1
|
Jiang Y, Ji W, Lu Y, Wang Q, Chen L. Integrating Plasma Metabolomics, Network Pharmacology, and Experimental Validation to Investigate the Action Mechanism of Qiangxin Lishui Prescription in Chronic Heart Failure. Biomed Chromatogr 2025; 39:e6065. [PMID: 39748248 DOI: 10.1002/bmc.6065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The high mortality rate of chronic heart failure (CHF) makes it a primary battlefield in the field of cardiovascular diseases. Qiangxin Lishui Prescription (QLP) is a traditional Chinese medicine (TCM) prescription used clinically for treating CHF, but its underlying mechanism remains unclear. This study integrated plasma metabolomics, network pharmacology, and experimental validation to reveal the pharmacological effects of QLP and its potential mechanism of anti-CHF. Using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS/MS), 119 absorbed prototype compounds of QLP were identified from rat plasma. By applying network pharmacology and molecular docking techniques, a QLP absorption components-target-CHF network was constructed. The IL6/JAK/STAT3 signaling pathway is likely critical to QLP's therapeutic effect on CHF. A CHF mouse model was established using aortic ligation surgery to investigate the regulation of the IL6/JAK/STAT3 pathway by QLP in CHF mice. Network pharmacology analysis and in vivo experimental data indicate that QLP alleviates myocardial injury and inflammatory response in CHF mice by modulating the IL6/JAK/STAT3 pathway, significantly improving cardiac function. This presents a promising therapeutic strategy for CHF treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Wenjun Ji
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Ying Lu
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Qin Wang
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
- Department of Pharmacy, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
2
|
Zhou GL, Su SL, Yu L, Shang EX, Hua YQ, Yu H, Duan JA. Exploring the liver toxicity mechanism of Tripterygium wilfordii extract based on metabolomics, network pharmacological analysis and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118888. [PMID: 39368758 DOI: 10.1016/j.jep.2024.118888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygii wilfordii Radix, (TW) as a toxic herbal medicine, is the root of Tripterygium wilfordii Hook. F. , which commonly used in China for the treatment of rheumatoid arthritis and autoimmune diseases, but its severe toxicity, particularly hepatotoxicity, significantly impacts its clinical application. AIM OF THE STUDY The hepatotoxicity and its molecular mechanism of 70% TW ethanol extract (TWE) on male mice were demonstrated based on metabolomics, network pharmacological analysis and experimental validation. MATERIALS AND METHODS The toxic and bioactive ingredients in TWE were quantitative analyzed by Triple quadrupole (TQ) mass spectrometry method. The liver organ index, as well as the liver function indexes AST and ALT were evaluated after administering different doses of TWE for 24 h, and a pathological change was analyzed in liver tissue. Non-targeted metabolomics using UPLC-QTOF/MS was performed on both the plasma and liver tissue samples in combination with network toxicology to screen for key targets related to TWE toxicity in the liver. These key targets including caspase 3, NF-κB, TLR4, TNF-α, NQO1, and Bcl2 were subsequently verified through Western blotting experiments. RESULTS The six toxic and active ingredients of raphenolactone, ranolactone, triptolide tripterine, wilforlide A, demethylzeylasterain in TWE for the contents of 0.709, 1.408, 0.353, 0.354, 0.882, 0.227 mg g-1, respectively. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels increased and liver index decreased after administration of TWE for 24 h. Pathological analysis showed that TWE could produce toxicity to mouse liver, and its toxicity was dose-dependent. In the high-dose group, TW-D (11.23 g/kg) and TW-E (22.46 g/kg) caused a large amount of rupture in mouse liver nucleus and a large amount of inflammatory infiltration at the same time. Furthermore, 64 metabolites in plasma and 59 metabolites in the liver tissue were identified. The main metabolic pathways involved glycerol phospholipid metabolism, glycosylphosphatidylinositol-ether lipid metabolism, fatty acid metabolism, sphingomyelin metabolism, and ether lipid metabolism in plasma and liver tissue. Through analysis of the top 10 correlated targets, 6 out of the top 10 selected target proteins exhibited consistent expression patterns with liver injury. The levels of Bcl2 and NQO1 decreased with increasing exposure dose. The expression of Caspase 3, NF-κB, TLR4, and TNF-α increased with increasing dose. These findings suggest that protein expression has a regulatory effect at different doses groups compared to the control group.These findings suggest a regulatory effect of protein expression in different dose groups compared to the control group. CONCLUSION The hepatotoxic effects of TWE can increase ALT and AST levels in plasma, leading to hepatic oxidative damage and inflammatory response. The toxic mechanisms that produce are closely related to the regulating of the abnormal metabolites in plasma and liver tissue. Furthermore, the regulating the expression levels of targeted proteins of TNF-α, NF-κB, Caspase 3, NQO1, and Bcl2 were confirmed by examining the liver tissue. These data clearly elucidate the toxicity mechanism of TW, laying the foundation for ensuring the quality and safety of drugs.
