1
|
Bonilla P, Shanks A, Nerella Y, Porcu A. Effects of chronic light cycle disruption during adolescence on circadian clock, neuronal activity rhythms, and behavior in mice. Front Neurosci 2024; 18:1418694. [PMID: 38952923 PMCID: PMC11215055 DOI: 10.3389/fnins.2024.1418694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024] Open
Abstract
The advent of artificial lighting, particularly during the evening and night, has significantly altered the predictable daily light and dark cycles in recent times. Altered light environments disrupt the biological clock and negatively impact mood and cognition. Although adolescents commonly experience chronic changes in light/dark cycles, our understanding of how the adolescents' brain adapts to altered light environments remains limited. Here, we investigated the impact of chronic light cycle disruption (LCD) during adolescence, exposing adolescent mice to 19 h of light and 5 h of darkness for 5 days and 12 L:12D for 2 days per week (LCD group) for 4 weeks. We showed that LCD exposure did not affect circadian locomotor activity but impaired memory and increased avoidance response in adolescent mice. Clock gene expression and neuronal activity rhythms analysis revealed that LCD disrupted local molecular clock and neuronal activity in the dentate gyrus (DG) and in the medial amygdala (MeA) but not in the circadian pacemaker (SCN). In addition, we characterized the photoresponsiveness of the MeA and showed that somatostatin neurons are affected by acute and chronic aberrant light exposure during adolescence. Our research provides new evidence highlighting the potential consequences of altered light environments during pubertal development on neuronal physiology and behaviors.
Collapse
Affiliation(s)
| | | | | | - Alessandra Porcu
- Department of Drug Discovery and Biomedical Science, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
2
|
Csabafi K, Ibos KE, Bodnár É, Filkor K, Szakács J, Bagosi Z. A Brain Region-Dependent Alteration in the Expression of Vasopressin, Corticotropin-Releasing Factor, and Their Receptors Might Be in the Background of Kisspeptin-13-Induced Hypothalamic-Pituitary-Adrenal Axis Activation and Anxiety in Rats. Biomedicines 2023; 11:2446. [PMID: 37760887 PMCID: PMC10525110 DOI: 10.3390/biomedicines11092446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Previously, we reported that intracerebroventricularly administered kisspeptin-13 (KP-13) induces anxiety-like behavior and activates the hypothalamic-pituitary-adrenal (HPA) axis in rats. In the present study, we aimed to shed light on the mediation of KP-13's stress-evoking actions. The relative gene expressions of the corticotropin-releasing factor (Crf, Crfr1, and Crfr2) and arginine vasopressin (Avp, Avpr1a, and Avpr1b) systems were measured in the amygdala and hippocampus of male Wistar rats after icv KP-13 treatment. CRF and AVP protein content were also determined. A different set of animals received CRF or V1 receptor antagonist pretreatment before the KP-13 challenge, after which either an open-field test or plasma corticosterone levels measurement was performed. In the amygdala, KP-13 induced an upregulation of Avp and Avpr1b expression, and a downregulation of Crf. In the hippocampus, the mRNA level of Crf increased and the level of Avpr1a decreased. A significant rise in AVP protein content was also detected in the amygdala. KP-13 also evoked anxiety-like behavior in the open field test, which the V1 receptor blocker antagonized. Both CRF and V1 receptor blockers reduced the KP-13-evoked rise in the plasma corticosterone level. This suggests that KP-13 alters the AVP and CRF signaling and that might be responsible for its effect on the HPA axis and anxiety-like behavior.
Collapse
Affiliation(s)
- Krisztina Csabafi
- Department of Pathophysiology, University of Szeged, P.O. Box 427, H-6701 Szeged, Hungary (K.F.)
