1
|
Huang J, Yang W, Bao L, Yin B. Effects of Peripubertal Experiences on Competitive Behavior in Male Rats at Different Stages of Adulthood. Dev Psychobiol 2024; 66:e22544. [PMID: 39236223 DOI: 10.1002/dev.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
Past studies in animal models have extensively investigated the impact of early life experiences on behavioral development, yet relatively few have specifically examined the implications of peripubertal experiences on the evolution of competitive behavior across distinct stages of adulthood. In the current research, we probed potential differences in competitive behavior during emerging adulthood (3 months old) and middle adulthood (12 months old) in 81 Sprague-Dawley male rats exposed to three different peripubertal (postnatal Days 37-60) environments: an enriched environment (EE), a chronic unpredictable mild stress (CUMS) condition, and a control condition. Anxiety-like behavior served as a positive control in our study. Results revealed significant variations in competitive behavior among the groups during emerging adulthood. The EE group displayed the least anxiety and outperformed their peers in food-reward-oriented competition, whereas the CUMS group excelled in status-driven, agonistic competition. However, these behavioral differentiations gradually attenuated by middle adulthood, at which point the control group began to show an advantage. Our findings suggest that although peripubertal experiences significantly shape competitive behavior in the emerging adulthood stage, this effect diminishes over time and is nearly non-detectable during mid-adulthood, underscoring the fluidity of behavioral development and demonstrating that the effects of peripubertal experiences can be modulated by subsequent life experiences.
Collapse
Affiliation(s)
- Jinkun Huang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Wenjia Yang
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Lili Bao
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| | - Bin Yin
- School of Psychology, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Ishiwari K, King CP, Martin CD, Tripi JA, George AM, Lamparelli AC, Chitre AS, Polesskaya O, Richards JB, Solberg Woods LC, Gancarz AM, Palmer AA, Dietz DM, Mitchell SH, Meyer PJ. Environmental enrichment promotes adaptive responding during tests of behavioral regulation in male heterogeneous stock rats. Sci Rep 2024; 14:4182. [PMID: 38378969 PMCID: PMC10879139 DOI: 10.1038/s41598-024-53943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n = 200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with toys, running wheels, and shelters (n = 64). Rats were subjected to a battery of tests, including: (i) locomotor response to novelty, (ii) light reinforcement, (iii) social reinforcement, (iv) reaction time, (v) a patch-depletion foraging test, (vi) Pavlovian conditioned approach, (vii) conditioned reinforcement, and (viii) cocaine conditioned cue preference. Results indicated that rats housed in the enriched environment were able to filter out irrelevant stimuli more effectively and thereby regulate their behavior more efficiently than standard-housing rats. The dramatic impact of environmental enrichment suggests that behavioral studies using standard housing conditions may not generalize to more complex environments that may be more ethologically relevant.
Collapse
Affiliation(s)
- Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Connor D Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Jordan A Tripi
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA
| | - Anthony M George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | | | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jerry B Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - David M Dietz
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Suzanne H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Oregon Institute for Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Paul J Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
3
|
Sudo M, Kano Y, Ando S. The effects of environmental enrichment on voluntary physical activity and muscle mass gain in growing rats. Front Physiol 2023; 14:1265871. [PMID: 37841318 PMCID: PMC10568076 DOI: 10.3389/fphys.2023.1265871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Environmental enrichment (EE) for rodents involves housing conditions that facilitate enhanced sensory, cognitive, and motor stimulation relative to standard housing conditions. A recent study suggested that EE induces muscle hypertrophy. However, it remains unclear whether muscle hypertrophy in EE is associated with voluntary physical activity, and the characteristics of muscle adaptation to EE remain unclarified. Therefore, this study investigated whether muscle adaptation to EE is associated with voluntary physical activity, and assessed the changes in the muscle fiber-type distribution and fiber-type-specific cross-sectional area in response to EE. Methods: Wistar rats (6 weeks of age) were randomly assigned to either the standard environment group (n = 10) or the EE group (n = 10). The voluntary physical activity of rats housed in EE conditions was measured using a recently developed three-axis accelerometer. After exposure to the standard or enriched environment for 30 days, the tibialis anterior, extensor digitorum longus, soleus, plantaris, and gastrocnemius muscles were removed and weighed. Immunohistochemistry analysis was performed on the surface (anterior) and deep (posterior) areas of the tibialis anterior and soleus muscles. Results and discussion: The EE group showed increased voluntary physical activity during the dark period compared with the standard environment group (p = 0.005). EE induced muscle mass gain in the soleus muscle (p = 0.002) and increased the slow-twitch muscle fiber cross-sectional area of the soleus muscle (p = 0.025). EE also increased the distribution of high-oxidative type IIa fibers of the surface area (p = 0.001) and type I fibers of the deep area (p = 0.037) of the tibialis anterior muscle. These findings suggest that EE is an effective approach to induce slow-twitch muscle fiber hypertrophy through increased daily voluntary physical activity.
Collapse
Affiliation(s)
- Mizuki Sudo
- Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Yutaka Kano
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Soichi Ando
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| |
Collapse
|
4
|
Farmer AL, Lewis MH. Reduction of restricted repetitive behavior by environmental enrichment: Potential neurobiological mechanisms. Neurosci Biobehav Rev 2023; 152:105291. [PMID: 37353046 DOI: 10.1016/j.neubiorev.2023.105291] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/04/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Restricted repetitive behaviors (RRB) are one of two diagnostic criteria for autism spectrum disorder and common in other neurodevelopmental and psychiatric disorders. The term restricted repetitive behavior refers to a wide variety of inflexible patterns of behavior including stereotypy, self-injury, restricted interests, insistence on sameness, and ritualistic and compulsive behavior. However, despite their prevalence in clinical populations, their underlying causes remain poorly understood hampering the development of effective treatments. Intriguingly, numerous animal studies have demonstrated that these behaviors are reduced by rearing in enriched environments (EE). Understanding the processes responsible for the attenuation of repetitive behaviors by EE should offer insights into potential therapeutic approaches, as well as shed light on the underlying neurobiology of repetitive behaviors. This review summarizes the current knowledge of the relationship between EE and RRB and discusses potential mechanisms for EE's attenuation of RRB based on the broader EE literature. Existing gaps in the literature and future directions are also discussed.
Collapse
Affiliation(s)
- Anna L Farmer
- Department of Psychology, University of Florida, Gainesville, FL, USA.
| | - Mark H Lewis
- Department of Psychology, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Ravache TT, Batistuzzo A, Nunes GG, Gomez TGB, Lorena FB, Do Nascimento BPP, Bernardi MM, Lima ERR, Martins DO, Campos ACP, Pagano RL, Ribeiro MO. Multisensory Stimulation Reverses Memory Impairment in Adrβ 3KO Male Mice. Int J Mol Sci 2023; 24:10522. [PMID: 37445699 DOI: 10.3390/ijms241310522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Norepinephrine plays an important role in modulating memory through its beta-adrenergic receptors (Adrβ: β1, β2 and β3). Here, we hypothesized that multisensory stimulation would reverse memory impairment caused by the inactivation of Adrβ3 (Adrβ3KO) with consequent inhibition of sustained glial-mediated inflammation. To test this, 21- and 86-day-old Adrβ3KO mice were exposed to an 8-week multisensory stimulation (MS) protocol that comprised gustatory and olfactory stimuli of positive and negative valence; intellectual challenges to reach food; the use of hidden objects; and the presentation of food in ways that prompted foraging, which was followed by analysis of GFAP, Iba-1 and EAAT2 protein expression in the hippocampus (HC) and amygdala (AMY). The MS protocol reduced GFAP and Iba-1 expression in the HC of young mice but not in older mice. While this protocol restored memory impairment when applied to Adrβ3KO animals immediately after weaning, it had no effect when applied to adult animals. In fact, we observed that aging worsened the memory of Adrβ3KO mice. In the AMY of Adrβ3KO older mice, we observed an increase in GFAP and EAAT2 expression when compared to wild-type (WT) mice that MS was unable to reduce. These results suggest that a richer and more diverse environment helps to correct memory impairment when applied immediately after weaning in Adrβ3KO animals and indicates that the control of neuroinflammation mediates this response.
Collapse
Affiliation(s)
- Thaís T Ravache
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Alice Batistuzzo
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Gabriela G Nunes
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Thiago G B Gomez
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Fernanda B Lorena
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
- Departamento de Medicina Translacional, Universidade Federal de São Paulo 04023-062, SP, Brazil
| | - Bruna P P Do Nascimento
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
- Departamento de Medicina Translacional, Universidade Federal de São Paulo 04023-062, SP, Brazil
| | - Maria Martha Bernardi
- Graduate Program in Environmental and Experimental Pathology, Paulista University, São Paulo 04026-002, SP, Brazil
| | - Eduarda R R Lima
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Daniel O Martins
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Ana Carolina P Campos
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo 01308-050, SP, Brazil
| | - Miriam O Ribeiro
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| |
Collapse
|
6
|
Vaquero-Rodríguez A, Razquin J, Zubelzu M, Bidgood R, Bengoetxea H, Miguelez C, Morera-Herreras T, Ruiz-Ortega JA, Lafuente JV, Ortuzar N. Efficacy of invasive and non-invasive methods for the treatment of Parkinson's disease: Nanodelivery and enriched environment. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:103-143. [PMID: 37833010 DOI: 10.1016/bs.irn.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra pars compacta and the subsequent motor disability. The most frequently used treatments in clinics, such as L-DOPA, restore dopaminergic neurotransmission in the brain. However, these treatments are only symptomatic, have temporary efficacy, and produce side effects. Part of the side effects are related to the route of administration as the consumption of oral tablets leads to unspecific pulsatile activation of dopaminergic receptors. For this reason, it is necessary to not only find alternative treatments, but also to develop new administration systems with better security profiles. Nanoparticle delivery systems are new administration forms designed to reach the pharmacological target in a highly specific way, leading to better drug bioavailability, efficacy and safety. Some of these delivery systems have shown promising results in animal models of PD not only when dopaminergic drugs are administered, but even more when neurotrophic factors are released. These latter compounds promote maturation and survival of dopaminergic neurons and can be exogenously administered in the form of pharmacological therapy or endogenously generated by non-pharmacological methods. In this sense, experimental exposure to enriched environments, a non-invasive strategy based on the combination of social and inanimate stimuli, enhances the production of neurotrophic factors and produces a neuroprotective effect in parkinsonian animals. In this review, we will discuss new nanodelivery systems in PD with a special focus on therapies that increase the release of neurotrophic factors.
