1
|
Kundrapu DB, Chaitanya AK, Manaswi K, Kumari S, Malla R. Quercetin and taxifolin inhibits TMPRSS2 activity and its interaction with EGFR in paclitaxel-resistant breast cancer cells: An in silico and in vitro study. Chem Biol Drug Des 2024; 104:e14600. [PMID: 39075030 DOI: 10.1111/cbdd.14600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Transmembrane protease/serine (TMPRSS2), a type II transmembrane serine protease, plays a crucial role in different stages of cancer. Recent studies have reported that the triggering epidermal growth factor receptor (EGFR) activation through protease action promotes metastasis. However, there are no reports on the interaction of TMPRSS2 with EGFR, especially in triple-negative triple negative (TNBC). The current study investigates the unexplored interaction between TMPRSS2 and EGFR, which are key partners mediating metastasis. This interaction is explored for potential targeting using quercetin (QUE) and taxifolin (TAX). TMPRSS2 expression patterns in breast cancer (BC) tissues and subtypes have been predicted, with the prognostic significance assessed using the GENT2.0 database. Validation of TMPRSS2 expression was performed in normal and TNBC tissues, including drug-resistant cell lines, utilizing GEO datasets. TMPRSS2 was further validated as a predictive biomarker for FDA-approved chemotherapeutics through transcriptomic data from BC patients. The study demonstrated the association of TMPRSS2 with EGFR through in silico analysis and validates the findings in TNBC cohorts using the TIMER2.0 web server and the TCGA dataset through C-Bioportal. Molecular docking and molecular dynamic simulation studies identified QUE and TAX as best leads targeting TMPRSS2. They inhibited cell-free TMPRSS2 activity like clinical inhibitor of TMPRSS2, Camostat mesylate. In cell-based assays focused on paclitaxel-resistant TNBC (TNBC/PR), QUE and TAX demonstrated potent inhibitory activity against extracellular and membrane-bound TMPRSS2, with low IC50 values. Furthermore, ELISA and cell-based AlphaLISA assays demonstrated that QUE and TAX inhibit the interaction of TMPRSS2 with EGFR. Additionally, QUE and TAX exhibited significant inhibition of proliferation and cell cycle accompanied by notable alterations in the morphology of TNBC/PR cells. This study provides valuable insights into potential of QUE and TAX targeting TMPRSS2 overexpressing TNBC.
Collapse
Affiliation(s)
- Durga Bhavani Kundrapu
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Amajala Krishna Chaitanya
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Kothapalli Manaswi
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - Seema Kumari
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| | - RamaRao Malla
- Cancer Biology, Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
- Department of Life Sciences, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
2
|
Boukandou Mounanga MM, Mezui A, Mewono L, Mogangué JB, Aboughe Angone S. Medicinal plants used in Gabon for prophylaxis and treatment against COVID-19-related symptoms: an ethnobotanical survey. Front Pharmacol 2024; 15:1393636. [PMID: 39035990 PMCID: PMC11258373 DOI: 10.3389/fphar.2024.1393636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 07/23/2024] Open
Abstract
Background: Gabon faced COVID-19 with more than 49,000 individuals tested positive and 307 recorded fatalities since the first reported case in 2020. A popular hypothesis is that the low rate of cases and deaths in the country was attributed to the use of medicinal plants in prevention and treatment. This study aimed to document the plants used for remedial and preventive therapies by the Gabonese population during the COVID-19 pandemic and to pinpoint specific potential plant species that merit further investigation. Methods: An ethnobotanical survey involving 97 participants was conducted in Libreville. Traditional healers and medicinal plant vendors were interviewed orally using a semi-structured questionnaire sheet, while the general population responded to an online questionnaire format. Various quantitative indexes were calculated from the collected data and included the relative frequency of citation (RFC), use value (UV), informant consensus factor (ICF), relative importance (RI), and popular therapeutic use value (POPUT). One-way ANOVA and independent samples t-test were used for statistical analyses. p-values ≤0.05 were considered significant. Results: The survey identified 63 plant species belonging to 35 families. Prevalent symptoms treated included fever (18%), cough (16%), fatigue (13%), and cold (12%). The demographic data highlighted that 52.58% of male subjects (p > 0.94) aged 31-44 years were enrolled in the survey, of which 48.45% (p < 0.0001) and 74.73% (p < 0.99) of informants had university-level education. In addition, the results indicated that a total of 66% of the informants used medicinal plants for prophylaxis (34%), for both prevention and treatment (26%), exclusively for treatment (3%), and only for prevention (3%) while suffering from COVID-19, against 34% of the participants who did not use plants for prevention or treatment. Annickia chlorantha, Citrus sp., Alstonia congensis, Zingiber officinale, and Carica papaya emerged as the most commonly cited plants with the highest RFC (0.15-0.26), UV (0.47-0.75), and RI (35.72-45.46) values. Most of these plants were used either individually or in combination with others. Conclusion: The survey reinforces the use of traditional medicine as a method to alleviate COVID-19 symptoms, thereby advocating for the utilization of medicinal plants in managing coronavirus infections.