Collapse
Affiliation(s)
- Guo-Liang Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, School of Life and Health Sciences, Anhui Science and Technology University, Bengbu, 233100, China
| | - Shu-Lan Su
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Li Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Er-Xin Shang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yong-Qing Hua
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Yu
- Department of Pharmacy, School of Life and Health Sciences, Anhui Science and Technology University, Bengbu, 233100, China
| | - Jin-Ao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
3
|
Zhao J, Cao M, Yi H, He G, Chen T, Liu L, Guo K, Cao Y, Li C, Zhou X, Zhang B, Wang H. Triptolide Causes Spermatogenic Disorders by Inducing Apoptosis in the Mitochondrial Pathway of Mouse Testicular Spermatocytes. TOXICS 2024; 12:896. [PMID: 39771111 PMCID: PMC11728831 DOI: 10.3390/toxics12120896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Triptolide (TP) is a diterpenoid compound extracted from the traditional Chinese medicinal herb Tripterygium wilfordii. It has antitumor and anti-inflammatory effects and stimulates immunity. However, its serious side effects, especially reproductive toxicity, limit its clinical application. This study employed a testicular injury model established by intraperitoneally injecting TP (0.2 mg/kg) in C57BL/6J male mice (age = 7-8 weeks) for 14 days. The control and TP mice's testicular tissues were subjected to transcriptome sequencing to assess potential testicular damage mechanisms. Based on the transcriptome sequencing results and relevant literature reports, further experiments were performed. In addition, to alleviate triptolide-induced testicular damage, we treated the mice with N-acetyl-L-cysteine (NAC). The acquired data revealed that compared with the control mice, the TP-treated mice's testes indicated severe damage. Transcriptome sequencing identified differentially expressed genes that showed enrichment in cell differentiation, apoptotic process, cell cycle, glutathione (GSH) metabolism, and the p53 signaling pathway. Furthermore, TUNEL assays and Western blot analysis showed that in the TP mice's testicular tissues, the spermatocytes had mitochondrial pathway apoptosis as well as abnormal mitochondrial morphology and structure. Triptolide induces oxidative stress in testicular tissue by enhancing pro-oxidative systems and inhibiting antioxidant systems. NAC reduced testicular damage and apoptosis by alleviating TP-induced oxidative stress. This study also employed a GC2 cell line for in-vitro analyses, and the results were consistent with the in vivo experiments. This study provides evidence for alleviating TP's adverse effects on the male reproductive system for better clinical application.
Collapse
Affiliation(s)
- Jiantao Zhao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Haisheng Yi
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Guitian He
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Tong Chen
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Xue Q, Zhang L, Wang R, Xu J, Wang C, Gao S, Fang X, Meng C, Lu R, Guo L. Hexavalent chromium reduces testosterone levels by impairing lipophagy and disrupting lipid metabolism homeostasis: Based on a metabolomic analysis. Toxicology 2024; 508:153908. [PMID: 39121936 DOI: 10.1016/j.tox.2024.153908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Hexavalent chromium (Cr(VI)) causes testicular damage and reduces testosterone secretion. Testosterone synthesis relies on cholesterol as a raw material, and its availability can be affected by lipophagy. However, the role of lipophagy in Cr(VI)-induced testicular damage and reduced testosterone secretion remains unclear. In this study, we investigated the effect of Cr(VI) on lipid metabolism and lipophagy in the testes of ICR mice. Forty mice were randomly divided into four groups and exposed to different doses of Cr(VI) (0, 75, 100, 125 mg/kg) for thirty days. Cr(VI) increased the rate of sperm abnormalities, decreased testosterone level, and decreased the levels of testosterone synthesis-related proteins, namely steroidogenic acute regulatory (StAR) and 3β-hydroxysteroid dehydrogenase (3β-HSD) proteins. Through metabolomic analysis, Oil Red O staining, and biochemical indicator (triglyceride and total cholesterol) analysis, Cr(VI) was found to disrupt testicular lipid metabolism. Further investigation revealed that Cr(VI) inhibited the AMP-activated protein kinase (AMPK)/sterol regulatory element-binding protein 1 (SREBP1) pathway, elevated levels of the autophagy-related proteins microtubule-associated protein 1 light chain 3B (LC3B) and sequestosome 1 (SQSTM1)/P62 and lipophagy-related proteins Rab7 and Rab10, while increasing colocalization of LC3B and Perilipin2. These findings suggest that Cr(VI) exposure leads to abnormal lipid metabolism in the testes by suppressing the AMPK/SREBP1 pathway and disrupting lipophagy, ultimately reducing testosterone level and inducing testicular damage.
