1
|
Gutierrez R, Simon SA. Physiology of Taste Processing in the Tongue, Gut, and Brain. Compr Physiol 2021; 11:2489-2523. [PMID: 34558667 DOI: 10.1002/cphy.c210002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gustatory system detects and informs us about the nature of various chemicals we put in our mouth. Some of these have nutritive value (sugars, amino acids, salts, and fats) and are appetitive and avidly ingested, whereas others (atropine, quinine, nicotine) are aversive and rapidly rejected. However, the gustatory system is mainly responsible for evoking the perception of a limited number of qualities that humans taste as sweet, umami, bitter, sour, salty, and perhaps fat [free fatty acids (FFA)] and starch (malto-oligosaccharides). The complex flavors and mouthfeel that we experience while eating food result from the integration of taste, odor, texture, pungency, and temperature. The latter three arise primarily from the somatosensory (trigeminal) system. The sensory organs used for detecting and transducing many chemicals are found in taste buds (TBs) located throughout the tongue, soft palate esophagus, and epiglottis. In parallel with the taste system, the trigeminal nerve innervates the peri-gemmal epithelium to transmit temperature, mechanical stimuli, and painful or cooling sensations such as those produced by changes in temperature as well as from chemicals like capsaicin and menthol, respectively. This article gives an overview of the current knowledge about these TB cells' anatomy and physiology and their trigeminal induced sensations. We then discuss how taste is represented across gustatory cortices using an intermingled and spatially distributed population code. Finally, we review postingestion processing (interoception) and central integration of the tongue-gut-brain interaction, ultimately determining our sensations as well as preferences toward the wholesomeness of nutritious foods. © 2021 American Physiological Society. Compr Physiol 11:1-35, 2021.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Central role for the insular cortex in mediating conditioned responses to anticipatory cues. Proc Natl Acad Sci U S A 2015; 112:1190-5. [PMID: 25583486 DOI: 10.1073/pnas.1416573112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Reward-related circuits are fundamental for initiating feeding on the basis of food-predicting cues, whereas gustatory circuits are believed to be involved in the evaluation of food during consumption. However, accumulating evidence challenges such a rigid separation. The insular cortex (IC), an area largely studied in rodents for its role in taste processing, is involved in representing anticipatory cues. Although IC responses to anticipatory cues are well established, the role of IC cue-related activity in mediating feeding behaviors is poorly understood. Here, we examined the involvement of the IC in the expression of cue-triggered food approach in mice trained with a Pavlovian conditioning paradigm. We observed a significant change in neuronal firing during presentation of the cue. Pharmacological silencing of the IC inhibited food port approach. Such a behavior could be recapitulated by temporally selective inactivation during the cue. These findings represent the first evidence, to our knowledge, that cue-evoked neuronal activity in the mouse IC modulates behavioral output, and demonstrate a causal link between cue responses and feeding behaviors.
Collapse
|
3
|
Activation of efferents from the basolateral amygdala during the retrieval of conditioned taste aversion. Neurobiol Learn Mem 2013; 106:210-20. [DOI: 10.1016/j.nlm.2013.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/12/2013] [Accepted: 09/02/2013] [Indexed: 11/18/2022]
|
4
|
Perez IO, Villavicencio M, Simon SA, Gutierrez R. Speed and accuracy of taste identification and palatability: impact of learning, reward expectancy, and consummatory licking. Am J Physiol Regul Integr Comp Physiol 2013; 305:R252-70. [PMID: 23678029 DOI: 10.1152/ajpregu.00492.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Despite decades of study, it remains a matter of controversy as to whether in rats taste identification is a rapid process that occurs in about 250-600 ms (one to three licks) or a slow process that evolves over seconds. To address this issue, we trained rats to perform a taste-cued two-response discrimination task (2-RDT). It was found that, after learning, regardless of intensity, the delivery of 10 μl of a tastant (e.g., NaCl or monopotassium glutamate, MPG) was sufficient to identify its taste with maximal accuracy within 400 ms. However, despite overtraining, rats rarely stopped licking in one lick. Thus, a one-drop lick reaction task was developed in which subjects had to rapidly stop licking after release of a stop signal (tastants including water) to obtain rewards. The faster they stopped licking, the greater the reward. Rats did not stop licking after receiving either hedonically positive or negative stop signals, and thus failed to maximize rewards even when reinforced with even larger rewards. In fact, the higher the sucrose concentration given as a stop signal, the greater the number of consummatory licks elicited. However, with a stop signal of 2 mM quinine HCl, they stopped licking in ~370 ms, a time faster than that for sucrose or water, thus showing that in this rapid period, quinine HCl evoked an unpalatable response. Indeed, only when rats licked an empty sipper tube would they usually elicit a single lick to obtain a reward (operant licking). In summary, these data indicate that within 400 ms, taste identification and palatability, must either occur simultaneously or with marked overlap.