Collapse
Affiliation(s)
- Andrea Vaquero-Rodríguez
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Jone Razquin
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Maider Zubelzu
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Raphaelle Bidgood
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Harkaitz Bengoetxea
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Cristina Miguelez
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Teresa Morera-Herreras
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jose Angel Ruiz-Ortega
- Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain; Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - José Vicente Lafuente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain
| | - Naiara Ortuzar
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain; Neurodegenerative diseases Group, Biocruces Health Research Institute, Barakaldo, Bizkaia, Spain.
| |
Collapse
|
7
|
Mees I, Li S, Tran H, Ang CS, Williamson NA, Hannan AJ, Renoir T. Phosphoproteomic dysregulation in Huntington's disease mice is rescued by environmental enrichment. Brain Commun 2022; 4:fcac305. [PMID: 36523271 PMCID: PMC9746689 DOI: 10.1093/braincomms/fcac305] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/05/2022] [Accepted: 11/21/2022] [Indexed: 09/05/2023] Open
Abstract
Huntington's disease is a fatal autosomal-dominant neurodegenerative disorder, characterized by neuronal cell dysfunction and loss, primarily in the striatum, cortex and hippocampus, causing motor, cognitive and psychiatric impairments. Unfortunately, no treatments are yet available to modify the progression of the disease. Recent evidence from Huntington's disease mouse models suggests that protein phosphorylation (catalysed by kinases and hydrolysed by phosphatases) might be dysregulated, making this major post-translational modification a potential area of interest to find novel therapeutic targets. Furthermore, environmental enrichment, used to model an active lifestyle in preclinical models, has been shown to alleviate Huntington's disease-related motor and cognitive symptoms. However, the molecular mechanisms leading to these therapeutic effects are still largely unknown. In this study, we applied a phosphoproteomics approach combined with proteomic analyses on brain samples from pre-motor symptomatic R6/1 Huntington's disease male mice and their wild-type littermates, after being housed either in environmental enrichment conditions, or in standard housing conditions from 4 to 8 weeks of age (n = 6 per group). We hypothesized that protein phosphorylation dysregulations occur prior to motor onset in this mouse model, in two highly affected brain regions, the striatum and hippocampus. Furthermore, we hypothesized that these phosphoproteome alterations are rescued by environmental enrichment. When comparing 8-week-old Huntington's disease mice and wild-type mice in standard housing conditions, our analysis revealed 229 differentially phosphorylated peptides in the striatum, compared with only 15 differentially phosphorylated peptides in the hippocampus (statistical thresholds fold discovery rate 0.05, fold change 1.5). At the same disease stage, minor differences were found in protein levels, with 24 and 22 proteins dysregulated in the striatum and hippocampus, respectively. Notably, we found no differences in striatal protein phosphorylation and protein expression when comparing Huntington's disease mice and their wild-type littermates in environmentally enriched conditions. In the hippocampus, only four peptides were differentially phosphorylated between the two genotypes under environmentally enriched conditions, and 22 proteins were differentially expressed. Together, our data indicates that protein phosphorylation dysregulations occur in the striatum of Huntington's disease mice, prior to motor symptoms, and that the kinases and phosphatases leading to these changes in protein phosphorylation might be viable drug targets to consider for this disorder. Furthermore, we show that an early environmental intervention was able to rescue the changes observed in protein expression and phosphorylation in the striatum of Huntington's disease mice and might underlie the beneficial effects of environmental enrichment, thus identifying novel therapeutic targets.
Collapse
Affiliation(s)
- Isaline Mees
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shanshan Li
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Harvey Tran
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas A Williamson
- Bio21 Mass Spectrometry and Proteomics Facility, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thibault Renoir
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
8
|
The prevention of home-cage grid climbing affects muscle strength in mice. Sci Rep 2022; 12:15263. [PMID: 36088409 PMCID: PMC9464241 DOI: 10.1038/s41598-022-19713-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractExperimenters and treatment methods are the major contributors to data variability in behavioral neuroscience. However, home cage characteristics are likely associated with data variability. Mice housed in breeding cages spontaneously exhibit behavioral patterns such as biting into the wire grid and climbing on the grid lid. We aimed to clarify the effect of covering the stainless steel wire grid lid in commonly used home cage with Plexiglas to prevent climbing on muscle strength in mice. Furthermore, we investigated the effects of climbing prevention on activity and anxiety-like behavior, and the impact of climbing prevention during the postnatal development period and adulthood on muscle strength. Muscle strength, anxiety-like behavior, and locomotor activity were assessed by a battery of tests (wire hang, suspension, grip strength, rotarod, elevated-plus maze, and open field tests). Mice prevented from climbing the wire grid during postnatal development displayed lower muscle strength than those able to climb. Moreover, mice prevented from climbing for 3 weeks following maturity had weakened muscles. The muscle strength was decreased with 3 weeks of climbing prevention in even 1-year-old mice. In summary, the stainless steel wire grid in the home cage contributed to the development and maintenance of muscle strength in mice.
Collapse
|
9
|
Almeida Barros WM, de Sousa Fernandes MS, Silva RKP, da Silva KG, da Silva Souza AP, Rodrigues Marques Silva M, da Silva ABJ, Jurema Santos GC, Dos Santos MERA, do Carmo TS, de Souza SL, de Oliveira Nogueira Souza V. Does the enriched environment alter memory capacity in malnourished rats by modulating BDNF expression? J Appl Biomed 2021; 19:125-132. [PMID: 34907761 DOI: 10.32725/jab.2021.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/03/2021] [Indexed: 11/05/2022] Open
Abstract
Environmental factors interfere in the neural plasticity processes. Among these, malnutrition in the early stages of life stands out as one of the main non-genetic factors that can interfere in the morphofunctional development of the nervous system. Furthermore, sensory stimulation from enriched environments (EE) also interferes with neural development. These two factors can modify areas related to memory and learning as the hippocampus, through mechanisms related to the gene expression of brain-derived neurotrophic factor (BDNF). The BDNF may interfere in synaptic plasticity processes, such as memory. In addition, these changes in early life may affect the functioning of the hippocampus during adulthood through mechanisms mediated by BDNF. Therefore, this study aims to conduct a literature review on the effects of early malnutrition on memory and the relationship between the underlying mechanisms of EE, BDNF gene expression, and memory. In addition, there are studies that demonstrate the effect of EE reversal on exposure to changes in the functioning of hippocampal malnutrition in adult rats that were prematurely malnourished. Thereby, evidence from the scientific literature suggests that the mechanisms of synaptic plasticity in the hippocampus of adult animals are influenced by malnutrition and EE, and these alterations may involve the participation of BDNF as a key regulator in memory processes in the adult animal hippocampus.
Collapse
Affiliation(s)
- Waleska Maria Almeida Barros
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | | | - Roberta Karlize Pereira Silva
- Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Karollainy Gomes da Silva
- Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Ana Patricia da Silva Souza
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Mariluce Rodrigues Marques Silva
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Ana Beatriz Januario da Silva
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil.,Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | | | | | - Taciane Silva do Carmo
- Centro Universitario Facol / Centro Integrado de Tecnologias em Neurociencia (CITENC), Vitoria de Santo Antao, Brasil
| | - Sandra Lopes de Souza
- Universidade Federal de Pernambuco, Programa de Pos-graduacao em Neuropsiquiatria e Ciencias do Comportamento, Recife, Brasil
| | | |
Collapse
|
10
|
Lambert CT, Guillette LM. The impact of environmental and social factors on learning abilities: a meta-analysis. Biol Rev Camb Philos Soc 2021; 96:2871-2889. [PMID: 34342125 DOI: 10.1111/brv.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 12/20/2022]
Abstract
Since the 1950s, researchers have examined how differences in the social and asocial environment affect learning in rats, mice, and, more recently, a variety of other species. Despite this large body of research, little has been done to synthesize these findings and to examine if social and asocial environmental factors have consistent effects on cognitive abilities, and if so, what aspects of these factors have greater or lesser impact. Here, we conducted a systematic review and meta-analysis examining how different external environmental features, including the social environment, impact learning (both speed of acquisition and performance). Using 531 mean-differences from 176 published articles across 27 species (with studies on rats and mice being most prominent) we conducted phylogenetically corrected mixed-effects models that reveal: (i) an average absolute effect size |d| = 0.55 and directional effect size d = 0.34; (ii) interventions manipulating the asocial environment result in larger effects than social interventions alone; and (iii) the length of the intervention is a significant predictor of effect size, with longer interventions resulting in larger effects. Additionally, much of the variation in effect size remained unexplained, possibly suggesting that species differ widely in how they are affected by environmental interventions due to varying ecological and evolutionary histories. Overall our results suggest that social and asocial environmental factors do significantly affect learning, but these effects are highly variable and perhaps not always as predicted. Most notably, the type (social or asocial) and length of interventions are important in determining the strength of the effect.