Collapse
Affiliation(s)
- Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Le Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Jiayunzhu Xu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chaofan Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Shidi Gao
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Xin Fang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Chunyang Meng
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Wang L, Yin H, Jiang J, Li Q, Gao C, Li W, Zhang B, Xin Y, Li H, Zhao M, Lu Q. A rationally designed CD19 monoclonal antibody-triptolide conjugate for the treatment of systemic lupus erythematosus. Acta Pharm Sin B 2024; 14:4560-4576. [PMID: 39525579 PMCID: PMC11544386 DOI: 10.1016/j.apsb.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 11/16/2024] Open
Abstract
Tripterygium wilfordii Hook F (TWHF) is a traditional Chinese medicine widely used in the treatment of systemic lupus erythematosus (SLE), with triptolide (TP) as its main active ingredient. However, its side effects also induced by TP, especially hepatotoxicity and reproductive toxicity, largely limit its application in a subset of patients. Monoclonal antibodies (mAbs) developed for the treatment of SLE that deplete B cells by targeting B cell-expressing antigens, such as CD19, have failed in clinical trials, partly due to their poor efficacy in consuming B cells. Here, we report the development of a rationally designed antibody‒drug conjugate (ADC), CD19 mAb-TP conjugate, to alleviate the side effects of TWHF and simultaneously improve the therapeutic efficacy of CD19 mAb. The CD19 mAb-TP conjugate, which was named ADC-TP, selectively depleted B cell subsets both in vitro and in vivo and effectively alleviated disease symptoms in mouse lupus models with enhanced therapeutic efficacy than CD19 mAb and fewer side effects than TP. Our present study proposes a CD19 mAb‒TP conjugate strategy to mitigate the toxicity of TWHF while also enhancing the therapeutical efficacy of CD19 mAbs for the treatment of SLE, providing a feasible method for improving the current agents used for treating SLE.
Collapse
Affiliation(s)
- Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qilin Li
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
- Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Changxing Gao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Wenrui Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Bo Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Yue Xin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Hongyang Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, China
| | - Ming Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| |
Collapse
|
6
|
Gorrie D, Bravo M, Fan L. The Yin and Yang of the Natural Product Triptolide and Its Interactions with XPB, an Essential Protein for Gene Expression and DNA Repair. Genes (Basel) 2024; 15:1287. [PMID: 39457411 PMCID: PMC11507457 DOI: 10.3390/genes15101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Triptolide, a bioactive diterpene tri-epoxide extracted from Tripterygium wilfordii Hook F (TWHF), exhibits notable pharmacological activities, including anti-inflammatory, immunosuppressive, antifertility, and anticancer effects. Despite its promising therapeutic potential, clinical applications of triptolide are significantly limited by its poor water solubility and substantial toxicity, particularly hepatotoxicity, nephrotoxicity, and cardiotoxicity. These toxic effects are difficult to separate from many of its desired therapeutic effects, the Yin and Yang of triptolide applications. Triptolide's therapeutic and toxic effects are linked to its inhibitory interactions with XPB, a DNA helicase essential for transcription by RNA polymerase II (RNAPII) and nucleotide excision repair (NER). By irreversibly binding to XPB, triptolide inhibits its ATPase activity, leading to global repression of transcription and impaired NER, which underlies its cytotoxic and antitumor properties. Recent developments, including triptolide prodrugs such as Minnelide and derivatives like glutriptolides, aim to enhance its pharmacokinetic properties and reduce toxicity. This review critically examines triptolide's chemical structure, therapeutic applications, toxicological profile, and molecular interactions with XPB and other protein targets to inform future strategies that maximize therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
| | | | - Li Fan
- Department of Biochemistry, University of California, 900 University Ave, Riverside, CA 92521, USA; (D.G.); (M.B.)
| |
Collapse
|
7
|
Li J, Chen D, Suo J, Li J, Zhang Y, Wang Y, Deng Z, Zhang Q, Ma B. Triptolide induced spermatogenesis dysfunction via ferroptosis activation by promoting K63-linked GPX4 polyubiquitination in spermatocytes. Chem Biol Interact 2024; 399:111130. [PMID: 38960301 DOI: 10.1016/j.cbi.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Triptolide (TP) is a major bioactive compound derived from Tripterygium wilfordii Hook. F. (TwHF) known for its medicinal properties, but it also exhibits potential toxic effects. It has been demonstrated to induce severe male reproductive toxicity, yet the precise mechanism behind this remains unclear, which limits its broad clinical application. This study aimed to investigate the mechanisms underlying testicular damage and spermatogenesis dysfunction induced by TP in mice, using both mouse models and the spermatocyte-derived cell line GC-2spd. In the present study, it was found that TP displayed significant testicular microstructure damaged and spermatogenesis defects including lower concentration and abnormal morphology by promoting ROS formation, MDA production and restraining GSH level, glutathione peroxidase 4 (GPX4) expression in vivo. Furthermore, Ferrostatin-1 (FER-1), a ferroptosis inhibitor, was found to significantly reduce the accumulation of lipid peroxidation, alleviate testicular microstructural damage, and enhance spermatogenic function in mice. Besides, notably decreased cell viability, collapsed mitochondrial membrane potential, and elevated DNA damage were observed in vitro. The above-mentioned phenomenon could be reversed by pre-treatment of FER-1, indicating that ferroptosis participated in the TP-mediated spermatogenesis dysfunction. Mechanistically, TP could enhance GPX4 ubiquitin degradation via triggering K63-linked polyubiquitination of GPX4, thereby stimulating ferroptosis in spermatocytes. Functionally, GPX4 deletion intensified ferroptosis and exacerbated DNA damage in GC-2 cells, while GPX4 overexpression mitigated ferroptosis induced by TP. Overall, these findings for the first time indicated a vital role of ferroptosis in TP induced-testicular injury and spermatogenic dysfunction through promoting GPX4 K63-linked polyubiquitination, which hopefully offers a potential therapeutic avenue for TP-related male reproductive damage. In addition, this study also provides a theoretical foundation for the improved clinical application of TP or TwHF in the future.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Dezhi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jialiang Suo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Jiaqi Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yimu Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Yu Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhewen Deng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