| | | | | | | | | | | |
Collapse
|
3
|
Hennessy A, Seguin D, Correa S, Wang J, Martinez-Trujillo JC, Nicolson R, Duerden EG. Anxiety in children and youth with autism spectrum disorder and the association with amygdala subnuclei structure. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 27:1053-1067. [PMID: 36278283 PMCID: PMC10108338 DOI: 10.1177/13623613221127512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Autism spectrum disorder (ASD) is clinically characterized by social and communication difficulties as well as repetitive behaviors. Many children with ASD also suffer from anxiety, which has been associated with alterations in amygdala structure. In this work, the association between amygdala subnuclei volumes and anxiety was assessed in a cohort of 234 participants (mean age = 11.0 years, SD = 3.9, 95 children with ASD, 139 children were non-autistic). Children underwent magnetic resonance imaging. Amygdala subnuclei volumes were extracted automatically. Anxiety was assessed using the Screen for Child Anxiety Related Disorders, the Child Behavior Checklist, and the Strength and Difficulties Questionnaire. Children with ASD had higher anxiety scores relative to non-autistic children on all anxiety measures (all, p < 0.05). Anxiety levels were significantly predicted in children with ASD by right basal (right: B = 0.235, p = 0.002) and paralaminar (PL) (B = −0.99, p = 0.009) volumes. Basal nuclei receive multisensory information from cortical and subcortical areas and have extensive projections within the limbic system while the PL nuclei are involved in emotional processing. Alterations in basal and PL nuclei in children with ASD and the association with anxiety may reflect morphological changes related to in the neurocircuitry of anxiety in ASD. Lay abstract Autism spectrum disorder (ASD) is clinically characterized by social communication difficulties as well as restricted and repetitive patterns of behavior. In addition, children with ASD are more likely to experience anxiety compared with their peers who do not have ASD. Recent studies suggest that atypical amygdala structure, a brain region involved in emotions, may be related to anxiety in children with ASD. However, the amygdala is a complex structure composed of heterogeneous subnuclei, and few studies to date have focused on how amygdala subnuclei relate to in anxiety in this population. The current sample consisted of 95 children with ASD and 139 non-autistic children, who underwent magnetic resonance imaging (MRI) and assessments for anxiety. The amygdala volumes were automatically segmented. Results indicated that children with ASD had elevated anxiety scores relative to peers without ASD. Larger basal volumes predicted greater anxiety in children with ASD, and this association was not seen in non-autistic children. Findings converge with previous literature suggesting ASD children suffer from higher levels of anxiety than non-autistic children, which may have important implications in treatment and interventions. Our results suggest that volumetric estimation of amygdala’s subregions in MRI may reveal specific anxiety-related associations in children with ASD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emma G Duerden
- Western University, Canada
- The University of Western Ontario, Canada
| |
Collapse
|
4
|
Wang Z, Li J, Wu W, Qi T, Huang Z, Wang B, Li S, Li C, Ding J, Zeng Y, Huang P, Zhou Z, Huang Y, Huang J, Wang X, Huang Q, Zhang G, Qiu P, Chen J. Saikosaponin D Rescues Deficits in Sexual Behavior and Ameliorates Neurological Dysfunction in Mice Exposed to Chronic Mild Stress. Front Pharmacol 2021; 12:625074. [PMID: 33776766 PMCID: PMC7990100 DOI: 10.3389/fphar.2021.625074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
Often associated with sexual dysfunction (SD), chronic stress is the main contributing risk factor for the pathogenesis of depression. Radix bupleuri had been widely used in traditional Chinese medicine formulation for the regulation of emotion and sexual activity. As the main active component of Radix bupleuri, saikosaponin D (SSD) has a demonstrated antidepressant effect in preclinical studies. Herein, we sought to investigate the effect of SSD to restore sexual functions in chronically stressed mice and elucidate the potential brain mechanisms that might underly these effects. SSD was gavage administered for three weeks during the induction of chronic mild stress (CMS), and its effects on emotional and sexual behaviors in CMS mice were observed. The medial posterodorsal amygdala (MePD) was speculated to be involved in the manifestation of sexual dysfunctions in CMS mice. Our results revealed that SSD not only alleviated CMS-induced depressive-like behaviors but also rescued CMS-induced low sexual motivation and poor sexual performance. CMS destroyed astrocytes and activated microglia in the MePD. SSD treatment reversed the changes in glial pathology and inhibited neuroinflammatory and oxidative stress in the MePD of CMS mice. The neuronal morphological and functional deficits in the MePD were also alleviated by SSD administration. Our results provide insights into the central mechanisms involving the brain associated with sexual dysfunction. These findings deepen our understanding of SSD in light of the psychopharmacology of stress and sexual disorders, providing a theoretical basis for its potential clinical application.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianwei Li