Collapse
Affiliation(s)
- Isaac O Perez
- Department of Pharmacology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | | | | |
Collapse
|
5
|
Abstract
The taste system is one of our fundamental senses, responsible for detecting and responding to sweet, bitter, umami, salty, and sour stimuli. In the tongue, the five basic tastes are mediated by separate classes of taste receptor cells each finely tuned to a single taste quality. We explored the logic of taste coding in the brain by examining how sweet, bitter, umami, and salty qualities are represented in the primary taste cortex of mice. We used in vivo two-photon calcium imaging to demonstrate topographic segregation in the functional architecture of the gustatory cortex. Each taste quality is represented in its own separate cortical field, revealing the existence of a gustotopic map in the brain. These results expose the basic logic for the central representation of taste.
Collapse
Affiliation(s)
- Xiaoke Chen
- Howard Hughes Medical Institute and Departments of Biochemistry and Molecular Biophysics and of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Mariano Gabito
- Howard Hughes Medical Institute and Departments of Biochemistry and Molecular Biophysics and of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Yueqing Peng
- Howard Hughes Medical Institute and Departments of Biochemistry and Molecular Biophysics and of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Nicholas J.P. Ryba
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Charles S. Zuker
- Howard Hughes Medical Institute and Departments of Biochemistry and Molecular Biophysics and of Neuroscience, Columbia College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| |
Collapse
|
6
|
Miyano M, Yamashita H, Sakurai T, Nakajima KI, Ito K, Misaka T, Ishimaru Y, Abe K, Asakura T. Surface plasmon resonance analysis on interactions of food components with a taste epithelial cell model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:11870-11875. [PMID: 21038889 DOI: 10.1021/jf102573w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new device for evaluating the continuity of taste was developed with the use of surface plasmon resonance (SPR). The model of lingual cells was constructed with liposomes immobilized onto an L1 sensor chip for SPR. Using this device, we classified food components into three categories according to the sensorgram pattern and residual ratio on lipid bilayer. Samples in group A strongly interacted with lipid bilayer, those in group B poorly interacted, and those in group C belong to neither group A nor group B. Sweet proteins and gymnemic acids that prolonged sweet perception were categorized in group A. Almost all the carbohydrates investigated and aspartame, of which the taste perception does not continue, belonged to group B. This device made it possible to detect the interaction with lipid bilayer and dissected the mechanism of taste continuity.