8
|
Ma QY, Liu YC, Zhang Q, Yi WD, Sun Y, Gao XD, Zhao XT, Wang HW, Lei K, Luo WJ. Integrating network pharmacology, molecular docking and experimental verification to reveal the mechanism of artesunate in inhibiting choroidal melanoma. Front Pharmacol 2024; 15:1448381. [PMID: 39185308 PMCID: PMC11341487 DOI: 10.3389/fphar.2024.1448381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Artesunate (ART), a natural compound derived from Artemisia annua, has shown promising clinical potentials in the treatment of various tumors, but the exact mechanism is unclear. Choroidal melanoma (CM) is a major malignant ocular tumor in adults, known for its significant malignancy and poor prognosis, with limited efficacy in current treatments. This study explored the anti-CM effects and mechanisms of ART using a combination of network pharmacology, molecular docking and experimental validation. Methods Potential targets of ART were screened in PubChem, Swiss Target Prediction and Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database Analysis Platform databases, while target genes related to CM prognosis were selected from Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNET databases. The intersection of these two groups of datasets yielded the target genes of ART involved in CM. Protein-protein interaction (PPI) network analysis of the intersecting targets, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were conducted to identify core targets and critical pathways. Molecular docking methods were performed to predict the binding interactions between ART and core targets. The effects of ART on CM were evaluated through CCK8, colony formation, transwell, as well as flow cytometry assays to detect apoptosis, cell cycle, reactive oxygen species (ROS). Western blot (WB) assays were conducted to investigate the impact of ART on key proteins and pathways associated with CM. Finally, in vivo assays were conducted to further validate the effects of ART on subcutaneous tumors in nude mice. Results Research has shown that key pathways and core targets for ART in treating CM were identified through a network pharmacology approach. Molecular docking results verified the strong binding affinity between ART and these core targets. The analysis and predicted results indicated that ART primarily exerted its effects on CM through various tumor-related pathways like apoptosis. The assays in vitro confirmed that ART significantly inhibited the proliferation and migration of CM cells. This was achieved by promoting apoptosis through activation of the p53 signaling pathway, causing cell cycle arrest at the G0/G1 phase by inhibiting the PI3K/AKT/mTOR signaling pathway and increasing the intracellular level of ROS by activating the NRF2/HO-1 signaling pathway. Additionally, the assays in vivo further validated the significant proliferation-inhibitory effect of ART on CM. Conclusion This study, making the initial exploration, illustrated through network pharmacology combined with molecular docking and in vitro/in vivo assays, confirmed that ART exerted potential anti-cancer effects on CM by promoting apoptosis, inducing cell cycle arrest and increasing intracellular levels of ROS. These findings suggested that ART held significant therapeutic potential for CM.
Collapse
Affiliation(s)
- Qing-yue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-chong Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-dan Yi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Sun
- Ophthalmology Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xiao-di Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-tong Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao-wen Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center and Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-juan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Huang S, Ziros PG, Chartoumpekis DV, Psarias G, Duntas L, Zuo X, Li X, Ding Z, Sykiotis GP. Traditional Chinese Medicine for Hashimoto's Thyroiditis: Focus on Selenium and Antioxidant Phytochemicals. Antioxidants (Basel) 2024; 13:868. [PMID: 39061936 PMCID: PMC11274136 DOI: 10.3390/antiox13070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hashimoto's thyroiditis (HT) is not only the most frequent autoimmune thyroid disease (AITD), but it also has a significant impact on patients' health-related quality of life (HRQoL), and it has been variably associated with differentiated thyroid carcinoma. Even though its pathogenesis is still incompletely understood, oxidative stress is believed to play an important role. Hypothyroidism related to later stages of HT can be treated with levothyroxine substitution therapy; various approaches such as selenium supplementation and iodine-restricted diets have been proposed as disease-modifying treatments for earlier stages, and even thyroidectomy has been suggested for refractory cases of painful HT. Nevertheless, many patients still report suboptimal HRQoL, highlighting an unmet medical need in this area. The concepts and approaches of traditional Chinese medicine (TCM) in treating HT are not broadly known in the West. Here, we provide an overview of TCM for HT, including combinations of TCM with selenium. We encompass evidence from clinical trials and other studies related to complex TCM prescriptions, single herbs used in TCM, and phytochemicals; wherever possible, we delineate the probable underlying molecular mechanisms. The findings show that the main active components of TCM for HT have commonly known or presumed antioxidant and anti-inflammatory activities, which may account for their potential utility in HT. Further exploring the practices of TCM for HT and combining them with evidence- and mechanism-based approaches according to Western standards may help to identify new strategies to alter the clinical course of the disease and/or to treat patients' symptoms better and improve their HRQoL.
