1
|
Ma Q, Huang S, Li MY, Luo QH, Chen FM, Hong CL, Yan HH, Qiu J, Zhao KL, Du Y, Zhao JK, Zhou LQ, Lou DY, Efferth T, Li CY, Qiu P. Dihydromyricetin regulates the miR-155-5p/SIRT1/VDAC1 pathway to promote liver regeneration and improve alcohol-induced liver injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156522. [PMID: 39986231 DOI: 10.1016/j.phymed.2025.156522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 02/05/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Alcohol-related liver disease (ALD) has become an increasingly serious global health issue. In recent years, growing evidence has highlighted the restoration of liver regenerative capacity as an effective therapeutic strategy for improving ALD. Previous studies have demonstrated the protective effect of dihydromyricetin (DMY) in alcohol-induced liver injury, but its pharmacological role in ALD-related liver regeneration impairment remains poorly understood. OBJECTIVE This study aims to explore the therapeutic potential and molecular mechanisms of DMY in the context of liver regeneration impairment in ALD. METHODS The classic Lieber-DeCarli alcohol liquid diet was used to establish an ALD model in vivo. DMY (75 and 150 mg/kg/day) and silybin (200 mg/kg) were administered for 7 weeks to assess the hepatoprotective effects of DMY. First, biochemical markers and liver histopathology were used to evaluate liver inflammation and steatosis in ALD mice. Second, we explored the potential molecular mechanisms by which DMY improves ALD through serum untargeted metabolomics, hepatic transcriptomics, and single-cell sequencing data. Furthermore, in vivo and in vitro experiments, combined with Western blotting, dual-luciferase reporter assays, and immunofluorescence, were conducted to elucidate the protective mechanisms underlying DMY's effects on ALD. RESULTS In vivo studies showed that DMY significantly ameliorated ALT/AST abnormalities, liver inflammation, and steatosis in ALD mice. Multi-omics and bioinformatics analyses revealed that DMY may exert its anti-ALD effects by regulating the miR-155-5p/SIRT1/VDAC1 pathway, thereby mitigating cellular senescence. Notably, knockdown of miR-155 provided partial protection against ethanol-induced liver damage. Additionally, clinical ALD samples and in vivo and in vitro experiments further confirmed that excessive alcohol exposure induces the production of miR-155-5p in liver Kupffer cells. miR-155-5p targets and inhibits SIRT1, promoting the expression of mitochondrial VDAC1, leading to mitochondrial DNA leakage, thereby accelerating hepatocyte senescence and inflammation. However, DMY improved the disruption of the miR-155-5p/SIRT1/VDAC1 pathway and hepatocyte senescence, thereby restoring liver regenerative function and exerting anti-ALD effects. CONCLUSION In this study, we provide the first evidence that DMY improves liver inflammation and cellular senescence by regulating the miR-155-5p/SIRT1/VDAC1 positive feedback loop, promoting liver regeneration to improve ALD. In summary, our work provides important research evidence and theoretical support for DMY as a promising candidate drug for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China; School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Mei-Ya Li
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qi-Han Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Fang-Ming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun-Lan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Hong-Hao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiang Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kang-Lu Zhao
- Zhejiang Rehabilitation Medical Center, Rehabilitation Hospital Area of the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Zhejiang, China; The Fourth Affiliated Hospital Zhejiang University, School of Medicine, Yiwu Zhejiang, China
| | - Yu Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jin-Kai Zhao
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Li-Qin Zhou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Da-Yong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Chang-Yu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China.