Collapse
Affiliation(s)
- Connor T Lambert
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| | - Lauren M Guillette
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
11
|
Barbosa-Méndez S, López-Morado C, Salazar-Juárez A. Mirtazapine-induced decrease in cocaine sensitization is enhanced by environmental enrichment in rats. Pharmacol Biochem Behav 2021; 208:173237. [PMID: 34274360 DOI: 10.1016/j.pbb.2021.173237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 02/03/2023]
Abstract
Several studies have reported that mirtazapine attenuated the induction and expression of cocaine-induced locomotor sensitization. Animals placed in enriched housing environments have shown a decrease in cocaine-induced locomotor activity and sensitization. In addition, it has been suggested that a pharmacological treatment combined with a behavioral intervention increases the efficacy of the former. Thus, the objective of this study was to determine if dosing of mirtazapine in an enriched housing environment enhanced the mirtazapine-induced decrease on the induction and expression of cocaine-induced locomotor sensitization. Wistar male rats were dosed with cocaine (10 mg/kg, i.p.). During the drug-withdrawal phase, mirtazapine (30 mg/kg, i.p.) was administered under standard and enriched housing environmental conditions. The environmental enrichment consisted of housing the animals in enclosures with plastic toys, tunnels, and running wheels. After each administration, locomotor activity for each animal was recorded for 30 min. The study found that treatment with mirtazapine in an enriched housing environment produced an enhanced and persistent attenuation of the induction and expression of cocaine-induced locomotor sensitization. Additionally, it reduced the duration of cocaine-induced locomotor activity in the expression phase of locomotor sensitization. Dosing of mirtazapine in an enriched housing environment enhanced the effectiveness of mirtazapine to decrease cocaine-induced locomotor sensitization. This suggests the potential use of enriched environments to enhance the effect of mirtazapine.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Casandra López-Morado
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas, Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Instituto Nacional de Psiquiatría, Ciudad de México 14370, Mexico.
| |
Collapse
|
12
|
Soeda F, Toda A, Masuzaki K, Miki R, Koga T, Fujii Y, Takahama K. Effects of enriched environment on micturition activity in freely moving C57BL/6J mice. Low Urin Tract Symptoms 2021; 13:400-409. [PMID: 33648020 DOI: 10.1111/luts.12376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVES An enriched environment (EE) has been known to promote structural changes in the brain and enhance learning and emotional performance. However, little is known about the effect of an EE on brain stem functions, such as the micturition function. In this study, we examined whether an EE affects micturition activity in mice. METHODS Male C57BL/6J mice were used. We assessed the micturition activity of freely moving mice using a novel system developed in-house. RESULTS During the dark period, but not light, the EE significantly increased voiding frequency, total voided volume, mean voided volume, voiding duration, mean flow rate, and maximum flow rate compared with the control environment. This EE effect on micturition function was associated with habituation to novel environments in the open-field test, but not with amelioration of motor coordination in the rotarod test. Interestingly, even after the mice were withdrawn from the EE, the improvements in micturition function persisted, while other behavioral changes were abolished. The relative value of voiding frequency and total voided volume during the light period, expressed as a percentage of 24 hours, increased with age when mice were reared in a standard environment. However, this age-related change was not observed in mice reared in an EE. CONCLUSIONS These results suggest that an EE may promote micturition activity during the active phase of C57BL/6J mice, and its effects persist even after withdrawal from the EE. Furthermore, an EE may mitigate dysfunctions in micturition activity, such as polyuria, during the resting phase in aged mice.
Collapse
Affiliation(s)
- Fumio Soeda
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan.,Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akihisa Toda
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kazuya Masuzaki
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Risa Miki
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Koga
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Yukiko Fujii
- Department of Pharmaceutics, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Kazuo Takahama
- Department of Environmental and Molecular Health Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
13
|
Dos Santos TG, Mussulini BHM, Frangipani LA, de Oliveira DL. Differential impact of shorter and longer periods of environmental enrichment on adult zebrafish exploratory activity (Danio rerio) in the novel tank paradigm. Behav Processes 2020; 181:104278. [PMID: 33186621 DOI: 10.1016/j.beproc.2020.104278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 01/27/2023]
Abstract
Several studies have used zebrafish to investigate the effects of environmental enrichment on behavior and physiology. However, to date there are no studies evaluating the behavioral responses, such as habituation and exploration, of enriched-housed zebrafish when they are submitted to novelty paradigms. The present work was, therefore, designed to evaluate the habituation and exploratory responses of zebrafish exposed to enriched- (EE) and non-enriched (NE) environments when they face novelty. Adult wild-type zebrafish were used. Three different enriched contexts were designed. In Context 1, zebrafish was exposed to enrichment during 7 days, which reduced their total distance traveled in novel tank and social preference tests in comparison to the non-enriched animals. In Context 2, animals were exposed to same enrichment during 14 days. EE exposure did not alter the behavioral responses of zebrafish compared to NE. In Context 3, fish were exposed to enrichment during 14 days, with changing the enriching elements at day 8. Similarly to Context 1, total distance traveled was reduced by EE exposure when compared to NE. Our results suggest a modulatory effect of EE on adult zebrafish locomotion that may be dependent on the time of exposure and on the physical structure of the enriched environment.
Collapse
Affiliation(s)
- Thainá Garbino Dos Santos
- Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil.
| | - Ben Hur Marins Mussulini
- Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Luca Araujo Frangipani
- Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil
| | - Diogo Losch de Oliveira
- Laboratory of Cellular Neurochemistry, Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, UFRGS, Brazil.
| |
Collapse
|
14
|
Grimm JW, Hyde J, Glueck E, North K, Ginder D, Jiganti K, Hopkins M, Sauter F, MacDougall D, Hovander D. Examining persistence of acute environmental enrichment-induced anti-sucrose craving effects in rats. Appetite 2019; 139:50-58. [PMID: 31002852 PMCID: PMC6556147 DOI: 10.1016/j.appet.2019.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
A single, overnight (acute) environmental enrichment (EE; a large environment with conspecifics and novel objects) experience robustly decreases sucrose consumption (taking) and responsiveness to sucrose-paired cues (seeking) in rats. Persisting effects of acute EE on sucrose seeking and taking have not yet been identified. In the present study, rats were trained to self-administer a 10% sucrose solution paired with a compound tone + light stimulus for 10 days in 2-h sessions. We then examined the persistence of acute EE effects at reducing sucrose seeking and taking in a 12-h test immediately following acute EE (Exp. 1), or for 7 days with daily 1-h tests immediately following acute EE, or after a 24-h delay (Exp. 2). We also examined the persistence of acute EE effects on sucrose taking in rats responding on a PR schedule in 7 daily sessions following acute EE (Exp. 3). We found that acute EE was effective at reducing responding for both sucrose and a sucrose-paired cue, persisting throughout the 12-h test (Exp. 1). A reduction in sucrose seeking persisted for 24 h and a reduction in sucrose taking persisted for 72 h following acute EE plus a 24-h delay prior to testing (Exp. 2). Decreased PR responding for sucrose was observed following acute EE; this reduction persisted for 48 h (Exp. 3). These findings indicate that acute exposure to EE has persisting effects at reducing sucrose seeking and taking in rats. Acute EE may have translational value as a non-pharmacological intervention to curb sucrose craving.
Collapse
Affiliation(s)
- Jeffrey W Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA.
| | - Jeff Hyde
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Edwin Glueck
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Katherine North
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Darren Ginder
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Kyle Jiganti
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Madeleine Hopkins
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Frances Sauter
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Derek MacDougall
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| | - Dan Hovander
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, 98225-9172, USA
| |
Collapse
|
15
|
Barros W, David M, Souza A, Silva M, Matos R. Can the effects of environmental enrichment modulate BDNF expression in hippocampal plasticity? A systematic review of animal studies. Synapse 2019; 73:e22103. [PMID: 31056812 DOI: 10.1002/syn.22103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM Environmental enrichment (EE) can be related to changes in the expression of brain-derived neurotrophic factor (BDNF) in the hippocampus of adult rodents. Exposure to EE may also induce neurogenesis in the dentate gyrus (DG). The aim of this systematic review was to analyze the current literature on the correlation between neurogenesis and BDNF expression in the hippocampal DG region resulting from exposure to EE, which is associated with changes in memory, in rodents. METHODS Bibliographic searches of the Medline/PubMed and ScienceDirect databases were carried out, and 334 studies were found. A predefined protocol was used and registered on PROSPERO, and 32 studies were included for qualitative synthesis. The PRISMA was used to report this systematic review. RESULTS Most of the included studies showed that there is little evidence in the literature demonstrating that memory changes resulting from EE are dependent on BDNF expression and that there is an induction of neurogenesis in the hippocampal DG. However, the observed increase in molecular expression levels and cell proliferation is dependent on the age, the timing and duration of exposure to EE. Regarding the methodological quality of the studies, the majority presented a risk of bias due to the high variability in the age of the animals. CONCLUSION There are few studies in the literature that correlate the molecular and cellular mechanisms involved in neurogenesis in the hippocampal DG with BDNF expression in this region in rodents exposed to EE; however, there are other factors that can modulate this neurogenesis.