Collapse
Affiliation(s)
- Marlaine Michel Boukandou Mounanga
- Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA), Centre National de la Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| | - Annais Mezui
- Centre Hospitalier Universitaire Mère- Enfant, Fondation Jeanne EBORI, Libreville, Gabon
| | - Ludovic Mewono
- Groupe de Recherche en Immunologie 2, Microbiologie appliquée, Hygiène et Physiologie, Département des Sciences de la Vie et de la Terre-Ecole Normale Supérieure, Libreville, Gabon
| | - Jean Bertrand Mogangué
- Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA), Centre National de la Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| | - Sophie Aboughe Angone
- Institut de Pharmacopée et de Médecine Traditionnelle (IPHAMETRA), Centre National de la Recherche Scientifique et Technologique (CENAREST), Libreville, Gabon
| |
Collapse
|
3
|
Ho WY, Shen ZH, Chen Y, Chen TH, Lu X, Fu YS. Therapeutic implications of quercetin and its derived-products in COVID-19 protection and prophylactic. Heliyon 2024; 10:e30080. [PMID: 38765079 PMCID: PMC11098804 DOI: 10.1016/j.heliyon.2024.e30080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel human coronavirus, which has triggered a global pandemic of the coronavirus infectious disease 2019 (COVID-19). Outbreaks of emerging infectious diseases continue to challenge human health worldwide. The virus conquers human cells through the angiotensin-converting enzyme 2 receptor-driven pathway by mostly targeting the human respiratory tract. Quercetin is a natural flavonoid widely represented in the plant kingdom. Cumulative evidence has demonstrated that quercetin and its derivatives have various pharmacological properties including anti-cancer, anti-hypertension, anti-hyperlipidemia, anti-hyperglycemia, anti-microbial, antiviral, neuroprotective, and cardio-protective effects, because it is a potential treatment for severe inflammation and acute respiratory distress syndrome. Furthermore, it is the main life-threatening condition in patients with COVID-19. This article provides a comprehensive review of the primary literature on the predictable effectiveness of quercetin and its derivatives docked to multi-target of SARS-CoV-2 and host cells via in silico and some of validation through in vitro, in vivo, and clinically to fight SARS-CoV-2 infections, contribute to the reduction of inflammation, which suggests the preventive and therapeutic latency of quercetin and its derived-products against COVID-19 pandemic, multisystem inflammatory syndromes (MIS), and long-COVID.
