1
|
Bramley JC, Collins SVA, Clark KB, Buchser WJ. Avian axons undergo Wallerian degeneration after injury and stress. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:813-822. [PMID: 27614771 DOI: 10.1007/s00359-016-1123-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/20/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
Abstract
The integrity of long axons is essential for neural communication. Unfortunately, relatively minor stress to a neuron can cause extensive loss of this integrity. Axon degeneration is the cell-intrinsic program that actively deconstructs an axon after injury or damage. Although ultrastructural examination has revealed signs of axon degeneration in vivo, the occurrence and progression of axon degeneration in avian species have not yet been documented in vitro. Here, we use a novel cell culture system with primary embryonic zebra finch retinal ganglion cells to interrogate the properties of avian axon degeneration. First, we establish that both axotomy and a chemically induced injury (taxol and vincristine) are sufficient to initiate degeneration. These events are dependent on a late influx of calcium. In addition, as in mammals, the NAD pathway is involved, since a decrease in NMN with FK866 can reduce degeneration. Importantly, these retinal ganglion cell axons were sensitive to a pressure-induced injury, which may mimic the effect of high intraocular pressure associated with glaucoma. We have demonstrated that avian neurons undergo Wallerian degeneration in response to both physical and chemical injury. Subsequent avian studies will investigate whether blocking the degeneration pathway can protect individuals from neurodegenerative disease.
Collapse
Affiliation(s)
- John C Bramley
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Samantha V A Collins
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - Karen B Clark
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA
| | - William J Buchser
- Department of Biology, College of William & Mary, 540 Landrum Dr., Williamsburg, VA, USA.
| |
Collapse
|
2
|
Quinn MJ, Hanna TL, Shiflett AA, McFarland CA, Cook ME, Johnson MS, Gust KA, Perkins EJ. Interspecific effects of 4A-DNT (4-amino-2,6-dinitrotoluene) and RDX (1,3,5-trinitro-1,3,5-triazine) in Japanese quail, Northern bobwhite, and Zebra finch. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:231-239. [PMID: 23161369 DOI: 10.1007/s10646-012-1019-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 06/01/2023]
Abstract
The purpose of this study was to assess the toxicological effects of two munition compounds, 4-amino-2,6-dinitrotoluene (4A-DNT) and 1,3,5-trinitro-1,3,5-triazine (RDX), on three different bird species: two common toxicological model species-the Northern Bobwhite (Colinus virginianus) and the Japanese Quail (Coturnix japonica), and a representative passerine-the Zebra Finch (Taeniopygia guttata). Bobwhite were exposed to 4A-DNT at 0, 8, 15, 30, 60, or 150 mg/kg body weight (bw) d by oral gavage for seven days; because the high dose of 4A-DNT was lethal to bobwhite, the maximum dose was changed to 100 mg/kg bw d for Japanese quail and finches to ensure tissue could be used for future toxicogenomic work. RDX was similarly administered at 0, 0.5, 1.5, 3, 6, or 12 mg/kg bw d. Blood was drawn prior to euthanasia for blood cellularity and chemistry analyses. Finches were clearly least affected by 4A-DNT as evidenced by a lack of observable effects. Bobwhite appeared to be the most sensitive species to 4A-DNT as observed through changes in blood cellularity and plasma chemistry effects. Bobwhite appeared to be more sensitive to RDX than Japanese Quail due to increased effects on measures of plasma chemistries. Finches exhibited the greatest sensitivity to RDX through increased mortality and seizure activity. This study suggests that sensitivity among species is chemical-specific and provides data that could be used to refine current avian sensitivity models used in ecological risk assessments.