Collapse
Affiliation(s)
- Motohiro Miyano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Associatively learned representations of taste outcomes activate taste-encoding neural ensembles in gustatory cortex. J Neurosci 2010; 29:15386-96. [PMID: 20007463 DOI: 10.1523/jneurosci.3233-09.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through learning processes, cues associated with emotionally salient reinforcing outcomes can come to act as substitutes for the reinforcer itself. According to one account of this phenomenon, the predictive cue associatively elicits a representation of the expected outcome by reactivating cells responsible for encoding features of the primary reinforcer. We tested this hypothesis by examining the role of neural ensembles in gustatory cortex (GC) during receipt of gustatory stimuli (sucrose and water) and cues associated with those stimuli using the immediate early genes (IEGs) Arc and Homer1a. Because these plasticity-related IEGs are expressed in the neuronal nucleus 5 and 30 min, respectively, after salient events, we examined how individual neurons encoded these stimuli in two separate behavioral epochs. In experiment 1, we showed that tasting identical sucrose solutions, but not tasteless water, in the two epochs increased both IEG activity and the degree of overlap between neural ensembles in GC. In experiment 2, odor cues associated with sucrose, but not water, evoked potentiation of IEG activity in GC similar to sucrose itself. Surprisingly, lesions of the basolateral amygdala had minimal effects on associative encoding in GC. Finally, these associatively driven representations of sucrose appeared to be outcome specific, as neural ensembles that were activated by the sucrose-associated cue were also activated by sucrose itself. This degree of overlap between associative and primary taste activity at the ensemble level suggests that GC neurons encode important information about anticipated outcomes. Such representations may provide outcome-specific information for guiding goal-directed behavior.
Collapse
|
8
|
Nicolelis MAL, Lebedev MA. Principles of neural ensemble physiology underlying the operation of brain-machine interfaces. Nat Rev Neurosci 2009; 10:530-40. [PMID: 19543222 DOI: 10.1038/nrn2653] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Research on brain-machine interfaces has been ongoing for at least a decade. During this period, simultaneous recordings of the extracellular electrical activity of hundreds of individual neurons have been used for direct, real-time control of various artificial devices. Brain-machine interfaces have also added greatly to our knowledge of the fundamental physiological principles governing the operation of large neural ensembles. Further understanding of these principles is likely to have a key role in the future development of neuroprosthetics for restoring mobility in severely paralysed patients.
Collapse
Affiliation(s)
- Miguel A L Nicolelis
- Duke University Center for Neuroengineering and the Department of Neurobiology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
9
|
Abstract
Gustatory perception is inherently multimodal, since approximately the same time that intra-oral stimuli activate taste receptors, somatosensory information is concurrently sent to the CNS. We review evidence that gustatory perception is intrinsically linked to concurrent somatosensory processing. We will show that processing of multisensory information can occur at the level of the taste cells through to the gustatory cortex. We will also focus on the fact that the same chemical and physical stimuli that activate the taste system also activate the somatosensory system (SS), but they may provide different types of information to guide behavior.
Collapse
|
10
|
Stapleton JR, Lavine ML, Nicolelis MAL, Simon SA. Ensembles of gustatory cortical neurons anticipate and discriminate between tastants in a single lick. Front Neurosci 2007; 1:161-74. [PMID: 18982126 PMCID: PMC2570088 DOI: 10.3389/neuro.01.1.1.012.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 12/02/2022] Open
Abstract
The gustatory cortex (GC) processes chemosensory and somatosensory information and is involved in learning and anticipation. Previously we found that a subpopulation of GC neurons responded to tastants in a single lick (Stapleton et al., 2006). Here we extend this investigation to determine if small ensembles of GC neurons, obtained while rats received blocks of tastants on a fixed ratio schedule (FR5), can discriminate between tastants and their concentrations after a single 50 μL delivery. In the FR5 schedule subjects received tastants every fifth (reinforced) lick and the intervening licks were unreinforced. The ensemble firing patterns were analyzed with a Bayesian generalized linear model whose parameters included the firing rates and temporal patterns of the spike trains. We found that when both the temporal and rate parameters were included, 12 of 13 ensembles correctly identified single tastant deliveries. We also found that the activity during the unreinforced licks contained signals regarding the identity of the upcoming tastant, which suggests that GC neurons contain anticipatory information about the next tastant delivery. To support this finding we performed experiments in which tastant delivery was randomized within each block and found that the neural activity following the unreinforced licks did not predict the upcoming tastant. Collectively, these results suggest that after a single lick ensembles of GC neurons can discriminate between tastants, that they may utilize both temporal and rate information, and when the tastant delivery is repetitive ensembles contain information about the identity of the upcoming tastant delivery.
Collapse
|