Collapse
Affiliation(s)
- Sheng Huang
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China;
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Panos G. Ziros
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Dionysios V. Chartoumpekis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Georgios Psarias
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| | - Leonidas Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenideion Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Xinhe Zuo
- Thyroid Disease Diagnosis and Treatment Center, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China;
| | - Xinyi Li
- Department of Traditional Chinese Medicine and Rehabilitation, Beijing Health Vocational College, Beijing 101101, China;
| | - Zhiguo Ding
- Department of Thyropathy, Sunsimiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727100, China
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.G.Z.); (D.V.C.); (G.P.)
| |
Collapse
|
10
|
Cui DX, Niu ZC, Tang X, Cai CZ, Xu DQ, Fu RJ, Liu WJ, Wang YW, Tang YP. Celastrol induced the autophagy of spermatogonia cells contributed to tripterygium glycosides-related testicular injury. Reprod Toxicol 2024; 126:108604. [PMID: 38703919 DOI: 10.1016/j.reprotox.2024.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Tripterygium glycosides (TG) is extracted from the roots of Chinese herbal medicine named Tripterygium wilfordii Hook F (TwHF). TG tablets are the representative TwHF-based agents with anti-inflammatory and immunomodulatory activities for treating rheumatoid arthritis. Although the curative effect of TG is remarkable, the clinical application is limited by a variety of organ toxicity. One of the most serious side-effects induced by TG is damage of the male reproductive system and the toxic mechanism is still not fully elucidated. TG-induced testicular injury was observed in male mice by treated with different concentrations of TG. The results showed that TG induced a significant decrease in testicular index. Pathological observation showed that spermatogenic cells were obviously shed, arranged loosely, and the spermatogenic epithelium was thin compared with control mice. In addition, the toxic effect of TG on mouse spermatogonia GC-1 cells was investigated. The results displayed that TG induced significant cytotoxicity in mouse GC-1 cells. To explore the potential toxic components that triggered testicular injury, the effects of 8 main components of TG on the viability of GC-1 cells were detected. The results showed that celastrol was the most toxic component of TG to GC-1 cells. Western blot analysis showed that LC3-II and the ratio of LC3-II/LC3-I were significantly increased and the expression level of p62 were decreased in both TG and celastrol treated cells, which indicated the significant activation of autophagy in spermatogonia cells. Therefore, autophagy plays an important role in the testicular injury induced by TG, and inhibition of autophagy is expected to reduce the testicular toxicity of TG.
Collapse
Affiliation(s)
- Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xi Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Chun-Zhou Cai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu-Wei Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang 712046, China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine of Shaanxi Administration of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| |
Collapse
|
11
|
Koilpillai JN, Nunan E, Butler L, Pinaffi F, Butcher JT. Reversible Contraception in Males: An Obtainable Target? BIOLOGY 2024; 13:291. [PMID: 38785772 PMCID: PMC11117788 DOI: 10.3390/biology13050291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/27/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024]
Abstract
The last few decades have brought contraception to the forefront of research, with great strides made in effectively targeting and optimizing the physiology, pharmacology, and delivery processes that prevent pregnancy. However, these advances still predominantly target female contraceptives for the prevention of contraception, whereas targeting the male sex has lagged far behind. This has led to a marked deficiency in safe and effective male contraceptive agents, resulting in a heavy dependence on female contraceptives to prevent unwanted and unplanned pregnancies. Current research in the veterinary field and in rodents highlights several promising avenues whereby novel, safe, and effective male contraceptive alternatives are being developed-with an emphasis on reduced side effects and reversibility potential. This review aims to discuss current and novel male contraceptives (both human and veterinary formulations) while highlighting their efficacy, advantages, and disadvantages.
Collapse
Affiliation(s)
- Joanna Nandita Koilpillai
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Emily Nunan
- Comparative Biomedical Sciences Graduate Program, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Landon Butler
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fabio Pinaffi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Joshua T. Butcher
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
12
|
Teng J, Xu Q, Zhang H, Yu R, Liu C, Song M, Cao X, Du X, Tao S, Yan H. Enzymatic mechanism of MlrB for catalyzing linearized microcystins by Sphingopyxis sp. USTB-05. Front Microbiol 2024; 15:1389235. [PMID: 38711965 PMCID: PMC11070527 DOI: 10.3389/fmicb.2024.1389235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Microcystins (MCs) are the most widespread cyanobacterial toxins in eutrophic water body. As high toxic intermediate metabolites, linearized MCs are further catalyzed by linearized microcystinase (MlrB) of Sphingopyxis sp. USTB-05. Here MlrB structure was studied by comprizing with a model representative of the penicillin-recognizing enzyme family via homology modeling. The key active sites of MlrB were predicted by molecular docking, and further verified by site-directed mutagenesis. A comprehensive enzymatic mechanism for linearized MCs biodegradation by MlrB was proposed: S77 transferred a proton to H307 to promote a nucleophilic attack on the peptide bond (Ala-Leu in MC-LR or Ala-Arg in MC-RR) of linearized MCs to form the amide intermediate. Then water was involved to break the peptide bond and produced the tetrapeptide as product. Meanwhile, four amino acid residues (K80, Y171, N173 and D245) acted synergistically to stabilize the substrate and intermediate transition states. This study firstly revealed the enzymatic mechanism of MlrB for biodegrading linearized MCs with both computer simulation and experimental verification.
