed that PPs and endogenous metabolite 5-HIAA might be developed to treat UC.
Collapse
Affiliation(s)
- Minglan Wu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaodong Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Songxia Yu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xueling Liu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingwei Zhao
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
13
|
Huang LJ, Lan JX, Wang JH, Huang H, Lu K, Zhou ZN, Xin SY, Zhang ZY, Wang JY, Dai P, Chen XM, Hou W. Bioactivity and mechanism of action of sanguinarine and its derivatives in the past 10 years. Biomed Pharmacother 2024; 173:116406. [PMID: 38460366 DOI: 10.1016/j.biopha.2024.116406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Sanguinarine is a quaternary ammonium benzophenanthine alkaloid found in traditional herbs such as Chelidonium, Corydalis, Sanguinarum, and Borovula. It has been proven to possess broad-spectrum biological activities, such as antitumor, anti-inflammatory, antiosteoporosis, neuroprotective, and antipathogenic microorganism activities. In this paper, recent progress on the biological activity and mechanism of action of sanguinarine and its derivatives over the past ten years is reviewed. The results showed that the biological activities of hematarginine and its derivatives are related mainly to the JAK/STAT, PI3K/Akt/mTOR, NF-κB, TGF-β, MAPK and Wnt/β-catenin signaling pathways. The limitations of using sanguinarine in clinical application are also discussed, and the research prospects of this subject are outlined. In general, sanguinarine, a natural medicine, has many pharmacological effects, but its toxicity and safety in clinical application still need to be further studied. This review provides useful information for the development of sanguinarine-based bioactive agents.
Collapse
Affiliation(s)
- Le-Jun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Xia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jin-Hua Wang
- Ji'an Central People's Hospital (Shanghai East Hospital Ji'an Hospital), Ji'an, Jiangxi 343100, PR China
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Kuo Lu
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, Henan 450018, PR China
| | - Zhi-Nuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Su-Ya Xin
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Zi-Yun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Jing-Yang Wang
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Ping Dai
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China
| | - Xiao-Mei Chen
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong 510080, PR China
| | - Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, PR China.
| |
Collapse
|
14
|
Ma D, Yu M, Zhang M, Feng J. Research Note: The effect of photoperiod on the NLRP3 inflammasome and gut microbiota in broiler chickens. Poult Sci 2024; 103:103507. [PMID: 38387288 PMCID: PMC10900794 DOI: 10.1016/j.psj.2024.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The present study aimed to investigate the effect of photoperiod on the intestinal inflammation and gut microbiota. A total of 96 broiler chickens were divided into 2 groups and fed separately under 2 different photoperiods (12L:12D group and 23L:1D group) for 21 d. The results showed that the photoperiod of 23L:1D damaged duodenal tissue structure (intestinal villus erosion, mucosal epithelial cell detachment, and inflammatory cell infiltration), significantly increased the concentration of inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α) and significantly increased the mRNA expression levels and protein expression levels of NOD-, LRR-, pyrin domain-containing protein 3 (NLRP3) and caspase1 (P <0.05) compared with 12L:12D, which indicating that extended photoperiod induced intestinal injury and activated NLRP3 inflammasome. 16S rRNA sequencing analysis revealed that Bacteroides was significantly decreased, Ruminococcus_torques_group, norank_f_Desulfovibrionaceae, GCA-900066575, Defluviitaleaceae_UCG-011, Lachnospiraceae_FCS020_group, norank_f_UCG-010 and norank_f_norank_o_Clostridia_vadinBB60_group and were significantly increased in the 23L:1D group, compared with the 12L:12D group (P < 0.05). The correlation analysis between differential microbial communities and intestinal inflammation showed that the relative abundance of Bacteroides was negatively correlated with the mRNA expression level of NLRP3 (P < 0.05) and the relative abundance of Ruminococcus_torques_group was positively correlated with the mRNA expression level of NLRP3 (P < 0.05). linear discriminant analysis (LDA) effect size (LEfSe) results (LDA > 4) showed that the relative abundance of Bacteroides was dramatically higher (P < 0.05) in the 12L:12D group, whereas the relative abundance of Ruminococcus_torques_group was noticeably higher (P < 0.05) in the 23L:1D group. By the comprehensive analysis of the gut microbiota, the interaction of gut microbiota (Bacteroides and Ruminococcus_torques_group) and NLRP3 inflammasome may contribute to the intestinal injury under the condition of extended photoperiod.
