1
|
Liu Z, Pei Y, Chen T, Yang Z, Jiang W, Feng X, Li X. Molecular quantification of fritillariae cirrhosae bulbus and its adulterants. Chin Med 2024; 19:138. [PMID: 39380014 PMCID: PMC11460136 DOI: 10.1186/s13020-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Fritillariae Cirrhosae Bulbus (FCB) is frequently adulterated with its closely related species due to personal or non-man made factors, leading to alterations in the composition of its constituents and compromising the efficacy of its products. METHODS The specific single nucleotide polymorphisms (SNPs) were screened by comparing candidate barcodes of Fritillaria and verified by amplification and sequencing. Herb molecular quantification (Herb-Q) was established by detecting specific SNPs, and the methodological validation was performed. Quantitative standard curves were established for FCB mixed with each adulterated species, and the quantitative validity of this method was verified based on external standard substance. In addition, eight commercial Shedan Chuanbei capsules (SDCBs) randomly selected were detected. RESULTS FCB and its five adulterants can be distinguished based on the ITS 341 site. The methodological investigation of Herb-Q shows optimal accuracy, and repeatability, which exhibited good linearity with an R2 of 0.9997 (> 0.99). An average bias in quantitative validity was 5.973% between the measured and actual values. Four of eight commercial SDCBs were adulterated with F. ussuriensis or F. thunbergia with adulteration levels ranging from 9 to 15% of the total weight. CONCLUSION This study confirmed that Herb-Q can quantitatively detect both the mixed herbs and Chinese patent medicines (CPMs) containing FCB with high reproducibility and accuracy. This method provides technical support for market regulation and helps safeguard patient rights.
Collapse
Affiliation(s)
- Ziyi Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Yifei Pei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tiezhu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Zemin Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenjun Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Feng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xiwen Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Pei Y, Liu Z, Yu D, Zhang X, Sun W, Chen X, Feng X, Li X. Molecular quantification of herbs (Herb-Q): a pyrosequencing-based approach and its application in Pinellia ternata. Chin J Nat Med 2024; 22:663-672. [PMID: 39059835 DOI: 10.1016/s1875-5364(24)60636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 07/28/2024]
Abstract
Variations in herb dosage due to species adulteration and dosing inaccuracies can substantially affect clinical safety and efficacy. Accurate species quantification remains challenging, as current methods often yield inconsistent results. This study introduces a novel pyrosequencing-based technique, termed herb molecular quantification (Herb-Q), designed to precisely quantify herbal products. We evaluated its effectiveness using Pinellia ternata and five of its adulterants. Initially, we assessed commonly used DNA barcodes with sequences from a public database, identifying two candidate regions, Maturase K (matK) and internal transcribed spacer 2 (ITS2), for screening specific single nucleotide polymorphism (SNP) loci, allowing for species-specific identification. These loci were validated by amplifying and sequencing genomic material from collected samples. Our validation studies showed that Herb-Q demonstrated excellent linearity, accuracy, repeatability, and detection limits. We established quantitative standard curves with high R2 values (> 0.99) to enable precise species quantification, which were combined with external standards to provide clear and accurate visual quantification results. The average bias in quantifying the tuber of P. ternata was 2.38%, confirming that Herb-Q can accurately identify and quantify herbal product constituents. Moreover, the entire quantification process took less than 4 h. This study presents a novel, rapid method for accurately quantifying species in herbal products and advances the application of DNA barcoding from species identification to quantitative detection.