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Wu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Qi
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhansen Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shixiong Li
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chen Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Yuanning Zeng
- Research Center for Good Practice in TCM Proessing Technology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peng Huang
- Foshan Maternal and Child Health Hospital, Affiliated Hospital of Southern Medical University, Foshan, China
| | - Zhihua Zhou
- Department of Neurology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanjun Huang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiyuan Huang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Guanghuan Zhang
- Department of Nutrition, Hospital of Integrated Traditional Chinese Medical and Western Medicine, Southern Medical University, Guangzhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jun Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Jackson KL, Head GA, Gueguen C, Stevenson ER, Lim K, Marques FZ. Mechanisms Responsible for Genetic Hypertension in Schlager BPH/2 Mice. Front Physiol 2019; 10:1311. [PMID: 31681017 PMCID: PMC6813185 DOI: 10.3389/fphys.2019.01311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/18/2023] Open
Abstract
It has been 45 years since Gunther Schlager used a cross breeding program in mice to develop inbred strains with high, normal, and low blood pressure (BPH/2, BPN/3, and BPL/1 respectively). Thus, it is timely to gather together the studies that have characterized and explored the mechanisms associated with the hypertension to take stock of exactly what is known and what remains to be determined. Growing evidence supports the notion that the mechanism of hypertension in BPH/2 mice is predominantly neurogenic with some of the early studies showing aberrant brain noradrenaline levels in BPH/2 compared with BPN/3. Analysis of the adrenal gland using microarray suggested an association with the activity of the sympathetic nervous system. Indeed, in support of this, there is a larger depressor response to ganglion blockade, which reduced blood pressure in BPH/2 mice to the same level as BPN/3 mice. Greater renal tyrosine hydroxylase staining and greater renal noradrenaline levels in BPH/2 mice suggest sympathetic hyperinnervation of the kidney. Renal denervation markedly reduced the blood pressure in BPH/2 but not BPN/3 mice, confirming the importance of renal sympathetic nervous activity contributing to the hypertension. Further, there is an important contribution to the hypertension from miR-181a and renal renin in this strain. BPH/2 mice also display greater neuronal activity of amygdalo-hypothalamic cardiovascular regulatory regions. Lesions of the medial nucleus of the amygdala reduced the hypertension in BPH/2 mice and abolished the strain difference in the effect of ganglion blockade, suggesting a sympathetic mechanism. Further studies suggest that aberrant GABAergic inhibition may play a role since BPH/2 mice have low GABAA receptor δ, α4 and β2 subunit mRNA expression in the hypothalamus, which are predominantly involved in promoting tonic neuronal inhibition. Allopregnanolone, an allosteric modulator of GABAA receptors, which increase the expression of these subunits in the amygdala and hypothalamus, is shown to reduce the hypertension and sympathetic nervous system contribution in BPH/2 mice. Thus far, evidence suggests that BPH/2 mice have aberrant GABAergic inhibition, which drives neuronal overactivity within amygdalo-hypothalamic brain regions. This overactivity is responsible for the greater sympathetic contribution to the hypertension in BPH/2 mice, thus making this an ideal model of neurogenic hypertension.
Collapse
Affiliation(s)
- Kristy L Jackson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Emily R Stevenson
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Hypertension Research Laboratory, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Abstract
Stress affects core body temperature (Tc). Many kinds of stress induce transient, monophasic hyperthermia, which diminishes gradually if the stressor is terminated. Stronger stressors produce a longer-lasting effect. Repeated/chronic stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Animals that are exposed to chronic stress or a cold environment exhibit an enhanced hyperthermic response to a novel stress. These changes persist for several days after cessation of stress exposure. In contrast, long-lasting inescapable stress sometimes induces hypothermia. In healthy humans, psychologic stress induces slight increases in Tc, which are within the normal range of Tc or just above it. Some individuals, however, develop extremely high Tc (up to 41°C) when they are exposed to emotional events or show persistent low-grade high Tc (37-38°C) during or after chronic stress situations. In addition to the nature of the stressor itself, such stress-induced thermal responses are modulated by sex, age, ambient temperature, cage mates, past stressful experiences and cold exposure, and coping. Stress-induced hyperthermia is driven by mechanisms distinct from infectious fever, which requires inflammatory mediators. However, both stress and infection activate the dorsomedial hypothalamus-rostral medullary raphe region-sympathetic nerve axis to increase Tc.