Collapse
Affiliation(s)
- Dandan Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Miao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
15
|
Li G, Zhao C, Xu J, Huang Y, Qiao Y, Li F, Peng G, Zheng S, Zhu L, Yang L, Wang Z, Wu H. Moxibustion alleviates intestinal inflammation in ulcerative colitis rats by modulating long non-coding RNA LOC108352929 and inhibiting Phf11 expression. Heliyon 2024; 10:e26898. [PMID: 38439851 PMCID: PMC10909710 DOI: 10.1016/j.heliyon.2024.e26898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Long noncoding RNA (lncRNAs) are involved in the pathogenesis of ulcerative colitis (UC). Moxibustion, a traditional Chinese medicine, can improve symptoms in patients with UC and reduce intestinal inflammation in rats with UC. However, it remains unclear whether the ameliorative effect of moxibustion on intestinal mucosal inflammation in UC is related to lncRNAs. Thirty-two rats were randomly assigned to four groups: normal control, UC, moxibustion (MOX), and sulfasalazine (SASP). The UC rat model was induced by administering 4% dextran sulfate sodium (DSS) in drinking water. Rats in the moxibustion group underwent bilateral Tianshu (ST25) moxibustion using the herbs-partition moxibustion method. Rats in the sulfasalazine group received SASP solution via gavage twice daily for seven consecutive days. Our results revealed that, compared with the UC group [2.00 (1.00, 2.50)], the DAI score [0.25 (0.00, 0.50)] was significantly lower in the MOX group (P < 0.05). Compared with the UC group [13.00 (11.25, 14.00)], the histopathological score [5.50 (4.00, 7.75)] was significantly lower in the MOX group (P < 0.05). In addition, the CMDI and macroscopic scores were decreased in the MOX group (P < 0.05). Moxibustion significantly decreased the protein expression of inflammatory factors TNF-α, IFN-γ, and IL-1β in the colonic tissues of UC rats (P <0.05), thereby suppressing the inflammatory response. Moreover, moxibustion exerted a regulatory influence on colon lncRNA and mRNA expression profiles, upregulating LOC108352929 and downregulating Phf11 in rats with UC (P <0.05). Moxibustion also led to a reduction in the expression and colocalization of Phf11 and NF-κB in the colons of UC rats. Moreover, knockdown of LOC108352929 in rat enteric glial cells demonstrated a significant upregulation of TNF-α mRNA expression (P <0.05). In summary, these data illustrate that moxibustion effectively ameliorates DSS-induced colonic injury and inflammation while exerting regulatory control over the lncRNA-mRNA co-expression network in UC rats. Collectively, the in vivo and in vitro studies suggested that LOC108352929-Phf11 may serve as a potential biological marker for moxibustion in the treatment of UC.
Collapse
Affiliation(s)
- Guona Li
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen Zhao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Jing Xu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Huang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Yu Qiao
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Feng Li
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Guangbin Peng
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Shiyu Zheng
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Lu Zhu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Ling Yang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Zhaoqin Wang
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Huangan Wu
- Yueyang Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| |
Collapse
|
16
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
17
|
Zheng X, Zhang Y, Tan Y, Li Y, Xue Q, Li H, Zhang X, Pan Y, Xu J, Zhang J. Alpinia officinarum Hance extract ameliorates diabetic gastroparesis by regulating SCF/c-kit signaling pathway and rebalancing gut microbiota. Fitoterapia 2024; 172:105730. [PMID: 37939738 DOI: 10.1016/j.fitote.2023.105730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
Diabetic gastroparesis (DGP) is a common complication of type 2 diabetes mellitus (T2DM). Alpinia officinarum Hance (AOH) is one of the most commonly used both as a food and folk medicines, which is rich in diarylheptanoids and flavonoids. The gastroprotection and hypoglycemic effect make AOH has great potential in developing of anti-DGP complementary medicine. However, the molecular mechanisms of AOH that act against DGP are yet to be elucidated. In this study, we evaluated the therapeutic effects, the potential molecular mechanism, and the changes of gut microbiota of AOH in DGP. The 5 components of the AOH were analyzed, and the potential signaling pathway of AOH improving DGP was predicted by molecular docking. Subsequently, DGP rat model was constructed using high-fat-irregular-diet, AOH intervention significantly reduced blood glucose levels, increased gastrointestinal propulsion rate, and improved gastric histological morphology in DGP rats. Meanwhile, AOH has been shown to regulate the SCF/c-kit signaling pathway and rebalance the gut microbiota, which may be closely related to its role in improving DGP. Taken together, AOH may play a protective role on DGP through multiple mechanisms, which might pave the road for development and utilization of AOH.