Collapse
Affiliation(s)
- Yifei Pei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ziyi Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dade Yu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangyu Zhang
- Bijie Institute of Traditional Chinese Medicine, Bijie 551700, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaofang Chen
- The Key Laboratory for Health Industry of Bijie, Bijie Medical College, Bijie 551700, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiwen Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
3
|
Raclariu-Manolică AC, Mauvisseau Q, de Boer HJ. Horizon scan of DNA-based methods for quality control and monitoring of herbal preparations. Front Pharmacol 2023; 14:1179099. [PMID: 37214460 PMCID: PMC10193163 DOI: 10.3389/fphar.2023.1179099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Herbal medicines and preparations are widely used in healthcare systems globally, but concerns remain about their quality and safety. New herbal products are constantly being introduced to the market under varying regulatory frameworks, with no global consensus on their definition or characterization. These biologically active mixtures are sold through complex globalized value chains, which create concerns around contamination and profit-driven adulteration. Industry, academia, and regulatory bodies must collaborate to develop innovative strategies for the identification and authentication of botanicals and their preparations to ensure quality control. High-throughput sequencing (HTS) has significantly improved our understanding of the total species diversity within DNA mixtures. The standard concept of DNA barcoding has evolved over the last two decades to encompass genomic data more broadly. Recent research in DNA metabarcoding has focused on developing methods for quantifying herbal product ingredients, yielding meaningful results in a regulatory framework. Techniques, such as loop-mediated isothermal amplification (LAMP), DNA barcode-based Recombinase Polymerase Amplification (BAR-RPA), DNA barcoding coupled with High-Resolution Melting (Bar-HRM), and microfluidics-based methods, offer more affordable tests for the detection of target species. While target capture sequencing and genome skimming are considerably increasing the species identification resolution in challenging plant clades, ddPCR enables the quantification of DNA in samples and could be used to detect intended and unwanted ingredients in herbal medicines. Here, we explore the latest advances in emerging DNA-based technologies and the opportunities they provide as taxa detection tools for evaluating the safety and quality of dietary supplements and herbal medicines.
Collapse
Affiliation(s)
- Ancuța Cristina Raclariu-Manolică
- Stejarul Research Centre for Biological Sciences, National Institute of Research and Development for Biological Sciences, Piatra Neamț, Romania
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | | |
Collapse
|
4
|
Shah AP, Travadi T, Sharma S, Pandit R, Joshi C, Joshi M. Digital PCR: A Tool to Authenticate Herbal Products and Spices. Methods Mol Biol 2023; 2967:17-30. [PMID: 37608099 DOI: 10.1007/978-1-0716-3358-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Authentication of herbal products and spices is experiencing a resurgence using DNA-based molecular tools, mainly species-specific assays and DNA barcoding. However, poor DNA quality and quantity are the major demerits of conventional PCR and real-time quantitative PCR (qPCR), as herbal products and spices are highly enriched in secondary metabolites such as polyphenolic compounds. The third-generation digital PCR (dPCR) technology is a highly sensitive, accurate, and reliable method to detect target DNA molecules as it is less affected by PCR inhibiting secondary metabolites due to nanopartitions. Therefore, it can be certainly used for the detection of adulteration in herbal formulations. In dPCR, extracted DNA is subjected to get amplification in nanopartitions using target gene primers, the EvaGreen master mix, or fluorescently labeled targeted gene-specific probes. Here, we describe the detection of Carica papaya (CP) adulteration in Piper nigrum (PN) products using species-specific primers. We observed an increase in fluorescence signal as the concentration of target DNA increased in PN-CP blended formulations (mock controls). Using species-specific primers, we successfully demonstrated the use of dPCR in the authentication of medicinal botanicals.
Collapse
Affiliation(s)
- Abhi P Shah
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Tasnim Travadi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Sonal Sharma
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Department of Science and Technology, Government of Gujarat, Gandhinagar, India.
| |
Collapse
|
5
|
Chen Y, Long H, Feng T, Pei Y, Sun Y, Zhang X. Development of a Novel Primer-TaqMan Probe Set for Diagnosis and Quantification of Meloidogyne enterolobii in Soil Using qPCR and Droplet Digital PCR Assays. Int J Mol Sci 2022; 23:11185. [PMID: 36232487 PMCID: PMC9569833 DOI: 10.3390/ijms231911185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Early detection of pathogens before the planting season is valuable to forecast disease occurrence. Therefore, rapid and reliable diagnostic approaches are urgently needed, especially for one of the most aggressive root knot nematodes, Meloidogyne enterolobii. In this study, we developed a novel primer-TaqMan probe set aimed at M. enterolobii. The primer-probe set was successfully applied in the identification and quantification of M. enterolobii via qPCR technology. It was also suitable for improved PCR technology, known as ddPCR analyses, and this work presents the first application of this technology for plant parasitic nematodes. Compared with qPCR, ddPCR exhibited better performance with regard to analytical sensitivity, which can provide a more accurate detection of M. enterolobii concealed in field soil. In addition, we generated standard curves to calculate the number of eggs in soil using the qPCR and ddPCR platforms. Hopefully, the results herein will be helpful for forecasting disease severity of M. enterolobii infection and adopting effective management strategies.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Haibo Long
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Tuizi Feng
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yueling Pei
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanfang Sun
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xinchun Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|