Collapse
Affiliation(s)
- Junhui Teng
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haiyang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ruipeng Yu
- Beijing Institute for Drug Control, Beijing, China
| | - Chao Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Meijie Song
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyu Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xinyue Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Suxuan Tao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
13
|
Yang S, Wang M, Li Z, Luan X, Yu Y, Jiang J, Li Y, Xie Y, Wang L. Tripterygium wilfordii Hook.f induced kidney injury through mediating inflammation via PI3K-Akt/HIF-1/TNF signaling pathway: A study of network toxicology and molecular docking. Medicine (Baltimore) 2024; 103:e36968. [PMID: 38335377 PMCID: PMC10860970 DOI: 10.1097/md.0000000000036968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/12/2024] Open
Abstract
We intend to explore potential mechanisms of Tripterygium wilfordii Hook.f (TwHF) induced kidney injury (KI) using the methods of network toxicology and molecular docking. We determined TwHF potential compounds with its targets and KI targets, obtained the TwHF induced KI targets after intersecting targets of TwHF and KI. Then we conducted protein-protein interaction (PPI) network, gene expression analysis, gene ontology (GO) function and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis to explore the mechanism of TwHF-induced KI. Finally we conducted molecular docking to verify the core toxic compounds and the targets. We obtained 12 TwHF toxic compounds and 62 TwHF-induced KI targets. PPI network, gene expression analysis and GO function enrichment analysis unveiled the key biological process and suggested the mechanism of TwHF-induced KI might be associated with inflammation, immune response, hypoxia as well as oxidative stress. KEGG pathway enrichment analysis indicated PI3K-Akt signaling pathway, HIF-1 signaling pathway and TNF signaling pathway were key signaling pathways of TwHF induced KI. Molecular docking showed that the binding energy of core targets and toxic compounds was all less than -6.5 kcal/mol that verified the screening ability of network pharmacology and provided evidence for modifying TwHF toxic compounds structure. Through the study, we unveiled the mechanism of TwHF induce KI that TwHF might activate PI3K-Akt signaling pathway as well as TNF signaling pathway to progress renal inflammation, mediate hypoxia via HIF-1 signaling pathway to accelerate inflammatory processes, and also provided a theoretical basis for modifying TwHF toxic compounds structure as well as supported the follow-up research.
Collapse
Affiliation(s)
- Shuo Yang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Li
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications (BUPT), Beijing, China
| | - Xiangjia Luan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junjie Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lianxin Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Li H, Yu W, Yang Y, Li S, Xu J, Gao C, Zhang W, Shi W, Jin K, Ji X, Ren C. Combination of Atractylenolide I, Atractylenolide III, and Paeoniflorin promotes angiogenesis and improves neurological recovery in a mouse model of ischemic Stroke. Chin Med 2024; 19:3. [PMID: 38178130 PMCID: PMC10768365 DOI: 10.1186/s13020-023-00872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Prognosis is critically important in stroke cases, with angiogenesis playing a key role in determining outcomes. This study aimed to investigate the potential protective effects of Atractylenolide I (Atr I), Atractylenolide III (Atr III), and Paeoniflorin (Pae) in promoting angiogenesis following cerebral ischemia. METHODS The bEnd.3 cell line was used to evaluate the effects of these three compounds on vascular endothelial cell proliferation, migration, and tube formation. Male C57BL/6 mice underwent transient middle cerebral artery occlusion (MCAO), followed by daily intragastric administration of the Chinese medicine compounds to assess their impact on brain protection and angiogenesis. In vivo experiments included measuring infarct size and assessing neurological function. Immunofluorescence staining and an angiogenesis antibody array were used to evaluate angiogenesis in ischemic brain tissue. Functional enrichment analysis was performed to further investigate the pathways involved in the protective effects of the compounds. Molecular docking analysis explored the potential binding affinity of the compounds to insulin-like growth factor 2 (IGF-2), and Western blotting was used to measure levels of angiogenesis-related proteins. RESULTS In vitro, the combination of Atr I, Atr III, and Pae enhanced cell proliferation, promoted migration, and stimulated tube formation. In vivo, the combined treatment significantly facilitated neurological function recovery and angiogenesis by day 14. The treatment also increased levels of angiogenesis-related proteins, including IGF-2. Pearson correlation analysis revealed a strong positive association between IGF-2 levels in ischemic brain tissue and angiogenesis, suggesting a good affinity of the compounds for the IGF-2 binding site, as supported by molecular docking analysis. CONCLUSION The administration of Atr I, Atr III, and Pae has shown significant enhancements in long-term stroke recovery in mice, likely due to the promotion of angiogenesis via increased activation of the IGF-2 pathway in ischemic brain tissue.