Collapse
Affiliation(s)
- Xiuwen Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Yuxin Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Yonghui Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Qianrong Xue
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Hailong Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Xuguang Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China
| | - Yipeng Pan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China.
| | - Jian Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China.
| | - Junqing Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of R & D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hepatobiliary and Liver transplantation Department of Hainan Digestive Disease Center of The Second Affiliated Hospital of Hainan Medical University, Engineering Research Center of Tropical Medicine of Ministry of Education, The First Affiliated Hospital, Hainan Medical University, Haikou, PR China.
| |
Collapse
|
18
|
Xie J, Huang Q, Xie H, Liu J, Tian S, Cao R, Yang M, Lin J, Han L, Zhang D. Hyaluronic acid/inulin-based nanocrystals with an optimized ratio of indigo and indirubin for combined ulcerative colitis therapy via immune and intestinal flora regulation. Int J Biol Macromol 2023; 252:126502. [PMID: 37625742 DOI: 10.1016/j.ijbiomac.2023.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Indigo (IND) and indirubin (INB) have demonstrated a synergistic effect in treating ulcerative colitis at a ratio of 7.5:1. However, the colon mucus layer, a critical physiological barrier against external threats, is also a biological barrier, limiting the potential for effective drug delivery to the lamina propria for regulating inflammatory cells. Inspired by the potential of Hyaluronic acid (HA), to enhance cellular uptake by inflammatory cells, and Pluronic® F127 (F127), known for overcoming the mucus barrier, this study innovatively developed INB/IND nanosuspensions by co-modifying with F127 and HA. Moreover, inulin serves a dual purpose as a spray protective agent and a regulator of intestinal flora. Therefore, it was incorporated into INB/IND nanosuspensions for subsequent spray drying, resulting in the preparation of INB/IND nanocrystals (INB/IND-NC). The mucus penetration of INB/IND-NC was 24.30 times that of the control group. Besides, INB/IND-NC exhibited enhanced cellular uptake properties proximately twice that of Raw INB/IND. Importantly, INB/IND-NC exhibited improved therapeutic efficacy in DSS-induced mice by regulating the expression of cytokines, regulating immune responses via downregulating the expression of macrophages, neutrophils, and dendritic cells and maintaining intestinal flora homeostasis. Our study provides a new perspective for applying natural products for treating inflammatory diseases.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Huang
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huijuan Xie
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun Liu
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shimin Tian
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Cao
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Li Han
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Characteristic Chinese Drug Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
19
|
Zheng C, Zhong Y, Xie J, Wang Z, Zhang W, Pi Y, Zhang W, Liu L, Luo J, Xu W. Bacteroides acidifaciens and its derived extracellular vesicles improve DSS-induced colitis. Front Microbiol 2023; 14:1304232. [PMID: 38098663 PMCID: PMC10720640 DOI: 10.3389/fmicb.2023.1304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction "Probiotic therapy" to regulate gut microbiota and intervene in intestinal diseases such as inflammatory bowel disease (IBD) has become a research hotspot. Bacteroides acidifaciens, as a new generation of probiotics, has shown beneficial effects on various diseases. Methods In this study, we utilized a mouse colitis model induced by dextran sodium sulfate (DSS) to investigate how B. acidifaciens positively affects IBD. We evaluated the effects ofB. acidifaciens, fecal microbiota transplantation, and bacterial extracellular vesicles (EVs) on DSS-induced colitis in mice. We monitored the phenotype of mouse colitis, detected serum inflammatory factors using ELISA, evaluated intestinal mucosal barrier function using Western blotting and tissue staining, evaluated gut microbiota using 16S rRNA sequencing, and analyzed differences in EVs protein composition derived from B. acidifaciens using proteomics to explore how B. acidifaciens has a positive impact on mouse colitis. Results We confirmed that B. acidifaciens has a protective effect on colitis, including alleviating the colitis phenotype, reducing inflammatory response, and improving intestinal barrier function, accompanied by an increase in the relative abundance of B. acidifaciens and Ruminococcus callidus but a decrease in the relative abundance of B. fragilis. Further fecal bacterial transplantation or fecal filtrate transplantation confirmed the protective effect of eosinophil-regulated gut microbiota and metabolites on DSS-induced colitis. Finally, we validated that EVs derived from B. acidifaciens contain rich functional proteins that can contribute to the relief of colitis. Conclusion Therefore, B. acidifaciens and its derived EVs can alleviate DSS-induced colitis by reducing mucosal damage to colon tissue, reducing inflammatory response, promoting mucosal barrier repair, restoring gut microbiota diversity, and restoring gut microbiota balance in mice. The results of this study provide a theoretical basis for the preclinical application of the new generation of probiotics.