Collapse
Affiliation(s)
- Takakazu Oka
- Department of Psychosomatic Medicine, International University of Health and Welfare Hospital, Tochigi-ken, Japan.
| |
Collapse
|
7
|
Lau T, Bigio B, Zelli D, McEwen BS, Nasca C. Stress-induced structural plasticity of medial amygdala stellate neurons and rapid prevention by a candidate antidepressant. Mol Psychiatry 2017; 22:227-234. [PMID: 27240534 PMCID: PMC5133196 DOI: 10.1038/mp.2016.68] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 12/18/2022]
Abstract
The adult brain is capable of adapting to internal and external stressors by undergoing structural plasticity, and failure to be resilient and preserve normal structure and function is likely to contribute to depression and anxiety disorders. Although the hippocampus has provided the gateway for understanding stress effects on the brain, less is known about the amygdala, a key brain area involved in the neural circuitry of fear and anxiety. Here, in mice more vulnerable to stressors, we demonstrate structural plasticity within the medial and basolateral regions of the amygdala in response to prolonged 21-day chronic restraint stress (CRS). Three days before the end of CRS, treatment with the putative, rapidly acting antidepressant, acetyl-l-carnitine (LAC) in the drinking water opposed the direction of these changes. Behaviorally, the LAC treatment during the last part of CRS enhanced resilience, opposing the effects of CRS, as shown by an increased social interaction and reduced passive behavior in a forced swim test. Furthermore, CRS mice treated with LAC show resilience of the CRS-induced structural remodeling of medial amygdala (MeA) stellate neurons. Within the basolateral amygdala (BLA), LAC did not reduce, but slightly enhanced, the CRS-increased length and number of intersections of pyramidal neurons. No structural changes were observed in MeA bipolar neurons, BLA stellate neurons or in lateral amygdala stellate neurons. Our findings identify MeA stellate neurons as an important component in the responses to stress and LAC action and show that LAC can promote structural plasticity of the MeA. This may be useful as a model for increasing resilience to stressors in at-risk populations.
Collapse
Affiliation(s)
- T. Lau
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - B. Bigio
- The Rockefeller University, Center for Clinical & Translational Science, New York, USA
| | - D. Zelli
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - BS. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| | - C. Nasca
- Laboratory of Neuroendocrinology, The Rockefeller University, New York; 10065, USA
| |
Collapse
|
8
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
9
|
Oka T. Psychogenic fever: how psychological stress affects body temperature in the clinical population. Temperature (Austin) 2015; 2:368-78. [PMID: 27227051 PMCID: PMC4843908 DOI: 10.1080/23328940.2015.1056907] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 05/24/2015] [Accepted: 05/25/2015] [Indexed: 12/22/2022] Open
Abstract
Psychogenic fever is a stress-related, psychosomatic disease especially seen in young women. Some patients develop extremely high core body temperature (Tc) (up to 41°C) when they are exposed to emotional events, whereas others show persistent low-grade high Tc (37-38°C) during situations of chronic stress. The mechanism for psychogenic fever is not yet fully understood. However, clinical case reports demonstrate that psychogenic fever is not attenuated by antipyretic drugs, but by psychotropic drugs that display anxiolytic and sedative properties, or by resolving patients' difficulties via natural means or psychotherapy. Animal studies have demonstrated that psychological stress increases Tc via mechanisms distinct from infectious fever (which requires proinflammatory mediators) and that the sympathetic nervous system, particularly β3-adrenoceptor-mediated non-shivering thermogenesis in brown adipose tissue, plays an important role in the development of psychological stress-induced hyperthermia. Acute psychological stress induces a transient, monophasic increase in Tc. In contrast, repeated stress induces anticipatory hyperthermia, reduces diurnal changes in Tc, or slightly increases Tc throughout the day. Chronically stressed animals also display an enhanced hyperthermic response to a novel stress, while past fearful experiences induce conditioned hyperthermia to the fear context. The high Tc that psychogenic fever patients develop may be a complex of these diverse kinds of hyperthermic responses.