Collapse
Affiliation(s)
- Wan-Yi Ho
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zi-Han Shen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yijing Chen
- Department of Dentisty, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Ting-Hsu Chen
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
| | - XiaoLin Lu
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| | - Yaw-Syan Fu
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
- Anatomy Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen, 361023, Fujian, China
| |
Collapse
|
4
|
Senrung A, Tripathi T, Aggarwal N, Janjua D, Chhokar A, Yadav J, Chaudhary A, Thakur K, Singh T, Bharti AC. Anti-angiogenic Potential of Trans-chalcone in an In Vivo Chick Chorioallantoic Membrane Model: An ATP Antagonist to VEGFR with Predicted Blood-brain Barrier Permeability. Cardiovasc Hematol Agents Med Chem 2024; 22:187-211. [PMID: 37936455 DOI: 10.2174/0118715257250417231019102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/26/2023] [Accepted: 09/08/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is characterized by massive tumorinduced angiogenesis aiding tumorigenesis. Vascular endothelial growth factor A (VEGF-A) via VEGF receptor 2 (VEGFR-2) constitutes majorly to drive this process. Putting a halt to tumordriven angiogenesis is a major clinical challenge, and the blood-brain barrier (BBB) is the prime bottleneck in GBM treatment. Several phytochemicals show promising antiangiogenic activity across different models, but their ability to cross BBB remains unexplored. METHODS We screened over 99 phytochemicals having anti-angiogenic properties reported in the literature and evaluated them for their BBB permeability, molecular interaction with VEGFR-2 domains, ECD2-3 (extracellular domains 2-3) and TKD (tyrosine kinase domain) at VEGF-A and ATP binding site, cell membrane permeability, and hepatotoxicity using in silico tools. Furthermore, the anti-angiogenic activity of predicted lead Trans-Chalcone (TC) was evaluated in the chick chorioallantoic membrane. RESULTS Out of 99 phytochemicals, 35 showed an efficient ability to cross BBB with a probability score of > 0.8. Docking studies revealed 30 phytochemicals crossing benchmark binding affinity < -6.4 kcal/mol of TKD with the native ligand ATP alone. Out of 30 phytochemicals, 12 showed moderate to low hepatotoxicity, and 5 showed a violation of Lipinski's rule of five. Our in silico analysis predicted TC as a BBB permeable anti-angiogenic compound for use in GBM therapy. TC reduced vascularization in the CAM model, which was associated with the downregulation of VEGFR-2 transcript expression. CONCLUSION The present study showed TC to possess anti-angiogenic potential via the inhibition of VEGFR-2. In addition, the study predicted TC to cross BBB as well as a safe alternative for GBM therapy, which needs further investigation.
Collapse
Affiliation(s)
- Anna Senrung
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Neuropharmacology & Drug Delivery Laboratory, Zoology Department, Daulat Ram College, University of Delhi, Delhi, 110007, India
| | - Tanya Tripathi
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Nikita Aggarwal
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Divya Janjua
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Arun Chhokar
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Joni Yadav
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Apoorva Chaudhary
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Kulbhushan Thakur
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| |
Collapse
|
5
|
Reda RM, Helmy RMA, Osman A, Ahmed FAG, Kotb GAM, El-Fattah AHA. The potential effect of Moringa oleifera ethanolic leaf extract against oxidative stress, immune response disruption induced by abamectin exposure in Oreochromis niloticus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58569-58587. [PMID: 36988803 PMCID: PMC10163106 DOI: 10.1007/s11356-023-26517-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 05/08/2023]
Abstract
Abamectin (ABM), a naturally fermented product of Streptomyces avermitilis, is applied to pest control in livestock and agriculture fields. The aim of the current study is to evaluate the protective effects of Moringa oleifera leaf ethanolic extract (MOE) on biochemical changes including oxidative stress indices, immune response marker, lipid profiles as well as mRNA expression of immune related genes, and abamectin (ABM, 5% EC) residue levels in Nile tilapia (Oreochromis niloticus) exposed to a sub-lethal concentration (0.5 µg/l) for 28 days. Disturbance in liver and kidney biomarkers was markedly increased in ABM-exposed fish compared to the control group. Malondialdehyde levels in the liver and brain tissues, as well as the activities of glutathione-s-transferase, superoxide dismutase, and glutathione peroxides, all increased significantly in ABM group. Additionally, ABM exposure increased the levels of interleukin 10 beta and growth factor gene expression. On the other hand, fish exposed to ABM had significantly lower serum alkaline phosphatase, creatinine, high-density lipoprotein, glutathione peroxides in brain, glutathione in liver and brain tissues, lysozyme activity, nitric oxide, immunoglobulin M, tumor necrosis factor, and interleukin 1 beta as compared to the control group. The recorded detrimental effects of ABM on tilapia have been overcome by the addition of MOE to the diet (1%) and ameliorating hepato-renal damage and enhancing antioxidant activity, innate immune responses, and upregulating the anti-inflammatory gene expression. Therefore, it could be concluded that MOE dietary supplementation at 1% could be used to counteract the oxidative stress, immune response disruption induced by abamectin exposure in Oreochromis niloticus, and reduce its accumulation in fish tissues.