Collapse
Affiliation(s)
- Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing, 100029, China
| | - Wantong Yu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Yong Yang
- School of Chinese Medicine, Beijing University of Chines Medicine, Beijing, 100029, China
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Wei Zhang
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Wenjie Shi
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Texas Health Science Center, University of North, Fort Worth, TX, 76107, USA
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain Disorder, Capital Medical University, Chang Chun Road 45, Beijing, 100053, China.
| |
Collapse
|
15
|
Zhang X, Xia J, Jiang Y, Pisetsky DS, Smolen JS, Mu R, Dai S, Weinblatt ME, Kvien TK, Li J, Dörner T, Zhang Y, Lu L, Yang C, Yang P, Zhang Y, Xu C, Zhao Z, Lipsky PE. 2023 International Consensus Guidance for the use of Tripterygium Wilfordii Hook F in the treatment of active rheumatoid arthritis. J Autoimmun 2024; 142:103148. [PMID: 37967495 DOI: 10.1016/j.jaut.2023.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder that affects the joints and produces pain, swelling, and stiffness. It has a lifetime prevalence of up to 1% worldwide. An extract of Tripterygium wilfordii Hook F (TwHF), a member of the Celastraceae herbal family widely available in south China, has been used for treatment of RA since 1960s. METHODS The current consensus practice guidance (CPG) aims to offer guidance on the application of TwHF in the clinical management of active RA. The CPG followed World Health Organisation (WHO)'s recommended process, carried out three systematic reviews to synthesize data from 19 randomised controlled trials (RCT) involving 1795 participants. We utilized Grading of Recommendations, Assessment, Development and Evaluation (GRADE) to evaluate certainty of evidence and derive recommendations. We rigorously followed The Appraisal of Guidelines for Research and Evaluation II (AGREE II) as conduct guides to minimise bias and promote transparency. RESULTS There was no obvious difference between TwHF monotherapy and methotrexate (MTX) monotherapy on ACR20 (RCT = 2, N = 390, RR = 1.06, 95%CI 0.90-1.26, moderate certainty), ACR50 (RCT = 3, N = 419, RR = 1.03, 95%CI 0.80-1.34, moderate certainty), ACR70 (RCT = 2, N = 390, RR = 1.12, 95%CI 0.69-1.79, low certainty). TwHF monotherapy may be better than salicylazosulfapyridine monotherapy on ACR20 and the effect may be similar on ACR50 and ACR70. Seven RCTs compared MTX combined with TwHF versus MTX monotherapy, and the meta-analysis results favoured combination therapy group on ACR20 (RCT = 3, N = 470, RR = 1.44, 95%CI 1.28-1.62, moderate certainty), ACR50 (RCT = 4, N = 500, RR = 1.88, 95%CI 1.56-2.28, moderate certainty) and ACR70 (RCT = 2, N = 390, RR = 2.12, 95%CI 1.40-3.19, low certainty). We found no obvious difference between groups on critical safety outcomes, including infection (RCT = 3, N = 493, RR = 1.37, 95%CI 0.84-2.23), liver dysfunction (RCT = 5, N = 643, RR = 1.14, 95%CI 0.71-1.85), renal damage (RCT = 3, N = 450, RR = 2.20, 95%CI 0.50-9.72). CONCLUSION Upon full review of the evidence, the guidance panel reached consensus on recommendations for the use of TwHF in people with active RA, either as monotherapy or as combination therapy with MTX.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jun Xia
- Nottingham Ningbo GRADE Centre, University of Nottingham Ningbo China, Ningbo, Zhejiang, China; Academic Unit of Lifespan and Population Health, School of Medicine, The University of Nottingham, Nottingham, NG7 2UH, UK
| | - Ying Jiang
- Department of Rheumatology, Xiangya Hospital of Central South University, Changsha, China
| | - David S Pisetsky
- Duke University Medical Center, Medical Research Service, Durham Veterans Administration Medical Center, Durham, NC, USA
| | | | - Rong Mu
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing, China
| | - Shengming Dai
- Department of Rheumatology and Immunology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Tore K Kvien
- Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway; University of Oslo, Faculty of Medicine, Oslo, Norway
| | - Juan Li
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Thomas Dörner
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Yu Zhang
- Wuhan Xiehe Hospital, Huazhong University of Science and Technology School of Medicine, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hongkong, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Zhang
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Chenchen Xu
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Canada
| | - Zhan Zhao
- Tianjin Suyuan Evidence Based Technology Co., Ltd., China
| | - Peter E Lipsky
- AMPEL BioSolutions LLC and the RILITE Research Institute, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Wang Y, Zhao B, Dang X, Kong LF, Geng YC, He P, Li ZY, Mao YH, Tie C. A novel SPE-LC-MRM strategy for serum demethylzeylasteral quantitation developed with an 18O-labeled internal standard. Anal Bioanal Chem 2024; 416:467-474. [PMID: 37993551 DOI: 10.1007/s00216-023-05049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Natural bioactive compounds (NBCs) are widely used in clinical treatment. For example, Tripterygium wilfordii Hook f. is commonly known in China as Lei-Gong-Teng which means thunder god vine. This herb is widely distributed in Eastern and Southern China, Korea, and Japan. The natural bioactive compounds of this herb can be extracted and made into tripterygium glycoside tablets. It is one of the most commonly used and effective traditional Chinese herbal medicines against rheumatoid arthritis (RA), nephrotic syndrome (NS), autoimmune hepatis (AIH), and so on. However, many NBCs are difficult to reliably quantify in the serum due to the effects of matrix and RSD. In addition, the targeted compound's internal standard (IS) is rarely sold due to the complex isotope internal standard synthesis pathway. In