Collapse
Affiliation(s)
- Waleska Barros
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,CITENC (Centro integrado de tecnologia em neurociência), Centro Integrado de Tecnologia e Pesquisa (CINTEP) - Centro Universitário Osman Lins (FACOL), Vitória de Santo Antão, Brazil
| | - Mirian David
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | - Ana Souza
- Fisioterapia, Centro Universitário Osman Lins (FACOL), Vitória de Santo Antão, Brazil
| | - Mariluce Silva
- Fisioterapia, Centro Universitário Osman Lins (FACOL), Vitória de Santo Antão, Brazil
| | - Rhowena Matos
- Programa de Pós-Graduação em Neuropsiquiatria e Ciências do Comportamento, Universidade Federal de Pernambuco (UFPE), Recife, Brazil.,Núcleo de Educação Física e Ciências do Esporte, Universidade Federal de Pernambuco Centro Acadêmico de Vitória (CAV), Vitória de Santo Antão, Brazil
| |
Collapse
|
16
|
Rae M, Zanos P, Georgiou P, Chivers P, Bailey A, Camarini R. Environmental enrichment enhances conditioned place preference to ethanol via an oxytocinergic-dependent mechanism in male mice. Neuropharmacology 2018; 138:267-274. [PMID: 29908241 DOI: 10.1016/j.neuropharm.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/20/2018] [Accepted: 06/10/2018] [Indexed: 02/01/2023]
Abstract
Environmental conditions, such as stress and environmental enrichment (EE), influence predisposition to alcohol use/abuse; however, the underlying mechanisms remain unknown. To assess the effect of environmental conditions on the initial rewarding effects of alcohol, we examined conditioned place-preference (CPP) to alcohol following exposure to EE in mice. Since social context is a major factor contributing to initial alcohol-drinking, we also assessed the impact of EE on the levels of the "social neuropeptide" oxytocin (OT) and its receptor, OTR. Finally, we assessed the effect of pharmacological manipulations of the oxytocinergic system on EE-induced alcohol CPP. While EE increased sociability and reduced anxiety-like behaviors, it caused a ∼3.5-fold increase in alcohol reward compared to controls. EE triggered profound neuroadaptations of the oxytocinergic system; it increased hypothalamic OT levels and decreased OTR binding in the prefrontal cortex and olfactory nuclei of the brain. Repeated administration of the OT analogue carbetocin (6.4 mg/kg/day) mimicked the behavioral effects of EE on ethanol CPP and induced similar brain region-specific alterations of OTR binding as those observed following EE. Conversely, repeated administration of the OTR antagonist L,369-899 (5 mg/kg/day) during EE exposure, but not during the acquisition of alcohol CPP, reversed the pronounced EE-induced ethanol rewarding effect. These results demonstrate for the first time, a stimulatory effect of environmental enrichment exposure on alcohol reward via an oxytocinergic-dependent mechanism, which may predispose to alcohol abuse. This study offers a unique prospective on the neurobiological understanding of the initial stages of alcohol use/misuse driven by complex environmental-social interplay.
Collapse
Affiliation(s)
- Mariana Rae
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, Brazil; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Panos Zanos
- Department of Psychiatry, University of Maryland, Baltimore, School of Medicine, Baltimore, USA; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Polymnia Georgiou
- Department of Psychiatry, University of Maryland, Baltimore, School of Medicine, Baltimore, USA; Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Priti Chivers
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
| | - Alexis Bailey
- Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK; Institute of Medical and Biomedical Education, St George's University of London, London, UK
| | - Rosana Camarini
- Departamento de Farmacologia, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
17
|
André V, Gau C, Scheideler A, Aguilar-Pimentel JA, Amarie OV, Becker L, Garrett L, Hans W, Hölter SM, Janik D, Moreth K, Neff F, Östereicher M, Racz I, Rathkolb B, Rozman J, Bekeredjian R, Graw J, Klingenspor M, Klopstock T, Ollert M, Schmidt-Weber C, Wolf E, Wurst W, Gailus-Durner V, Brielmeier M, Fuchs H, Hrabé de Angelis M. Laboratory mouse housing conditions can be improved using common environmental enrichment without compromising data. PLoS Biol 2018; 16:e2005019. [PMID: 29659570 PMCID: PMC5922977 DOI: 10.1371/journal.pbio.2005019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 03/09/2018] [Indexed: 01/03/2023] Open
Abstract
Animal welfare requires the adequate housing of animals to ensure health and well-being. The application of environmental enrichment is a way to improve the well-being of laboratory animals. However, it is important to know whether these enrichment items can be incorporated in experimental mouse husbandry without creating a divide between past and future experimental results. Previous small-scale studies have been inconsistent throughout the literature, and it is not yet completely understood whether and how enrichment might endanger comparability of results of scientific experiments. Here, we measured the effect on means and variability of 164 physiological parameters in 3 conditions: with nesting material with or without a shelter, comparing these 2 conditions to a “barren” regime without any enrichments. We studied a total of 360 mice from each of 2 mouse strains (C57BL/6NTac and DBA/2NCrl) and both sexes for each of the 3 conditions. Our study indicates that enrichment affects the mean values of some of the 164 parameters with no consistent effects on variability. However, the influence of enrichment appears negligible compared to the effects of other influencing factors. Therefore, nesting material and shelters may be used to improve animal welfare without impairment of experimental outcome or loss of comparability to previous data collected under barren housing conditions. Adequate housing of laboratory animals is essential to guarantee their well-being. From a scientific perspective, physically and mentally healthy animals also contribute to increased validity and reproducibility of experimental results. The choice of nesting material or shelter type, referred to as environmental enrichment, may influence how laboratory animals perform species-specific behaviors. Consequently, changes in these nesting and shelter materials could influence scientific results by, for example, increasing variability in measured characteristics. Whether studies using different environmental enrichment materials can be compared is currently questioned. Our study shows that simple, species-specific environmental enrichment in the form of nesting material alone or in combination with a shelter did not consistently increase variability of physiological parameters in mice. Differences in parameter average values appeared to be of minor biological relevance when compared to the effects of other environmental factors. These simple environmental enrichment devices may therefore be applied to improve the housing environment of laboratory mice without compromising data validity or comparability.
Collapse
Affiliation(s)
- Viola André
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- * E-mail:
| | - Christine Gau
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Angelika Scheideler
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Juan A. Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Oana V. Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Hans
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabine M. Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Dirk Janik
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Frauke Neff
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuela Östereicher
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ildiko Racz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Raffi Bekeredjian
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan, Germany
- ZIEL—Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Ollert
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), Odense University hospital, University of Southern Denmark, Odense C, Denmark
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München and Helmholtz Zentrum München, Munich, Germany and Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Deutsches Institut für Neurodegenerative Erkrankungen (DZNE), Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Munich, Germany
- Technische Universität München, Freising-Weihenstephan, Chair of Developmental Genetics, c/o Helmholtz Zentrum München, Neuherberg, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Brielmeier
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabé de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
| |
Collapse
|
18
|
Stamenkovic V, Milenkovic I, Galjak N, Todorovic V, Andjus P. Enriched environment alters the behavioral profile of tenascin-C deficient mice. Behav Brain Res 2017; 331:241-253. [DOI: 10.1016/j.bbr.2017.05.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/13/2017] [Accepted: 05/17/2017] [Indexed: 12/01/2022]
|
19
|
Kanda LL, Abdulhay A, Erickson C. Adult wheel access interaction with activity and boldness personality in Siberian dwarf hamsters (Phodopus sungorus). Behav Processes 2017; 138:82-90. [PMID: 28249731 DOI: 10.1016/j.beproc.2017.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 11/26/2022]
Abstract
Individual animal personalities interact with environmental conditions to generate differences in behavior, a phenomenon of growing interest for understanding the effects of environmental enrichment on captive animals. Wheels are common environmental enrichment for laboratory rodents, but studies conflict on how this influences behavior, and interaction of wheels with individual personalities has rarely been examined. We examined whether wheel access altered personality profiles in adult Siberian dwarf hamsters. We assayed animals in a tunnel maze twice for baseline personality, then again at two and at seven weeks after the experimental group was provisioned with wheels in their home cages. Linear mixed model selection was used to assess changes in behavior over time and across environmental gradient of wheel exposure. While animals showed consistent inter-individual differences in activity, activity personality did not change upon exposure to a wheel. Boldness also varies among individuals, and there is evidence for female boldness scores converging after wheel exposure, that is, opposite shifts in behavior by high and low boldness individuals, although sample size is too small for the mixed model results to be robust. In general, Siberian dwarf hamsters appear to show low behavioral plasticity, particularly in general activity, in response to running wheels.