Collapse
Affiliation(s)
- Cihua Zheng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Yuchun Zhong
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xie
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhuoya Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenming Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yiming Pi
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wenjun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Graduate School of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jun Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Yu S, Guo H, Ji Z, Zheng Y, Wang B, Chen Q, Tang H, Yuan B. Sea Cucumber Peptides Ameliorate DSS-Induced Ulcerative Colitis: The Role of the Gut Microbiota, the Intestinal Barrier, and Macrophage Polarization. Nutrients 2023; 15:4813. [PMID: 38004208 PMCID: PMC10674221 DOI: 10.3390/nu15224813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The incidence of ulcerative colitis (UC) is increasing annually. There are few treatments for UC patients, and some drugs have serious side effects. Sea cucumber peptide (SCP) has anti-inflammatory, antioxidant and other biological activities, and various sea cucumber species are in pharmaceutical development. However, relevant studies on the effects of SCP on UC progression are still lacking. In this study, a mouse model of acute colitis was induced by 3% dextran sulfate (DSS), and the effect of 500 mg/kg SCP on colitis was investigated. The results showed that SCP can alleviate DSS-induced colon damage and intestinal barrier damage. SCP significantly inhibited the expression of inflammatory factors and oxidative stress in UC mice. SCP reversed the intestinal microbiota dysregulation induced by DSS, inhibited the growth of Sutterella, Prevotella_9 and Escherichia-Shigella harmful bacteria, and increased the abundance of Lachnospiraceae_NK4A136_group. At the same time, SCP treatment significantly inhibited the LPS-induced polarization of M1 macrophages, which may be mediated by two monopeptides, IPGAPGVP and TGPIGPPGSP, via FPR2. In conclusion, SCP can protect against colitis by modulating the intestinal microbiota composition and the intestinal barrier and inhibiting the polarization of M1 macrophages.
Collapse
Affiliation(s)
- Song Yu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Haixiang Guo
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
- Department of Basic Medicine, Changzhi Medical College, Changzhi 046000, China
| | - Yi Zheng
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Bingbing Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Qingqing Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Hongyu Tang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China; (S.Y.); (H.G.); (Z.J.); (Y.Z.); (B.W.); (Q.C.)
| |
Collapse
|
21
|
Yang Y, Xiao G, Cheng P, Zeng J, Liu Y. Protective Application of Chinese Herbal Compounds and Formulae in Intestinal Inflammation in Humans and Animals. Molecules 2023; 28:6811. [PMID: 37836654 PMCID: PMC10574200 DOI: 10.3390/molecules28196811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Intestinal inflammation is a chronic gastrointestinal disorder with uncertain pathophysiology and causation that has significantly impacted both the physical and mental health of both people and animals. An increasing body of research has demonstrated the critical role of cellular signaling pathways in initiating and managing intestinal inflammation. This review focuses on the interactions of three cellular signaling pathways (TLR4/NF-κB, PI3K-AKT, MAPKs) with immunity and gut microbiota to explain the possible pathogenesis of intestinal inflammation. Traditional medicinal drugs frequently have drawbacks and negative side effects. This paper also summarizes the pharmacological mechanism and application of Chinese herbal compounds (Berberine, Sanguinarine, Astragalus polysaccharide, Curcumin, and Cannabinoids) and formulae (Wumei Wan, Gegen-Qinlian decoction, Banxia xiexin decoction) against intestinal inflammation. We show that the herbal compounds and formulae may influence the interactions among cell signaling pathways, immune function, and gut microbiota in humans and animals, exerting their immunomodulatory capacity and anti-inflammatory and antimicrobial effects. This demonstrates their strong potential to improve gut inflammation. We aim to promote herbal medicine and apply it to multispecies animals to achieve better health.
Collapse
Affiliation(s)
- Yang Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Gang Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
| | - Pi Cheng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China; (Y.Y.); (G.X.); (P.C.)