| |
Collapse
|
2
|
Xia N, Xue H, Li Y, Liu J, Lou Y, Li S, Wang Y, Lu J, Chen X. Potential Mechanisms and Effects of Dai Bai Jie Ethanol Extract in Preventing Acute Alcoholic Liver Injury. Curr Issues Mol Biol 2024; 47:3. [PMID: 39852118 PMCID: PMC11763393 DOI: 10.3390/cimb47010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
This study investigated the protective effect of Dai Bai Jie (DBJ) extract against acute alcoholic liver injury (AALI) and elucidated its potential mechanism. The total saponin level in the DBJ extracts was measured using vanillin-chloroform acid colorimetry. To observe the preventive and protective effects of DBJ on AML-12 cells in an ethanol environment, the effective components of DBJ were identified. An alcohol-induced AALI mouse model was used to evaluate the efficacy of DBJ against AALI. For this purpose, alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) levels were assessed, liver function indices and oxidative and inflammatory markers were determined, and histopathological examinations were performed. Mechanistic investigations were conducted using RT-qPCR assays and immunohistochemical analysis to determine the protective effects of DBJ. The samples (DBJ-1, DBJ-2, and DBJ-3) were obtained by extracting DBJ with water, 50% ethanol, and 95% ethanol, yielding total saponin contents of 5.35%, 6.64%, and 11.83%, respectively. DBJ-3 was isolated and purified, and its components were identified by Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). DBJ-3 had the greatest effect on cell viability in an ethanol environment. Moreover, DBJ-3 reduced inflammatory infiltration, liver cell degeneration, and hemorrhage, while increasing ADH and ALDH levels in liver tissues. Additionally, DBJ-3 considerably decreased the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG) levels. DBJ-3 reduced malondialdehyde (MDA), reactive oxygen species (ROS), and inflammatory factors, such as tumor necrosis factor (TNF-α), interleukin-1β (IL-1β), and interleukin 6 (IL-6), while increasing superoxide dismutase (SOD) and glutathione S-transferase (GST) activities. Furthermore, DBJ-3 significantly increased alcohol dehydrogenase 1b (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) expression at the gene and protein levels within alcohol metabolism pathways and reduced the nuclear factor kappa-B (NF-κB) gene and protein levels. These findings suggest that DBJ-3 can prevent AALI by enhancing alcohol metabolism via the regulation of ADH1B and ALDH2 and the modulation of the NF-κB pathway to improve antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Niantong Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Hongwei Xue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Yihang Li
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| | - Jia Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Yang Lou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Shuyang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Yutian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Juan Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
| | - Xi Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (N.X.); (H.X.); (J.L.); (Y.L.); (S.L.); (Y.W.)
- Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 666100, China;
| |
Collapse
|
3
|
Wan J, Zhao ZY, Wang C, Jiang CX, Tong YP, Zang Y, Choo YM, Li J, Hu JF. Bis-Iridoid Glycosides and Triterpenoids from Kolkwitzia amabilis and Their Potential as Inhibitors of ACC1 and ACL. Molecules 2024; 29:5980. [PMID: 39770069 PMCID: PMC11678491 DOI: 10.3390/molecules29245980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
A comprehensive phytochemical investigation of the twigs/leaves and flower buds of Kolkwitzia amabilis, a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (1-4 and 7-13), 20 triterpenoids (5, 6, and 14-31), and 8 phenylpropanoids (32-39). Among these, amabiliosides A (1) and B (2) represent previously undescribed bis-iridoid glycosides, while amabiliosides C (3) and D (4) feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro-β-carboline-5-carboxylic acid moiety. Amabiliacids A (5) and B (6) are 24-nor-ursane-type triterpenoids characterized by an uncommon ∆11,13(18) transannular double bond. Their chemical structures and absolute configurations were elucidated through spectroscopic data and electronic circular dichroism analyses. Compound 2 exhibited a moderate inhibitory effect against acetyl CoA carboxylase 1 (ACC1), with an IC50 value of 9.6 μM. Lonicejaposide C (8), 3β-O-trans-caffeoyl-olean-12-en-28-oic acid (29), and (23E)-coumaroylhederagenin (31) showed notable inhibitory effects on ATP-citrate lyase (ACL), with IC50 values of 3.6, 1.6, and 4.7 μM, respectively. Additionally, 3β-acetyl-ursolic acid (17) demonstrated dual inhibitory activity against both ACC1 and ACL, with IC50 values of 10.3 and 2.0 μM, respectively. The interactions of the active compounds with ACC1 and ACL enzymes were examined through molecular docking studies. From a chemotaxonomic perspective, the isolation of bis-iridoid glycosides in this study may aid in clarifying the taxonomic relationship between the genera Kolkwitzia and Lonicera within the Caprifoliaceae family. These findings highlight the importance of conserving plant species with unique and diverse secondary metabolites, which could serve as potential sources of new therapeutic agents for treating ACC1/ACL-associated diseases.
Collapse
Affiliation(s)
- Jiang Wan
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China; (J.W.); (Z.-Y.Z.); (C.W.); (C.-X.J.); (Y.-P.T.)
| | - Ze-Yu Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China; (J.W.); (Z.-Y.Z.); (C.W.); (C.-X.J.); (Y.-P.T.)
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Can Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China; (J.W.); (Z.-Y.Z.); (C.W.); (C.-X.J.); (Y.-P.T.)
| | - Chun-Xiao Jiang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China; (J.W.); (Z.-Y.Z.); (C.W.); (C.-X.J.); (Y.-P.T.)
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ying-Peng Tong
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China; (J.W.); (Z.-Y.Z.); (C.W.); (C.-X.J.); (Y.-P.T.)
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (J.L.)
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.Z.); (J.L.)
| | - Jin-Feng Hu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China; (J.W.); (Z.-Y.Z.); (C.W.); (C.-X.J.); (Y.-P.T.)