Collapse
Affiliation(s)
- L Leann Kanda
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA.
| | - Amir Abdulhay
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| | - Caitlin Erickson
- Dept. of Biology, Ithaca College, 953 Danby Rd., Ithaca, NY 14850, USA
| |
Collapse
|
20
|
Sharma B, Tomaszczyk JC, Dawson D, Turner GR, Colella B, Green REA. Feasibility of online self-administered cognitive training in moderate-severe brain injury. Disabil Rehabil 2016; 39:1380-1390. [PMID: 27414703 DOI: 10.1080/09638288.2016.1195453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Cognitive environmental enrichment (C-EE) offers promise for offsetting neural decline that is observed in chronic moderate-severe traumatic brain injury (TBI). Brain games are a delivery modality for C-EE that can be self-administered over the Internet without therapist oversight. To date, only one study has examined the feasibility of self-administered brain games in TBI, and the study focused predominantly on mild TBI. Therefore, the primary purpose of the current study was to examine the feasibility of self-administered brain games in moderate-severe TBI. A secondary and related purpose was to examine the feasibility of remote monitoring of any C-EE-induced adverse symptoms with a self-administered evaluation tool. METHOD Ten patients with moderate-severe TBI were asked to complete 12 weeks (60 min/day, five days/week) of online brain games with bi-weekly self-evaluation, intended to measure any adverse consequences of cognitive training (e.g., fatigue, eye strain). RESULTS There was modest weekly adherence (42.6% ± 4.4%, averaged across patients and weeks) and 70% patient retention; of the seven retained patients, six completed the self-evaluation questionnaire at least once/week for each week of the study. CONCLUSIONS Even patients with moderate-severe TBI can complete a demanding, online C-EE intervention and a self-administered symptom evaluation tool with limited therapist oversight, though at daily rate closer to 30 than 60 min per day. Further self-administered C-EE research is underway in our lab, with more extensive environmental support. Implications for Rehabilitation Online brain games (which may serve as a rehabilitation paradigm that can help offset the neurodegeneration observed in chronic TBI) can be feasibly self-administered by moderate-to-severe TBI patients. Brain games are a promising therapy modality, as they can be accessed by all moderate-to-severe TBI patients irrespective of geographic location, clinic and/or therapist availability, or impairments that limit mobility and access to rehabilitation services. Future efficacy trials that examine the effect of brain games for offsetting neurodegeneration in moderate-to-severe TBI patients are warranted.
Collapse
Affiliation(s)
- Bhanu Sharma
- a Rehabilitation Sciences Institute (Formerly Graduate Department of Rehabilitation Science) , University of Toronto , Toronto , Ontario , Canada.,b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| | - Jennifer C Tomaszczyk
- b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| | - Deirdre Dawson
- a Rehabilitation Sciences Institute (Formerly Graduate Department of Rehabilitation Science) , University of Toronto , Toronto , Ontario , Canada.,b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada.,c Rotman Research Institute, Baycrest , Toronto , Ontario , Canada.,d Department of Occupational Science & Occupational Therapy , University of Toronto , Toronto , Ontario , Canada
| | - Gary R Turner
- e Department of Psychology , York University , Toronto , Ontario , Canada
| | - Brenda Colella
- b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| | - Robin E A Green
- a Rehabilitation Sciences Institute (Formerly Graduate Department of Rehabilitation Science) , University of Toronto , Toronto , Ontario , Canada.,b Toronto Rehabilitation Institute , University Health Network , Toronto , Ontario , Canada
| |
Collapse
|
21
|
Mallory HS, Howard AF, Weiss MR. Timing of Environmental Enrichment Affects Memory in the House Cricket, Acheta domesticus. PLoS One 2016; 11:e0152245. [PMID: 27058038 PMCID: PMC4825976 DOI: 10.1371/journal.pone.0152245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 03/12/2016] [Indexed: 11/18/2022] Open
Abstract
Learning appears to be ubiquitous among animals, as it plays a key role in many behaviors including foraging and reproduction. Although there is some genetic basis for differences in learning ability and memory retention, environment also plays an important role, as it does for any other trait. For example, adult animals maintained in enriched housing conditions learn faster and remember tasks for longer than animals maintained in impoverished conditions. Such plasticity in adult learning ability has often been linked to plasticity in the brain, and studies aimed at understanding the mechanisms, stimuli, and consequences of adult behavioral and brain plasticity are numerous. However, the role of experiences during post-embryonic development in shaping plasticity in adult learning ability and memory retention remain relatively unexplored. Using the house cricket (Acheta domesticus) as a model organism, we developed a protocol to allow the odor preference of a large number of crickets to be tested in a short period of time. We then used this new protocol to examine how enrichment or impoverishment at two developmental stages (either the last nymphal instar or young adult) affected adult memory. Our results show that regardless of nymphal rearing conditions, crickets that experienced an enriched rearing condition as young adults performed better on a memory task than individuals that experienced an impoverished condition. Older adult crickets (more than 1 week post adult molt) did not demonstrate differences in memory of the odor task, regardless of rearing condition as a young adult. Our results suggest that environmentally-induced plasticity in memory may be restricted to the young adult stage.
Collapse
Affiliation(s)
- Heather S. Mallory
- Department of Biology, Georgetown University, Washington, D. C., United States of America
- * E-mail:
| | - Aaron F. Howard
- Department of Biology, Northeastern Illinois University, Chicago, Illinois, United States of America
| | - Martha R. Weiss
- Department of Biology, Georgetown University, Washington, D. C., United States of America
| |
Collapse
|
22
|
Druzian AF, Melo JADO, Souza ASD. The influence of enriched environment on spatial memory in Swiss mice of different ages. ARQUIVOS DE NEURO-PSIQUIATRIA 2016. [PMID: 26222362 DOI: 10.1590/0004-282x20150089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of this study was to evaluate the influence of enriched environment on spatial memory acquisition in mice of three different age groups. Weanling, young, and young adult female Swiss mice were housed in a standard control or enriched environment for 50 days, and their spatial memory was tested with the Morris Water Maze. We did not observe an experimental effect for spatial memory acquisition, and there was neither an effect of time of analysis nor an interaction between experimental group and time of analysis. Regarding effects of experimental group and training day in relation to latency in finding the hidden platform, we did find an effect in the experimental young adult mice group (p = 0.027), but there was no interaction between these factors in all three groups. Based on these findings environmental enrichment did not enhance spatial memory acquisition in female Swiss mice in the tested age groups.
Collapse
Affiliation(s)
| | | | - Albert Schiaveto de Souza
- Faculdade de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
23
|
Loss CM, Binder LB, Muccini E, Martins WC, de Oliveira PA, Vandresen-Filho S, Prediger RD, Tasca CI, Zimmer ER, Costa-Schmidt LE, de Oliveira DL, Viola GG. Influence of environmental enrichment vs. time-of-day on behavioral repertoire of male albino Swiss mice. Neurobiol Learn Mem 2015; 125:63-72. [PMID: 26247375 DOI: 10.1016/j.nlm.2015.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/30/2015] [Accepted: 07/24/2015] [Indexed: 11/19/2022]
Abstract
Environmental enrichment (EE) is a non-pharmacological manipulation that promotes diverse forms of benefits in the central nervous system of captive animals. It is thought that EE influences animal behavior in a specie-(strain)-specific manner. Since rodents in general present different behaviors during distinct periods of the day, in this study we aimed to investigate the influence of time-of-day on behavioral repertoire of Swiss mice that reared in EE. Forty male Swiss mice (21days old) were housed in standard (SC) or enriched conditions (EC) for 60days. Behavioral assessments were conducted during the light phase (in presence of light) or dark phase (in absence of light) in the following tasks: open field, object recognition and elevated plus maze. First, we observed that the locomotor and exploratory activities are distinct between SC and EC groups only during the light phase. Second, we observed that "self-protective behaviors" were increased in EC group only when mice were tested during the light phase. However, "less defensive behaviors" were not affected by both housing conditions and time-of-day. Third, we showed that the performance of EE animals in object recognition task was improved in both light and dark conditions. Our findings highlight that EE-induced alterations in exploratory and emotional behaviors are just evident during light conditions. However, EE-induced cognitive benefits are remarkable even during dark conditions, when exploratory and emotional behaviors were similar between groups.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luisa Bandeira Binder
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Eduarda Muccini
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Wagner Carbolin Martins
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | - Samuel Vandresen-Filho
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Rui Daniel Prediger
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Carla Inês Tasca
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Eduardo R Zimmer
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Luiz Ernesto Costa-Schmidt
- Laboratorio de Biología Reproductiva y Evolución, Instituto de Diversidad y Ecología Animal - IDEA/CONICET, Universidad Nacional de Córdoba - UNC, Vélez Sarsfield 299, 5000 Córdoba, Argentina; Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos - UNISINOS, São Leopoldo, RS, Brazil.
| | - Diogo Losch de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Giordano Gubert Viola
- Programa de Pós-Graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Universidade Federal de Santa Catarina, Campus Curitibanos, Curitibanos, SC, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas, Centro de Ciências Biológica, Universidade Federal do Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
24
|
Foraging enrichment modulates open field response to monosodium glutamate in mice. Ann Neurosci 2015; 22:162-70. [PMID: 26130924 PMCID: PMC4481551 DOI: 10.5214/ans.0972.7531.220306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/02/2015] [Accepted: 03/12/2015] [Indexed: 11/22/2022] Open
Abstract
Background Environmental enrichment can enhance expression of species-specific behaviour. While foraging enrichment is encouraged in laboratory animals, its impact on novelty induced behaviour remain largely unknown. Purpose Here, we studied behavioural response of mice to acute and subchronic oral monosodium glutamate (MSG) in an open field with /without foraging enrichment. Methods Adult male mice, assigned to five groups were administered vehicle (distilled water), or one of four selected doses of MSG (10, 20, 40 and 80 mg/kg) for 21 days. Open field novelty induced behaviours i.e. horizontal locomotion, rearing and grooming were assessed after the first and last doses of MSG. Results were analysed using MANOVA followed by Tukey HSD multiple comparison test and expressed as mean ± S.E.M. Results Following acute MSG administration without enrichment, locomotor activity reduced, grooming increased, while rearing activity reduced at lower doses and increased at higher doses. Subchronic administration without enrichment was associated with increased locomotor activity and reduction in grooming, rearing activity however still showed a biphasic response. Addition of enrichment with acute administration resulted in sustained reduction in locomotor and rearing activities with a biphasic grooming response. Subchronically, there was reduction in horizontal locomotion, biphasic rearing response and sustained increase in grooming activity. Conclusion Behavioural response to varying doses of MSG as observed in the open field is affected by modifications such as foraging enrichment, which can reverse or dampen the central effects seen irrespective of duration of administration.