this study, a new quantitation method for 18O labeling combined with off-line SPE was formulated. We contrasted the recoveries and matrix effects of various separation methods in order to choose the best method. Furthermore, we optimized the conditions for SPE loading and washing. An isotopic internal standard was prepared by the 16O/18O exchanging reaction in order to eliminate the matrix effects. The method's accuracy and precision met the requirements for method validation. The recovery of this method was close to 60%. The relative standard deviation (RSD) of the high-concentration sample was 2%, and the limit of detection (LOD) was 1 ng/mL. This method could be used to analyze the clinical serum concentration of demethylzeylasteral. Sixty samples were collected from 10 patients with diabetes nephropathy. The quantitation results of demethylzeylasteral in patients' serum obtained using this method exhibited a correlation between therapeutic drug monitoring (TDM) and decreased urinary protein. This work may have broad implications for the study of drug metabolism in vivo and the clinical application of low-abundance and difficult-to-quantify NBCs.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Ban Zhao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xin Dang
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ling-Fei Kong
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Yi-Cong Geng
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Ping He
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Zheng-Ying Li
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China
| | - Yong-Hui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Cai Tie
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Ding11 Xueyuan Road, Beijing, 100083, China.
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Ding11 Xueyuan Road, Beijing, 100083, China.
| |
Collapse
|
17
|
Wen F, Liu D, Wang M, Zhang S, Kuang W, Yuan L, Wang J, Liu G. Celastrol induces premature ovarian insufficiency by inducing apoptosis in granulosa cells. Biomed Pharmacother 2023; 169:115815. [PMID: 37956480 DOI: 10.1016/j.biopha.2023.115815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Celastrol, a natural compound purified from the Chinese herb Tripterygium wilfordii Hook. f., has excellent pharmacological activity for the treatment of various diseases. Assessing the safety of its use is essential for its development into a clinical medicine. However, research assessing its toxicity on the female reproductive system has never been reported. In this study, the ovarian toxicity of celastrol and its underlying mechanism were investigated. We found that celastrol induced premature ovarian insufficiency and apoptosis in granulosa cells. Activity-based protein profiling results showed that high mobility group box 1 was a candidate target protein of celastrol. Celastrol directly bound to Cys106 of high mobility group box 1. Knocking down high mobility group box 1 induced apoptosis of granulosa cells, while overexpression of this gene reversed celastrol-induced apoptosis. Celastrol treatment upregulated p21 transcription, but overexpression of high mobility group box 1 reversed this upregulation. Thus, Celastrol induces premature ovarian insufficiency and apoptosis in granulosa cells by directly binding to high mobility group box 1 and interfering with its biological function to regulate p21 transcription. This study provides valuable information for assessing the safety of the clinical application of celastrol on female patients.
Collapse
Affiliation(s)
- Fan Wen
- Department of Rehabilitation Medicine, Shunde Hospital of Southern Medical University, Foshan 528000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingming Wang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wenhua Kuang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China; Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China; Department of Oncology, the Affiliated Hospital of Southwest Medical University, China.
| | - Gang Liu
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Chen Y, Wang L, Li N, Zhou C. Tripterygium glycosides for safely controlling disease activity in systemic lupus erythematosus: a systematic review with meta-analysis and trial sequential analysis. Front Pharmacol 2023; 14:1207385. [PMID: 37601046 PMCID: PMC10436586 DOI: 10.3389/fphar.2023.1207385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Tripterygium glycosides have been used to treat systemic lupus erythematosus (SLE) for a long time, showing the effects of immune regulation. We aimed to evaluate the benefits and risks of Tripterygium Glycosides Tablets (TGT) for patients with SLE. Methods: We searched electronic databases and clinical trial registries for relevant randomized controlled trials (RCTs). We identified eligible RCTs and assessed risk of bias. We conducted a meta-analysis to estimate the pooled effects. The Trial Sequential Analysis (TSA) 0.9.5.10 software was used to verify the reliability of the results. Results: Eight RCTs encompassing 538 patients with SLE were included. TGT combined with conventional treatments (CTs) was superior to CTs alone in reducing lupus activity (MD = -1.66, 95% CI = -2.07 to -1.26, p < 0.00001, low-certainty evidence) and improving overall response rate (ORR) (RR = 1.21, 95% CI = 1.11 to 1.32, p < 0.0001, moderate-certainty evidence). The robustness of the results was confirmed by TSA. Regarding safety, there was no statistical difference in the overall incidence of adverse reactions between the two groups. Conclusion: In patients with SLE, TGT might safely reduce disease activity. However, further high-quality studies are needed to firmly establish the clinical efficacy of TGT. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022300474; Identifier: CRD42022300474.
Collapse
Affiliation(s)
| | | | - Nannan Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Caiyun Zhou
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|