Collapse
Affiliation(s)
- Rasha M Reda
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt.
| | - Rania M A Helmy
- Pesticides Residue and Environmental Pollution Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, Giza, 12618, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| | - Farag A Gh Ahmed
- Plant Protection Department, Faculty of Agriculture, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| | - Gamila A M Kotb
- Mammalian and Aquatic Toxicology Department, Central Agricultural Pesticides Laboratory, Agricultural Research Center, Dokki, P.O. Box 12618, Giza, Egypt
| | - Amir H Abd El-Fattah
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Zagazig University, P.O. Box 44511, Zagazig, Egypt
| |
Collapse
|
6
|
Olivier D, van der Kooy F, Gerber M. Geographical and seasonal phytochemical variation of Artemisia afra Jacq. ex Willd. PHYTOCHEMICAL ANALYSIS : PCA 2023; 34:175-185. [PMID: 36464634 DOI: 10.1002/pca.3191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
INTRODUCTION Artemisia afra Jacq. ex. Willd. (Asteraceae) is a popular traditional medicine in South Africa, mainly used in the form of an infusion, for the treatment of respiratory ailments. Quality control methods are limited and phytochemical variation for the infusion is not well known. OBJECTIVE To develop a sensitive quality control method for A. afra infusions by validating a liquid chromatography electrospray ionisation tandem mass spectrometry (LC-ESI-MS/MS) method and quantitatively comparing six marker compounds in A. afra samples collected from different locations and over a 12-month period. MATERIAL AND METHODS There was a multiple reaction monitoring method optimised and validated, according to ICH and FDA guidelines, to quantify the chemical markers present in infusions. RESULTS The chemistry differed significantly and interestingly, with an interchangeable trend between chlorogenic acid (CGA) and 4,5-dicaffeoylquinic acid (DCQA) observed in the samples collected monthly, elevated levels of CGA during winter and elevated levels of DCQA during summer. The remaining four markers showed a steady decrease as winter approached and a steady increase as summer approached. The ranges of the six markers were the following: CGA (0.68-14.68 μg/mg), DCQA (0.005-8.110 μg/mg), quercetin (0.01-0.65 μg/mg), luteolin (0.05-1.30 ng/mg), scopoletin (0.10-1.14 μg/mg), scopolin (0.03-1.21 μg/mg). CONCLUSIONS A sensitive LC-ESI-MS/MS method was developed, validated, and used to quantify six marker compounds. The results indicated a large degree of phytochemical variation occurred across all samples tested, which highlights the importance of producing herbal medicine under controlled conditions and the necessity of analytical quality control methods.
Collapse
Affiliation(s)
- Duné Olivier
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Frank van der Kooy
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Minja Gerber
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Oyedara OO, Fadare OA, Franco-Frías E, Heredia N, García S. Computational assessment of phytochemicals of medicinal plants from Mexico as potential inhibitors of Salmonella enterica efflux pump AcrB protein. J Biomol Struct Dyn 2023; 41:1776-1789. [PMID: 34996337 DOI: 10.1080/07391102.2021.2024261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The AcrAB-TolC efflux pump (EP) confers multidrug resistance to Salmonella enterica, a major etiological agent of foodborne infections. Phytochemicals that inhibit the functions of AcrAB-TolC EP present ideal candidates for reversal of antibiotic resistance. Progressive technological advancements, have facilitated the development of computational methods that offer a rapid low-cost approach to screen and identify phytochemicals with inhibitory potential against EP. In this study, 71 phytochemicals derived from plants used for medicinal purposes in Mexico were screened for their potential as inhibitors of Salmonella AcrB protein using in silico approaches including molecular docking and molecular dynamics (MD) simulation. Consequently, naringenin, 5-methoxypsoralen, and licarin A were identified as candidate inhibitors of AcrB protein. The three phytochemicals bound distal/deep pocket (DP) and hydrophobic trap (HPT) residues of AcrB protein critical for interactions with inhibitors, with estimated binding free energies of -95.5 kJ/mol, -97.4 kJ/mol, and -143.8 kJ/mol for naringenin, 5-methoxypsoralen, and licarin A, respectively. Data from the 50 ns MD simulation study revealed stability of the protein-ligand complex and alterations in the AcrB protein DP conformation upon binding of phytochemicals to the DP and HPT regions. Based on the estimated binding free energy and interactions with three out of five residues lining the hydrophobic trap, licarin A demonstrated the highest inhibitory potential, supporting its further application as a candidate for overcoming drug resistance in pathogens. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Omotayo O Oyedara
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México.,Department of Microbiology, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria
| | | | - Eduardo Franco-Frías
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|