- Hunan Key Laboratory, Chinese Veterinary Medicine, Changsha 410125, China
| |
Collapse
|
22
|
Yue M, Huang J, Ma X, Huang P, Liu Y, Zeng J. Protopine Alleviates Dextran Sodium Sulfate-Induced Ulcerative Colitis by Improving Intestinal Barrier Function and Regulating Intestinal Microbiota. Molecules 2023; 28:5277. [PMID: 37446938 DOI: 10.3390/molecules28135277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD), and its pathogenesis is related to intestinal mucosal barrier damage and gut microbiota imbalance. Protopine (PRO), an isoquinoline alkaloid, is one of the main anti-inflammatory ingredients of traditional Chinese medicine Macleaya cordata(Willd.) R. Br. This study investigated the effects of PRO on the intestinal mucosal barrier and gut microbiota in dextran sodium sulfate (DSS)-induced colitis mice. C57BL/6J mice were treated with 3% DSS in drinking water to induce acute colitis, while PRO was administered orally once daily for 7 days. The results showed that PRO administration significantly alleviated the symptoms of DSS-induced colitis in mice and inhibited the expression of inflammation-related genes. In addition, PRO restored the integrity of the intestinal barrier in colitis mice by restoring colonic mucin secretion and promoting the expression of tight junction proteins. Furthermore, PRO alleviated the DSS-induced gut microbiota dysbiosis by decreasing the abundance of Proteobacteria, Escherichia-Shigella and Enterococcus, as well as enhancing the abundance of beneficial bacteria, such as Firmicutes and Akkermansia. These findings suggested that PRO effectively alleviated DSS-induced ulcerative colitis by suppressing the expression of inflammation-related genes, maintaining the intestinal mucosal barrier and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- Meishan Yue
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jialu Huang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaolan Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Peng Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Yisong Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jianguo Zeng
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
23
|
Direito R, Barbalho SM, Figueira ME, Minniti G, de Carvalho GM, de Oliveira Zanuso B, de Oliveira Dos Santos AR, de Góes Corrêa N, Rodrigues VD, de Alvares Goulart R, Guiguer EL, Araújo AC, Bosso H, Fornari Laurindo L. Medicinal Plants, Phytochemicals and Regulation of the NLRP3 Inflammasome in Inflammatory Bowel Diseases: A Comprehensive Review. Metabolites 2023; 13:728. [PMID: 37367886 DOI: 10.3390/metabo13060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Ongoing research explores the underlying causes of ulcerative colitis and Crohn's disease. Many experts suggest that dysbiosis in the gut microbiota and genetic, immunological, and environmental factors play significant roles. The term "microbiota" pertains to the collective community of microorganisms, including bacteria, viruses, and fungi, that reside within the gastrointestinal tract, with a particular emphasis on the colon. When there is an imbalance or disruption in the composition of the gut microbiota, it is referred to as dysbiosis. Dysbiosis can trigger inflammation in the intestinal cells and disrupt the innate immune system, leading to oxidative stress, redox signaling, electrophilic stress, and inflammation. The Nod-like Receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome, a key regulator found in immunological and epithelial cells, is crucial in inducing inflammatory diseases, promoting immune responses to the gut microbiota, and regulating the integrity of the intestinal epithelium. Its downstream effectors include caspase-1 and interleukin (IL)-1β. The present study investigated the therapeutic potential of 13 medicinal plants, such as Litsea cubeba, Artemisia anomala, Piper nigrum, Morus macroura, and Agrimonia pilosa, and 29 phytocompounds such as artemisitene, morroniside, protopine, ferulic acid, quercetin, picroside II, and hydroxytyrosol on in vitro and in vivo models of inflammatory bowel diseases (IBD), with a focus on their effects on the NLRP3 inflammasome. The observed effects of these treatments included reductions in IL-1β, tumor necrosis factor-alpha, IL-6, interferon-gamma, and caspase levels, and increased expression of antioxidant enzymes, IL-4, and IL-10, as well as regulation of gut microbiota. These effects could potentially provide substantial advantages in treating IBD with few or no adverse effects as caused by synthetic anti-inflammatory and immunomodulated drugs. However, additional research is necessary to validate these findings clinically and to develop effective treatments that can benefit individuals who suffer from these diseases.