Collapse
Affiliation(s)
- Takakazu Oka
- Department of Psychosomatic Medicine; Graduate School of Medical Sciences; Kyushu University; Fukuoka, Japan
| |
Collapse
|
10
|
Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacol Biochem Behav 2015; 134:85-91. [PMID: 25959831 DOI: 10.1016/j.pbb.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/22/2015] [Accepted: 05/02/2015] [Indexed: 01/17/2023]
Abstract
Previously, we have shown that anabolic androgenic steroid (AAS) exposure throughout adolescence stimulates offensive aggression while also reducing anxious behaviors during the exposure period. Interestingly, AAS exposure through development correlates with alterations to the serotonin system in regions known to contain 5HT3 receptors that influence the control of both aggression and anxiety. Despite these effects, little is known about whether these separate developmental AAS-induced behavioral alterations occur as a function of a common neuroanatomical locus. To begin to address this question, we localized 5HT3 receptors in regions that have been implicated in aggression and anxiety. To examine the impact these receptors may have on AAS alterations to behavior, we microinjected the 5HT3 agonist mCPBG directly into a region know for its influence over aggressive behavior, the lateral division of the anterior hypothalamus, and recorded alterations to anxious behaviors using the elevated plus maze. AAS exposure primarily reduced the presence of 5HT3 receptors in aggression/anxiety regions. Accordingly, mCPBG blocked the anxiolytic effects of adolescent AAS exposure. These data suggest that the 5HT3 receptor plays a critical role in the circuit modulating developmental AAS-induced changes to both aggressive and anxious behaviors, and further implicates the lateral division of the anterior hypothalamus as an important center for the negative behavioral effects of developmental AAS-exposure.
Collapse
|
11
|
Inactivation of neuronal function in the amygdaloid region reduces tail artery blood flow alerting responses in conscious rats. Neuroscience 2013; 228:13-22. [DOI: 10.1016/j.neuroscience.2012.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022]
|
12
|
Li S, Wang Y, Xu P, Pu F, Li D, Fan Y, Gong G, Luo Y. Surface morphology of amygdala is associated with trait anxiety. PLoS One 2012; 7:e47817. [PMID: 23112851 PMCID: PMC3480410 DOI: 10.1371/journal.pone.0047817] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/17/2012] [Indexed: 11/25/2022] Open
Abstract
Previous neuroimaging studies have suggested a role of amygdala in trait anxiety level, in which amygdala was typically treated as a whole. To date, it remains unknown whether the morphology of specific subregions of amygdala are associated with trait anxiety. Here, we employed a shape analysis approach to locate the association between its morphology and trait anxiety on the surface of amygdala. 24 healthy young participants were included. The boundary of amygdala for each subject was first manually outlined using high-resolution magnetic resonance (MR) image, followed by 3D surface reconstruction and parameterization using spherical harmonic description. Two point-wise metrics, direct displacement between the individual surface and atlas surface and its normal projection, were used to quantify the surface morphology of amygdala. Statistical analysis revealed significant correlations between the two surface metrics and trait anxiety levels, which were located around the lateral and central nucleus of right amygdala. Our results provided localized information for the association between amygdala and trait anxiety, and suggested a central role of the lateral and central nucleus of right amygdala on trait anxiety.
Collapse
Affiliation(s)
- Shuyu Li
- State Key Laboratory of Software Development Environment, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yanan Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Fang Pu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Deyu Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail: (GG); (YL)
| | - Yuejia Luo
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- * E-mail: (GG); (YL)
| |
Collapse
|
13
|
Warthen DM, Provencio I. The role of intrinsically photosensitive retinal ganglion cells in nonimage-forming responses to light. Eye Brain 2012; 4:43-48. [PMID: 28539780 DOI: 10.2147/eb.s27839] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Light exerts many effects on behavior and physiology. These effects can be characterized as either image-forming or nonimage-forming (NIF) visual processes. Image-forming vision refers to the process of detecting objects and organisms in the environment and distinguishing their physical characteristics, such as size, shape, and direction of motion. NIF vision, in contrast, refers to effects of light that are independent of fine spatiotemporal vision. NIF effects are many and varied, ranging from modulation of basal physiology, such as heart rate and body temperature, to changes in higher functions, such as mood and cognitive performance. In mammals, many NIF effects of light are dependent upon the inner retinal photopigment melanopsin and the cells in which melanopsin is expressed, the intrinsically photosensitive retinal ganglion cells (ipRGCs). The ipRGCs project broadly throughout the brain. Many of these projections terminate in areas known to mediate NIF effects, while others terminate in regions whose link to photoreception remains to be established. Additionally, the presence of ipRGC projections to areas of the brain with no known link to photoreception suggests the existence of additional ipRGC-mediated NIF effects. This review summarizes the known NIF effects of light and the role of melanopsin and ipRGCs in driving these effects, with an eye toward stimulating further investigation of the many and varied effects of light on physiology and behavior.