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
4
|
Yu HC, Bai QR, Guo JJ, Chen MY, Wang L, Tong FC, Zhang SL, Wu J. Elucidating hydroxysafflor yellow A's multi-target mechanisms against alcoholic liver disease through integrative pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155956. [PMID: 39216301 DOI: 10.1016/j.phymed.2024.155956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/09/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) significantly contributes to global liver-related morbidity and mortality. Natural products play a crucial role in the prevention and treatment of ALD. Hydroxysafflor yellow A (HSYA), a unique and primary component of Safflower (Carthamus tinctorius l.), exhibits diverse pharmacological activities. However, the impact and mechanism of HSYA on ALD have not been fully elucidated. PURPOSE The purpose of this study was to employ an integrative pharmacology approach to assess the multi-targeted mechanism of HSYA against ALD. METHODS Network pharmacology and molecular docking techniques were used to analyze the potential therapeutic signaling pathways and targets of HSYA against ALD. An ALD model in zebrafish larvae was established. Larvae were pretreated with HSYA and then exposed to ethanol. Liver injury was measured by fluorescence expression analysis in the liver-specific transgenic zebrafish line Tg (fabp10a:DsRed) and liver tissue H&E staining. Liver steatosis was determined by whole-mount oil red O staining and TG level. Additionally, an ethanol-induced hepatocyte injury model was established in vitro to observe hepatocyte damage (cell viability, ALT level), lipid accumulation (oil red O staining, TC and TG), and oxidative stress (ROS, MDA, GPx and SOD) in HepG2 cells treated with or without HSYA. Finally, qRT-PCR combined with network pharmacology and molecular docking was employed to validate the effects of HSYA on targets. RESULTS HSYA exhibited a significant, dose-dependent improvement in ethanol-induced liver injury in zebrafish larvae and HepG2 cells. Network pharmacology analysis revealed that HSYA may exert pharmacological effects against ALD through 341 potential targets. These targets are involved in various signaling pathways, including lipid metabolism and atherosclerosis, PI3K-Akt signaling pathway, MAPK signaling pathway, and ALD itself. Molecular docking studies displayed that HSYA had a strong binding affinity toward the domains of IL1B, IL6, TNF, PPARA, PPARG, HMGCR and ADH5. qRT-PCR assays demonstrated that HSYA effectively reversed the ethanol-induced aberrant gene expression of SREBF1, FASN, ACACA, CPT1A, PPARA, IL1B, IL6, TNFα, ADH5, and ALDH2 in vivo and in vitro. CONCLUSION This study offers a comprehensive investigation into the anti-ALD mechanisms of HSYA using an integrative pharmacology approach. The potential targets of HSYA may be implicated in enhancing ethanol catabolism, reducing lipid accumulation, mitigating oxidative stress, and inhibiting inflammatory response.
Collapse
Affiliation(s)
- Hai-Chuan Yu
- School of Medical Technology, Xinxiang Medical University, NO. 601 Jinsui Avenue, Xinxiang, Henan 453003, China.
| | - Qi-Rong Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jiao-Jie Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Meng-Yao Chen
- School of Medical Technology, Xinxiang Medical University, NO. 601 Jinsui Avenue, Xinxiang, Henan 453003, China
| | - Lin Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Fang-Chao Tong
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Shuang-Ling Zhang
- School of Medical Technology, Xinxiang Medical University, NO. 601 Jinsui Avenue, Xinxiang, Henan 453003, China
| | - Jiao Wu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
5
|
Qiu P, Mi A, Hong C, Huang S, Ma Q, Luo Q, Qiu J, Jiang H, Chen Y, Chen F, Yan H, Zhao J, Kong Y, Du Y, Li C, Kong D, Efferth T, Lou D. An integrated network pharmacology approach reveals that Ampelopsis grossedentata improves alcoholic liver disease via TLR4/NF-κB/MLKL pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155658. [PMID: 38981149 DOI: 10.1016/j.phymed.2024.155658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 04/19/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Alcohol-related liver damage is the most prevalent chronic liver disease, which creates a heavy public health burden worldwide. The leaves of Ampelopsis grossedentata have been considered a popular tea and traditional herbal medicine in China for more than one thousand years, and possess anti-inflammatory, antioxidative, hepatoprotective, and antiviral activities. PURPOSE We explored the protective effects of Ampelopsis grossedentata extract (AGE) against chronic alcohol-induced hepatic injury (alcoholic liver disease, ALD), aiming to elucidate its underlying mechanisms. METHODS Firstly, UPLC-Q/TOF-MS analysis and network pharmacology were used to identify the constituents and elucidate the potential mechanisms of AGE against ALD. Secondly, C57BL/6 mice were pair-fed the Lieber-DeCarli diet containing either isocaloric maltodextrin or ethanol, AGE (150 and 300 mg/kg/d) and silymarin (200 mg/kg) were administered to chronic ethanol-fed mice for 7 weeks to evaluate the hepatoprotective effects. Serum biochemical parameters were determined, hepatic