Collapse
Affiliation(s)
- Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Ana Rita de Oliveira Dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Natália de Góes Corrêa
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília 17500-000, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
| | - Henrique Bosso
- Medical Department, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Avenida Brigadeiro Faria Lima, 5416, São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Avenida Monte Carmelo, 800, Marília 17519-030, São Paulo, Brazil
| |
Collapse
|
24
|
Ali FE, Ibrahim IM, Ghogar OM, Abd-alhameed EK, Althagafy HS, Hassanein EH. Therapeutic interventions target the NLRP3 inflammasome in ulcerative colitis: Comprehensive study. World J Gastroenterol 2023; 29:1026-1053. [PMID: 36844140 PMCID: PMC9950862 DOI: 10.3748/wjg.v29.i6.1026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
One of the significant health issues in the world is the prevalence of ulcerative colitis (UC). UC is a chronic disorder that mainly affects the colon, beginning with the rectum, and can progress from asymptomatic mild inflammation to extensive inflammation of the entire colon. Understanding the underlying molecular mechanisms of UC pathogenesis emphasizes the need for innovative therapeutic approaches based on identifying molecular targets. Interestingly, in response to cellular injury, the NLR family pyrin domain containing 3 (NLRP3) inflammasome is a crucial part of the inflammation and immunological reaction by promoting caspase-1 activation and the release of interleukin-1β. This review discusses the mechanisms of NLRP3 inflammasome activation by various signals and its regulation and impact on UC.
Collapse
Affiliation(s)
- Fares E.M Ali
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Islam M. Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Osama M Ghogar
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Esraa K. Abd-alhameed
- Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 12345, Egypt
| | - Hanan S. Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 12345, Saudi Arabia
| | - Emad H.M. Hassanein
- Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
25
|
Yang D, Wang Z, Chen Y, Guo Q, Dong Y. Interactions between gut microbes and NLRP3 inflammasome in the gut-brain axis. Comput Struct Biotechnol J 2023; 21:2215-2227. [PMID: 37035548 PMCID: PMC10074411 DOI: 10.1016/j.csbj.2023.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
The role of the gut-brain axis in maintaining the brain's and gut's homeostasis has been gradually recognized in recent years. The connection between the gut and the brain takes center stage. In this scenario, the nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome promotes inflammatory cell recruitment. It plays a crucial role in coordinating host physiology and immunity. Recent evidence shows how vital the gut-brain axis is for maintaining brain and gut homeostasis. However, more research is needed to determine the precise causal link between changed gut microbiota structure and NLRP3 activation in pathogenic circumstances. This review examines the connection between gut microbiota and the NLRP3 inflammasome. We describe how both dynamically vary in clinical cases and the external factors affecting both. Finally, we suggest that the crosstalk between the gut microbiota and NLRP3 is involved in signaling in the gut-brain axis, which may be a potential pathological mechanism for CNS diseases and intestinal disorders.
Collapse
Affiliation(s)
- Ding Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qingyun Guo
- Milu conservation research unit, Beijing Milu Ecological Research Center, Beijing 100163, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Corresponding author.
| |
Collapse
|
26
|
Sanguinarine Enhances the Integrity of the Blood-Milk Barrier and Inhibits Oxidative Stress in Lipopolysaccharide-Stimulated Mastitis. Cells 2022; 11:cells11223658. [PMID: 36429086 PMCID: PMC9688596 DOI: 10.3390/cells11223658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Mastitis is a common clinical disease which threatens the welfare and health of dairy cows and causes huge economic losses. Sanguinarine (SG) is a plant-derived alkaloid which has many biological functions, including antibacterial and antioxidant properties. The present study attempted to evaluate the effect of SG on lipopolysaccharide (LPS)-induced oxidative stress reactions and explore its potential mechanisms. The expression profile of SG was analyzed by network pharmacology, and it was found that differentially expressed genes were mainly involved in the Wnt signaling pathway and oxidative stress through GO and KEGG enrichment. In in vitro experiments, the dosage of SG was non-toxic to mouse mammary epithelial cells (mMECs) (p > 0.05). SG not only inhibited the increase in ROS induced by LPS, but also enhanced the activity of antioxidant enzymes (p < 0.05). Moreover, the results of the in vivo experiments showed that SG alleviated LPS-induced inflammatory damage of mouse mammary glands and enhanced the integrity of the blood-milk barrier (p < 0.05). Further studies suggested that SG promoted Nrf2 expression and suppressed the activation of the Wnt signaling pathway (p < 0.05). Conclusively, this study clarified the protective effect of SG on mastitis and provided evidence for new potential mechanisms. SG exerted its antioxidant function through activating Nrf2 and inhibiting the Wnt/β-catenin pathway, repairing the blood-milk barrier.
Collapse
|