Collapse
|
25
|
The Relationship between Personality Dimensions and Resiliency to Environmental Stress in Orange-Winged Amazon Parrots (Amazona amazonica), as Indicated by the Development of Abnormal Behaviors. PLoS One 2015; 10:e0126170. [PMID: 26114423 PMCID: PMC4482636 DOI: 10.1371/journal.pone.0126170] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/30/2015] [Indexed: 11/27/2022] Open
Abstract
Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long-term effect on behavior, as evidenced by behavioral changes that persisted despite re-enrichment. Ours is the first study evaluating the relationship between personality dimensions, environment, and abnormal behaviors in an avian species.
Collapse
|
26
|
Environmental enrichment modulates intrinsic cellular excitability of hippocampal CA1 pyramidal cells in a housing duration and anatomical location-dependent manner. Behav Brain Res 2015; 292:209-18. [PMID: 26048427 DOI: 10.1016/j.bbr.2015.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/10/2015] [Accepted: 05/16/2015] [Indexed: 12/26/2022]
Abstract
Housing animals in enriched environments (EEs) results in improved learning and memory (L&M) performance. While increased intrinsic cellular excitability in the hippocampal neurons might underlie the environmental enrichment-dependent L&M enhancement, literature in respect to this remains scarce and controversial. In this study, we explore whether intrinsic cellular excitability in hippocampal CA1 pyramidal cells is modulated differently, depending on housing duration and anatomical location of cells. Using in vitro patch clamp recordings in mice, we first demonstrate that cellular excitability of hippocampal CA1 pyramidal cells is significantly increased only in animals housed in an EE for a relatively short (<40 days) duration. Second, anatomical analysis shows that increased excitability is mainly restricted to the dorsal and proximal sections of the CA1 region. Further analysis reveals that the input resistance and the spike threshold, which are differently modulated by anatomical location and housing duration, respectively, may underlie the increased excitability. These results indicate that housing duration and anatomical location are crucial factors for environmental enrichment-dependent modulations of intrinsic excitability. While the dorsally restricted increase in excitability is in agreement with the specific up-regulation of L&M supported by the dorsal hippocampus, the selective modulation of the proximal area is in line with enhanced spatial abilities often observed after environmental enrichment. The housing duration specificity we observed here, together with previous findings, suggests that the modulation of some physiological properties by an environmental enrichment is transient. Finally, these results could coherently account for earlier controversial reports.
Collapse
|
27
|
Garofalo S, D'Alessandro G, Chece G, Brau F, Maggi L, Rosa A, Porzia A, Mainiero F, Esposito V, Lauro C, Benigni G, Bernardini G, Santoni A, Limatola C. Enriched environment reduces glioma growth through immune and non-immune mechanisms in mice. Nat Commun 2015; 6:6623. [PMID: 25818172 PMCID: PMC4389244 DOI: 10.1038/ncomms7623] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/12/2015] [Indexed: 12/31/2022] Open
Abstract
Mice exposed to standard (SE) or enriched environment (EE) were transplanted with murine or human glioma cells and differences in tumour development were evaluated. We report that EE exposure affects: (i) tumour size, increasing mice survival; (ii) glioma establishment, proliferation and invasion; (iii) microglia/macrophage (M/Mφ) activation; (iv) natural killer (NK) cell infiltration and activation; and (v) cerebral levels of IL-15 and BDNF. Direct infusion of IL-15 or BDNF in the brain of mice transplanted with glioma significantly reduces tumour growth. We demonstrate that brain infusion of IL-15 increases the frequency of NK cell infiltrating the tumour and that NK cell depletion reduces the efficacy of EE and IL-15 on tumour size and of EE on mice survival. BDNF infusion reduces M/Mφ infiltration and CD68 immunoreactivity in tumour mass and reduces glioma migration inhibiting the small G protein RhoA through the truncated TrkB.T1 receptor. These results suggest alternative approaches for glioma treatment.
Collapse
Affiliation(s)
- Stefano Garofalo
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giuseppina Chece
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Frederic Brau
- Université Nice-Sophia Antipolis, IPMC CNRS-UMR, 7275 Valbonne, France
| | - Laura Maggi
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandro Rosa
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Alessandra Porzia
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Mainiero
- Department of Experimental Medicine, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Vincenzo Esposito
- 1] IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy [2] Department of Neurology and Psychiatry, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clotilde Lauro
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giorgia Benigni
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Giovanni Bernardini
- Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Angela Santoni
- 1] Department of Molecular Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy [2] IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | - Cristina Limatola
- 1] Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy [2] IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| |
Collapse
|
28
|
Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus. Physiol Behav 2015; 144:52-9. [PMID: 25727024 DOI: 10.1016/j.physbeh.2015.02.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/02/2015] [Accepted: 02/22/2015] [Indexed: 11/23/2022]
Abstract
The influence of flow velocity on the motor behavior of the sea cucumber, Apostichopus japonicus was investigated in the laboratory. Cameras were used to record sea cucumber movements and behavior analysis software was used to measure the distance traveled, time spent, upstream or downstream of the start position and the speed of movements. In general, the mean velocity of A. japonicus was below 0.7mms(-1). The maximum velocity recorded for all the sea cucumbers tested was for a large individual (89.25±17.11g), at a flow rate of 4.6±0.5cms(-1). Medium sized (19.68±5.53g) and large individuals moved significantly faster than small individuals (2.65±1.24g) at the same flow rate. A. japonicus moved significantly faster when there was a moderate current (4.6±0.5cms(-1) and 14.7±0.3cms(-1)), compared with the fast flow rate (29.3±3.7cms(-1)) and when there was no flow (0cms(-1)). Sea cucumbers did not show positive rheotaxis in general, but did move in a downstream direction at faster current speeds. Large, medium and small sized individuals moved downstream at the fastest current speed tested, 29.3±3.7cms(-1). When there was no water flow, sea cucumbers tended to move in an irregular pattern. The movement patterns show that the sea cucumber, A. japonicus can move across the direction of flow, and can move both upstream and downstream along the direction of flow.
Collapse
|
29
|
Leger M, Paizanis E, Dzahini K, Quiedeville A, Bouet V, Cassel JC, Freret T, Schumann-Bard P, Boulouard M. Environmental Enrichment Duration Differentially Affects Behavior and Neuroplasticity in Adult Mice. Cereb Cortex 2014; 25:4048-61. [DOI: 10.1093/cercor/bhu119] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Green REA, Colella B, Maller JJ, Bayley M, Glazer J, Mikulis DJ. Scale and pattern of atrophy in the chronic stages of moderate-severe TBI. Front Hum Neurosci 2014; 8:67. [PMID: 24744712 PMCID: PMC3978360 DOI: 10.3389/fnhum.2014.00067] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/27/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Moderate-severe traumatic brain injury (TBI) is increasingly being understood as a progressive disorder, with growing evidence of reduced brain volume and white matter (WM) integrity as well as lesion expansion in the chronic phases of injury. The scale of these losses has yet to be investigated, and pattern of change across structures has received limited attention. OBJECTIVES (1) To measure the percentage of patients in our TBI sample showing atrophy from 5 to 20 months post-injury in the whole brain and in structures with known vulnerability to acute TBI, and (2) To examine relative vulnerability and patterns of volume loss across structures. METHODS Fifty-six TBI patients [complicated mild to severe, with mean Glasgow Coma Scale (GCS) in severe range] underwent MRI at, on average, 5 and 20 months post-injury; 12 healthy controls underwent MRI twice, with a mean gap between scans of 25.4 months. Mean monthly percent volume change was computed for whole brain (ventricle-to-brain ratio; VBR), corpus callosum (CC), and right and left hippocampi (HPC). RESULTS (1) Using a threshold of 2 z-scores below controls, 96% of patients showed atrophy across time points in at least one region; 75% showed atrophy in at least 3 of the 4 regions measured. (2) There were no significant differences in the proportion of patients who showed atrophy across structures. For those showing decline in VBR, there was a significant association with both the CC and the right HPC (P < 0.05 for both comparisons). There were also significant associations between those showing decline in (i) right and left HPC (P < 0.05); (ii) all combinations of genu, body and splenium of the CC (P < 0.05), and (iii) head and tail of the right HPC (P < 0.05 all sub-structure comparisons). CONCLUSIONS Atrophy in chronic TBI is robust, and the CC, right HPC and left HPC appear equally vulnerable. Significant associations between the right and left HPC, and within substructures of the CC and right HPC, raise the possibility of common mechanisms for these regions, including transneuronal degeneration. Given the 96% incidence rate of atrophy, a genetic explanation is unlikely to explain all findings. Multiple and possibly synergistic mechanisms may explain findings. Atrophy has been associated with poorer functional outcomes, but recent findings suggest there is potential to offset this. A better, understanding of the underlying mechanisms could permit targeted therapy enabling better long-term outcomes.