and ileum sections were used for histologic examination, and levels of inflammatory cytokines and oxidative stress in the liver were examined. The potential molecular mechanisms of AGE in improving ALD were demonstrated by RNA-seq, Western blotting analysis, and immunofluorescence staining. RESULTS Ten main constituents of AGE were identified using UPLC-Q/TOF-MS and 274 potential ALD-related targets were identified. The enriched KEGG pathways included Toll-like receptor signaling pathway, NF-κB signaling pathway, and necroptosis. Moreover, in vivo experimental studies demonstrated that AGE significantly reduced serum aminotransferase levels and improved pathological abnormalities after chronic ethanol intake. Meanwhile, AGE improved ALD in mice by down-regulating oxidative stress and inflammatory cytokines. Furthermore, AGE notably repaired damaged intestinal epithelial barrier and suppressed the production of gut-derived lipopolysaccharide by elevating intestinal tight junction protein expression. Subsequent RNA-seq and experimental validation indicated that AGE inhibited NF-κB nuclear translocation, suppressed IκB-α, RIPK3 and MLKL phosphorylation and alleviated hepatic necroptosis in mice. CONCLUSION In this study, we have demonstrated for the first time that AGE protects against alcoholic liver disease by regulating the gut-liver axis and inhibiting the TLR4/NF-κB/MLKL-mediated necroptosis pathway. Therefore, our present work provides important experimental evidence for AGE as a promising candidate for protection against ALD.
Collapse
Affiliation(s)
- Ping Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ai Mi
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunlan Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Qing Ma
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiang Qiu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - He Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yufan Chen
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangming Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Honghao Yan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinkai Zhao
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Yu Kong
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China
| | - Yu Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated with Nanjing University of Chinese Medicine, Jiangsu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Dayong Lou
- Zhuji People's Hospital of Zhejiang Province, Shaoxing 311800, China.
| |
Collapse
|
6
|
Yang X, Liang J, Shu Y, Wei L, Wen C, Luo H, Ma L, Qin T, Wang B, Zeng S, Liu Y, Zhou C. Asperosaponin VI facilitates the regeneration of skeletal muscle injury by suppressing GSK-3β-mediated cell apoptosis. J Cell Biochem 2024; 125:115-126. [PMID: 38079224 DOI: 10.1002/jcb.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 01/16/2024]
Abstract
Asperosaponin VI (ASA VI) is a bioactive triterpenoid saponin extracted from Diptychus roots, of Diptyl, and has previously shown protective functions in rheumatoid arthritis and sepsis. This study investigates the effects and molecular mechanisms of ASA VI on skeletal muscle regeneration in a cardiotoxin (CTX)-induced skeletal muscle injury mouse model. Mice were subjected to CTX-induced injury in the tibialis anterior and C2C12 myotubes were treated with CTX. Muscle fiber histology was analyzed at 7 and 14 days postinjury. Apoptosis and autophagy-related protein expression were evaluated t s by Western blot, and muscle regeneration markers were quantified by quantitative polymerase chain reaction. Docking studies, cell viability assessments, and glycogen synthase kinase-3β (GSK-3β) activation analyses were performed to elucidate the mechanism. ASA VI was observed to improve muscle interstitial fibrosis, remodeling, and performance in CTX-treated mice, thereby increased skeletal muscle size, weight, and locomotion. Furthermore, ASA VI modulated the expression of apoptosis and autophagy-related proteins through GSK-3β inhibition and activated the transcription of regeneration genes. Our results suggest that ASA VI mitigates skeletal muscle injury by modulating apoptosis and autophagy via GSK-3β signaling and promotes regeneration, thus presenting a probable therapeutic agent for skeletal muscle injury.
Collapse
Affiliation(s)
- Xinru Yang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jian Liang
- Department of Pediatrics, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yue Shu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linlin Wei
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Cailing Wen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Luo
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Liqing Ma
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Tian Qin
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Wang
- Department of Cardiovascular Ultrasound, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Siyu Zeng
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Liu
- Department of Pharmacology, School of Pharmacy, Macau University of Science and Technology, Taipa, Macao, China
- Department of Pharmacology, School of Pharmacy, Guangzhou Xinhua University, Guangzhou, China
| | - Chun Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|