Collapse
Affiliation(s)
- Michael J Quinn
- US Army Public Health Command, Toxicology Portfolio, Aberdeen Proving Ground, MD 21010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Backström N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Öst T, Schneider M, Kempenaers B, Ellegren H. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res 2010; 20:485-95. [PMID: 20357052 PMCID: PMC2847751 DOI: 10.1101/gr.101410.109] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 12/02/2009] [Indexed: 12/18/2022]
Abstract
Understanding the causes and consequences of variation in the rate of recombination is essential since this parameter is considered to affect levels of genetic variability, the efficacy of selection, and the design of association and linkage mapping studies. However, there is limited knowledge about the factors governing recombination rate variation. We genotyped 1920 single nucleotide polymorphisms in a multigeneration pedigree of more than 1000 zebra finches (Taeniopygia guttata) to develop a genetic linkage map, and then we used these map data together with the recently available draft genome sequence of the zebra finch to estimate recombination rates in 1 Mb intervals across the genome. The average zebra finch recombination rate (1.5 cM/Mb) is higher than in humans, but significantly lower than in chicken. The local rates of recombination in chicken and zebra finch were only weakly correlated, demonstrating evolutionary turnover of the recombination landscape in birds. The distribution of recombination events was heavily biased toward ends of chromosomes, with a stronger telomere effect than so far seen in any organism. In fact, the recombination rate was as low as 0.1 cM/Mb in intervals up to 100 Mb long in the middle of the larger chromosomes. We found a positive correlation between recombination rate and GC content, as well as GC-rich sequence motifs. Levels of linkage disequilibrium (LD) were significantly higher in regions of low recombination, showing that heterogeneity in recombination rates have left a footprint on the genomic landscape of LD in zebra finch populations.
Collapse
Affiliation(s)
- Niclas Backström
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Wolfgang Forstmeier
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, 82319 Seewiesen, Germany
| | - Holger Schielzeth
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, 82319 Seewiesen, Germany
| | - Harriet Mellenius
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Kiwoong Nam
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Elisabeth Bolund
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, 82319 Seewiesen, Germany
| | - Matthew T. Webster
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Torbjörn Öst
- Molecular Medicine, Department of Medical Sciences, University Hospital, SE-751 85 Uppsala, Sweden
| | - Melanie Schneider
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, 82319 Seewiesen, Germany
| | - Bart Kempenaers
- Max Planck Institute for Ornithology, Department of Behavioural Ecology and Evolutionary Genetics, 82319 Seewiesen, Germany
| | - Hans Ellegren
- Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
5
|
Swofford JA, DeBello WM. Transcriptome changes associated with instructed learning in the barn owl auditory localization pathway. Dev Neurobiol 2007; 67:1457-77. [PMID: 17526003 DOI: 10.1002/dneu.20458] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Owls reared wearing prismatic spectacles learn to make adaptive orienting movements. This instructed learning depends on re-calibration of the midbrain auditory space map, which in turn involves the formation of new synapses. Here we investigated whether these processes are associated with differential gene expression, using longSAGE. Newly fledged owls were reared for 8-36 days with prism or control lenses at which time the extent of learning was quantified by electrophysiological mapping. Transciptome profiles were obtained from the inferior colliculus (IC), the major site of synaptic plasticity, and the optic tectum (OT), which provides an instructive signal that controls the direction and extent of plasticity. Twenty-two differentially expressed sequence tags were identified in IC and 36 in OT, out of more than 35,000 unique tags. Of these, only four were regulated in both structures. These results indicate that regulation of two largely independent gene clusters is associated with synaptic remodeling (in IC) and generation of the instructive signal (in OT). Real-time PCR data confirmed the changes for two transcripts, ubiquitin/polyubiquitin and tyrosine 3-monooxgenase/tryotophan 5-monooxygenase activation protein, theta subunit (YWHAQ; also referred to as 14-3-3 protein). Ubiquitin was downregulated in IC, consistent with a model in which protein degradation pathways act as an inhibitory constraint on synaptogenesis. YWHAQ was up-regulated in OT, indicating a role in the synthesis or delivery of instructive information. In total, our results provide a path towards unraveling molecular cascades that link naturalistic experience with synaptic remodeling and, ultimately, with the expression of learned behavior.
Collapse
Affiliation(s)
- Janet A Swofford
- Department of Neurobiology, Physiology, and Behavior, Center for Neuroscience, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|