Collapse
Affiliation(s)
- Robin E. A. Green
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Brenda Colella
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Jerome J. Maller
- Brain Stimulation and Neuroimaging Laboratory, Monash Alfred Psychiatry Research Centre, Alfred HospitalMelbourne, VIC, Australia
| | - Mark Bayley
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - Joanna Glazer
- Cognitive Neurorehabilitation Sciences Laboratory, Research Department, Toronto Rehabilitation InstituteToronto, ON, Canada
| | - David J. Mikulis
- fMRI Laboratory, Division of Applied and Interventional Research, Toronto Western Research InstituteToronto, ON, Canada
- Department of Medical Imaging, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
31
|
Serradj N, Picquet F, Jamon M. Early postnatal motor experience shapes the motor properties of C57BL/6J adult mice. Eur J Neurosci 2013; 38:3281-91. [PMID: 23869740 DOI: 10.1111/ejn.12311] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/13/2013] [Indexed: 01/04/2023]
Abstract
This study aimed to evaluate the long-term consequences of early motor training on the muscle phenotype and motor output of middle-aged C57BL/6J mice. Neonatal mice were subjected to a variety of motor training procedures, for 3 weeks during the period of acquisition of locomotion. These procedures are widely used for motor training in adults; they include enriched environment, forced treadmill, chronic centrifugation, and hindlimb suspension. At 9 months, the mice reared in the enriched environment showed a slower type of fibre in slow muscles and a faster type in fast muscles, improved performance in motor tests, and a modified gait and body posture while walking. The proportion of fibres in the postural muscles of centrifuged mice did not change, but these mice showed improved resistance to fatigue. The suspended mice showed increased persistence of immature hybrid fibres in the tibialis, with a slower shift in the load-bearing soleus, without any behavioural changes. The forced treadmill was very stressful for the mice, but had limited effects on motor output, although a slower profile was observed in the tibialis. These results support the hypothesis that motor experience during a critical period of motor development shapes muscle phenotype and motor output. The different impacts of the various training procedures suggest that motor performance in adults can be optimized by appropriate training during a defined period of motor development.
Collapse
Affiliation(s)
- Nadjet Serradj
- Department of Physiology, Pharmacology & Neuroscience, Sophie Davis School of Biomedical Education, City College of New York/CCNY, New York, NY, USA
| | | | | |
Collapse
|
32
|
Frasca D, Tomaszczyk J, McFadyen BJ, Green RE. Traumatic brain injury and post-acute decline: what role does environmental enrichment play? A scoping review. Front Hum Neurosci 2013; 7:31. [PMID: 23616755 PMCID: PMC3628363 DOI: 10.3389/fnhum.2013.00031] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 01/25/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives: While a growing number of studies provide evidence of neural and cognitive decline in traumatic brain injury (TBI) survivors during the post-acute stages of injury, there is limited research as of yet on environmental factors that may influence this decline. The purposes of this paper, therefore, are to (1) examine evidence that environmental enrichment (EE) can influence long-term outcome following TBI, and (2) examine the nature of post-acute environments, whether they vary in degree of EE, and what impact these variations have on outcomes. Methods: We conducted a scoping review to identify studies on EE in animals and humans, and post-discharge experiences that relate to barriers to recovery. Results: One hundred and twenty-three articles that met inclusion criteria demonstrated the benefits of EE on brain and behavior in healthy and brain-injured animals and humans. Nineteen papers on post-discharge experiences revealed that variables such as insurance coverage, financial, and social support, home therapy, and transition from hospital to home, can have an impact on clinical outcomes. Conclusion: There is evidence to suggest that lack of EE, whether from lack of resources or limited ability to engage in such environments, may play a role in post-acute cognitive and neural decline. Maximizing EE in the post-acute stages of TBI may improve long-term outcomes for the individual, their family and society.
Collapse
Affiliation(s)
- Diana Frasca
- Graduate Department of Rehabilitation Science, University of Toronto Toronto, ON, Canada ; Cognitive Neurorehabilitation Sciences Laboratory, Toronto Rehabilitation Institute Toronto, ON, Canada
| | | | | | | |
Collapse
|
33
|
Reichmann F, Painsipp E, Holzer P. Environmental enrichment and gut inflammation modify stress-induced c-Fos expression in the mouse corticolimbic system. PLoS One 2013; 8:e54811. [PMID: 23349972 PMCID: PMC3547954 DOI: 10.1371/journal.pone.0054811] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/17/2012] [Indexed: 12/20/2022] Open
Abstract
Environmental enrichment (EE) has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological) stressor such as water avoidance stress (WAS) or an internal (systemic) stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex – amygdala – hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external and internal stressors is modulated by the housing environment.
Collapse
Affiliation(s)
- Florian Reichmann
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.
| | | | | |
Collapse
|
34
|
Hall FS, Perona MTG. Have studies of the developmental regulation of behavioral phenotypes revealed the mechanisms of gene-environment interactions? Physiol Behav 2012; 107:623-40. [PMID: 22643448 PMCID: PMC3447116 DOI: 10.1016/j.physbeh.2012.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 12/30/2022]
Abstract
This review addresses the recent convergence of our long-standing knowledge of the regulation of behavioral phenotypes by developmental experience with recent advances in our understanding of mechanisms regulating gene expression. This review supports a particular perspective on the developmental regulation of behavioral phenotypes: That the role of common developmental experiences (e.g. maternal interactions, peer interactions, exposure to a complex environment, etc.) is to fit individuals to the circumstances of their lives within bounds determined by long-standing (evolutionary) mechanisms that have shaped responses to critical and fundamental types of experience via those aspects of gene structure that regulate gene expression. The phenotype of a given species is not absolute for a given genotype but rather variable within bounds that is determined by mechanisms regulated by experience (e.g. epigenetic mechanisms). This phenotypic variation is not necessarily random, or evenly distributed along a continuum of description or measurement, but often highly disjointed, producing distinct, even opposing, phenotypes. The potentiality for these varying phenotypes is itself the product of evolution, the potential for alternative phenotypes itself conveying evolutionary advantage. Examples of such phenotypic variation, resulting from environmental or experiential influences, have a long history of study in neurobiology, and a number of these will be discussed in this review: neurodevelopmental experiences that produce phenotypic variation in visual perception, cognitive function, and emotional behavior. Although other examples will be discussed, particular emphasis will be made on the role of social behavior on neurodevelopment and phenotypic determination. It will be argued that an important purpose of some aspects of social behavior is regulation of neurobehavioral phenotypes by experience via genetic regulatory mechanisms.
Collapse
Affiliation(s)
- F Scott Hall
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassel Drive, Baltimore, MD 21224, United States.
| | | |
Collapse
|
35
|
Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012; 2012:305693. [PMID: 22848849 PMCID: PMC3400395 DOI: 10.1155/2012/305693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
Collapse
|
36
|
Wilkes L, Owen SF, Readman GD, Sloman KA, Wilson RW. Does structural enrichment for toxicology studies improve zebrafish welfare? Appl Anim Behav Sci 2012. [DOI: 10.1016/j.applanim.2012.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Avital A, Dolev T, Aga-Mizrachi S, Zubedat S. Environmental enrichment preceding early adulthood methylphenidate treatment leads to long term increase of corticosterone and testosterone in the rat. PLoS One 2011; 6:e22059. [PMID: 21789212 PMCID: PMC3137618 DOI: 10.1371/journal.pone.0022059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/13/2011] [Indexed: 11/19/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADD/ADHD) has been emerging as a world-wide psychiatric disorder. There appears to be an increasing rate of stimulant drug abuse, specifically methylphenidate (MPH) which is the most common treatment for ADHD, among individuals who do not meet the criteria for ADHD and particularly for cognitive enhancement among university students. However, the long term effects of exposure to MPH are unknown. Thus, in light of a developmental approach in humans, we aimed to test the effects of adolescence exposure to enriched environment (EE) followed by MPH administration during early adulthood, on reactions to stress in adulthood. Specifically, at approximate adolescence [post natal days (PND) 30-60] rats were reared in EE and were treated with MPH during early adulthood (PND 60-90). Adult (PND 90-92) rats were exposed to mild stress and starting at PND 110, the behavioral and endocrine effects of the combined drug and environmental conditions were assessed. Following adolescence EE, long term exposure to MPH led to decreased locomotor activity and increased sucrose preference. EE had a beneficial effect on PPI (attentive abilities), which was impaired by long term exposure to MPH. Finally, the interaction between EE and, exposure to MPH led to long-term elevated corticosterone and testosterone levels. In view of the marked increase in MPH consumption over the past decade, vigilance is crucial in order to prevent potential drug abuse and its long term detrimental consequences.
Collapse
Affiliation(s)
- Avi Avital
- Department of Psychology and the Center for Psychobiological Research, The Yezreel Valley College, Yezreel Valley, Israel
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Talya Dolev
- Department of Psychology and the Center for Psychobiological Research, The Yezreel Valley College, Yezreel Valley, Israel
| | - Shlomit Aga-Mizrachi
- Department of Psychology and the Center for Psychobiological Research, The Yezreel Valley College, Yezreel Valley, Israel
| | - Salman Zubedat
- Department of Psychology and the Center for Psychobiological Research, The Yezreel Valley College, Yezreel Valley, Israel
| |
Collapse
|
38
|
Kazlauckas V, Pagnussat N, Mioranzza S, Kalinine E, Nunes F, Pettenuzzo L, O.Souza D, Portela LV, Porciúncula LO, Lara DR. Enriched environment effects on behavior, memory and BDNF in low and high exploratory mice. Physiol Behav 2011; 102:475-80. [DOI: 10.1016/j.physbeh.2010.12.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/24/2010] [Accepted: 12/28/2010] [Indexed: 11/15/2022]
|
39
|
Mann PE, Gervais KJ. Environmental enrichment delays pup-induced maternal behavior in rats. Dev Psychobiol 2011; 53:371-82. [DOI: 10.1002/dev.20526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 12/20/2010] [Indexed: 02/05/2023]
|
40
|
Codita A, Gumucio A, Lannfelt L, Gellerfors P, Winblad B, Mohammed AH, Nilsson LN. Impaired behavior of female tg-ArcSwe APP mice in the IntelliCage: A longitudinal study. Behav Brain Res 2010; 215:83-94. [DOI: 10.1016/j.bbr.2010.06.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/22/2010] [Accepted: 06/28/2010] [Indexed: 01/08/2023]
|
41
|
Abstract
Environmental enrichment for animals is a combination of complex inanimate and social stimulation and generally consists of housing conditions that facilitate enhanced sensory, cognitive, motor and social stimulation relative to standard housing conditions. One of the most robust effects of environmental enrichment is the reduction of anxiety levels. However, the extreme variability in enrichment protocols may account for some of the inconsistencies in its effects and the variance among results reported by different laboratories. In this protocol, we describe a simple environmental enrichment strategy for the induction of a robust and replicable anxiolytic-like effect in mice. We provide detailed instructions on how to build an enrichment cage that is specially designed for easy manipulation, cleaning and observation by the experimenter. In addition, we describe the different enrichment items, their order in the cage, the frequency of renewal and their cleaning and sterilization procedures. The total length of the protocol is 6 weeks.
Collapse
|
42
|
Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice. Behav Brain Res 2010; 209:274-80. [DOI: 10.1016/j.bbr.2010.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/30/2010] [Accepted: 02/01/2010] [Indexed: 12/25/2022]
|
43
|
Viola GG, Botton PH, Moreira JD, Ardais AP, Oses JP, Souza DO. Influence of environmental enrichment on an object recognition task in CF1 mice. Physiol Behav 2010; 99:17-21. [DOI: 10.1016/j.physbeh.2009.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 11/26/2022]
|
44
|
Nithianantharajah J, Hannan AJ. The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 2009; 89:369-82. [PMID: 19819293 DOI: 10.1016/j.pneurobio.2009.10.001] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 09/16/2009] [Accepted: 10/01/2009] [Indexed: 12/23/2022]
Abstract
The concept of 'cognitive reserve', and a broader theory of 'brain reserve', were originally proposed to help explain epidemiological data indicating that individuals who engaged in higher levels of mental and physical activity via education, occupation and recreation, were at lower risk of developing Alzheimer's disease and other forms of dementia. Subsequently, behavioral, cellular and molecular studies in animals (predominantly mice and rats) have revealed dramatic effects of environmental enrichment, which involves enhanced levels of sensory, cognitive and motor stimulation via housing in novel, complex environments. Furthermore, increasing levels of voluntary physical exercise, via ad libitum access to running wheels, can have significant effects on brain and behavior, thus informing the relative effects of mental and physical activity. More recently, animal models of brain disorders have been compared under environmentally stimulating and standard housing conditions, and this has provided new insights into environmental modulators and gene-environment interactions involved in pathogenesis. Here, we review animal studies that have investigated the effects of modifying mental and physical activity via experimental manipulations, and discuss their relevance to brain and cognitive reserve (BCR). Recent evidence suggests that the concept of BCR is not only relevant to brain aging, neurodegenerative diseases and dementia, but also to other neurological and psychiatric disorders. Understanding the cellular and molecular mechanisms mediating BCR may not only facilitate future strategies aimed at optimising healthy brain aging, but could also identify molecular targets for novel pharmacological approaches aimed at boosting BCR in 'at risk' and symptomatic individuals with various brain disorders.
Collapse
Affiliation(s)
- Jess Nithianantharajah
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
45
|
Viola GG, Rodrigues L, Américo JC, Hansel G, Vargas RS, Biasibetti R, Swarowsky A, Gonçalves CA, Xavier LL, Achaval M, Souza DO, Amaral OB. Morphological changes in hippocampal astrocytes induced by environmental enrichment in mice. Brain Res 2009; 1274:47-54. [PMID: 19374889 DOI: 10.1016/j.brainres.2009.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 03/30/2009] [Accepted: 04/07/2009] [Indexed: 12/20/2022]
Abstract
Environmental enrichment is known to induce plastic changes in the brain, including morphological changes in hippocampal neurons, with increases in synaptic and spine densities. In recent years, the evidence for a role of astrocytes in regulating synaptic transmission and plasticity has increased, and it is likely that morphological and functional changes in astrocytes play an important role in brain plasticity. Our study was designed to evaluate changes in astrocytes induced by environmental enrichment in the CA1 region of the hippocampus, focusing on astrocytic density and on morphological changes in astrocytic processes. After 8 weeks of environmental enrichment starting at weaning, male CF-1 mice presented no significant changes in astrocyte number or in the density of glial fibrillary acidic protein (GFAP) immunoreactivity in the stratum radiatum. However, they did present changes in astrocytic morphology in the same region, as expressed by a significant increase in the ramification of astrocytic processes measured by the Sholl concentric circles method, as well as by an increase in the number and length of primary processes extending in a parallel orientation to CA1 nerve fibers. This led astrocytes to acquire a more stellate morphology, a fact which could be related to the increase in hippocampal synaptic density observed in previous studies. These findings corroborate the idea that structural changes in astrocytic networks are an integral part of plasticity processes occurring in the brain.
Collapse
Affiliation(s)
- Giordano G Viola
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Penn PR, Rose FD, Johnson DA. Virtual enriched environments in paediatric neuropsychological rehabilitation following traumatic brain injury: Feasibility, benefits and challenges. Dev Neurorehabil 2009; 12:32-43. [PMID: 19283532 DOI: 10.1080/17518420902739365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A frequent consequence of traumatic brain injury (TBI) is a significant reduction in patients' cerebral activation/arousal, which clinicians agree is not conducive to optimal rehabilitation outcomes. In the context of paediatric rehabilitation, sustained periods of inactivity are particularly undesirable, as contemporary research has increasingly called into question the Kennard principle that youth inherently promotes greater neural plasticity and functional recovery following TBI. Therefore, the onus to create rehabilitation conditions most conducive to harnessing plasticity falls squarely on the shoulders of clinicians. Having noted the efficacy of environmental enrichment in promoting neural plasticity and positive functional outcomes in the animal literature, some researchers have suggested that the emerging technology of Virtual Reality (VR) could provide the means to increase patients' cerebral activation levels via the use of enriched Virtual Environments (VEs). However, 10 years on, this intuitively appealing concept has received almost no attention from researchers and clinicians alike. This paper overviews recent research on the benefits of enriched environments in the injured brain and identifies the potential and challenges associated with implementing VR-based enrichment in paediatric neuropsychological rehabilitation.
Collapse
Affiliation(s)
- P R Penn
- School of Psychology, University of East London, Stratford, London, UK.
| | | | | |
Collapse
|
47
|
Labrie V, Clapcote SJ, Roder JC. Mutant mice with reduced NMDA-NR1 glycine affinity or lack of d-amino acid oxidase function exhibit altered anxiety-like behaviors. Pharmacol Biochem Behav 2009; 91:610-20. [DOI: 10.1016/j.pbb.2008.09.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/16/2022]
|
48
|
Influence of environmental manipulation on exploratory behaviour in male BDNF knockout mice. Behav Brain Res 2008; 197:339-46. [PMID: 18951926 DOI: 10.1016/j.bbr.2008.09.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 09/10/2008] [Accepted: 09/11/2008] [Indexed: 11/22/2022]
Abstract
It is widely accepted that brain derived neurotrophic factor (BDNF) plays a crucial role in mediating changes in learning and memory performance induced by environmental conditions. In order to ascertain whether BDNF modulates environmentally induced changes in exploratory behaviour, we examined mice carrying a deletion in one copy of the BDNF gene. Young heterozygous male BDNF knockout mice (BDNF+/-) and their wild-type (WT) controls were exposed to the enriched environment condition (EC) or the standard condition (SC) for 8 weeks. Exploratory behaviour was assessed in the open-field (OF) and hole-board (HB) test. Brains from EC and SC reared animals were processed for Golgi-Cox staining and the dendritic spine density in the dentate gyrus (DG) and CA1 hippocampal regions were examined. We found behavioural differences both due to the genetic modification and the environmental manipulation, with the BDNF+/- mice being more active in the OF whereas the EC mice had increased exploratory behaviour in the HB test. Environmental enrichment also led to an increase in dendritic spines in the hippocampal CA1 region and DG of the wild-type mice. This effect was also found in the enriched BDNF+/- mice, but was less pronounced. Our findings support the critical role of BDNF in behavioural and neural plasticity associated with environmental enrichment and suggest that besides maze learning performance, BDNF dependent mechanisms are also involved in other aspects of behaviour. Here we provide additional evidence that exploratory activity is influenced by BDNF.
Collapse
|