Collapse
Affiliation(s)
- Daniel M Warthen
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
14
|
Jung S, Lee Y, Kim G, Son H, Lee DH, Roh GS, Kang SS, Cho GJ, Choi WS, Kim HJ. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress. BMC Neurosci 2012; 13:58. [PMID: 22672618 PMCID: PMC3423000 DOI: 10.1186/1471-2202-13-58] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/06/2012] [Indexed: 12/13/2022] Open
Abstract
Background The amygdala plays an essential role in controlling emotional behaviors and has numerous connections to other brain regions. The functional role of the amygdala has been highlighted by various studies of stress-induced behavioral changes. Here we investigated gene expression changes in the amygdala in the chronic immobilization stress (CIS)-induced depression model. Results Eight genes were decreased in the amygdala of CIS mice, including genes for neurotrophic factors and extracellular matrix proteins. Among these, osteoglycin, fibromodulin, insulin-like growth factor 2 (Igf2), and insulin-like growth factor binding protein 2 (Igfbp2) were further analyzed for histological expression changes. The expression of osteoglycin and fibromodulin simultaneously decreased in the medial, basolateral, and central amygdala regions. However, Igf2 and Igfbp2 decreased specifically in the central nucleus of the amygdala. Interestingly, this decrease was found only in the amygdala of mice showing higher immobility, but not in mice displaying lower immobility, although the CIS regimen was the same for both groups. Conclusions These results suggest that the responsiveness of the amygdala may play a role in the sensitivity of CIS-induced behavioral changes in mice.
Collapse
Affiliation(s)
- Soonwoong Jung
- Department of Anatomy and Neurobiology, Gyeongsang National University, Jinju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Excitotoxic lesions of the medial amygdala attenuate olfactory fear-potentiated startle and conditioned freezing behavior. Behav Brain Res 2012; 229:427-32. [DOI: 10.1016/j.bbr.2012.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/18/2022]
|
16
|
Haley GE, Eghlidi DH, Kohama SG, Urbanski HF, Raber J. Association of microtubule associated protein-2, synaptophysin, and apolipoprotein E mRNA and protein levels with cognition and anxiety levels in aged female rhesus macaques. Behav Brain Res 2012; 232:1-6. [PMID: 22475553 DOI: 10.1016/j.bbr.2012.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 02/06/2023]
Abstract
The dendritic protein microtubule associated protein 2 (MAP-2), the presynaptic marker synaptophysin (SYN), and apolipoprotein E (APOE), a protein which plays a role in lipid transport and metabolism and affects synaptic activity show changes with age. We analyzed post-mortem tissue from aged female rhesus macaques cognitively tested in a spatial maze and classified as good spatial performers (GSP) or poor spatial performers (PSP) and behaviorally tested in a playroom and classified as bold or reserved animals. MAP2, SYN, and APOE mRNA and protein levels in the prefrontal cortex (PFC), hippocampus, and amygdala, were assessed using qRT-PCR and western blot. In the amygdala, bold monkeys had higher levels of MAP2 and SYN mRNA than reserved monkeys. MAP2 mRNA correlated positively with amygdala size on the right, left, and combined left and right sides, while SYN mRNA levels correlated positively with the size of the right amygdala. In the hippocampus, SYN and APOE protein levels were higher in GSP than PSP animals. Thus, in aged nonhuman primates, classification of measures of anxiety is associated with differences in selected mRNA, but not protein, levels. In contrast, classification of cognitive performance is associated with differences in selected protein, but not mRNA, levels.
Collapse
Affiliation(s)
- Gwendolen E Haley
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
17
|
Vinkers CH, Hendriksen H, van Oorschot R, Cook JM, Rallipalli S, Huang S, Millan MJ, Olivier B, Groenink L. Lifelong CRF overproduction is associated with altered gene expression and sensitivity of discrete GABA(A) and mGlu receptor subtypes. Psychopharmacology (Berl) 2012; 219:897-908. [PMID: 21833506 PMCID: PMC3259347 DOI: 10.1007/s00213-011-2423-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/15/2011] [Indexed: 12/22/2022]
Abstract
RATIONALE Repeated activation of corticotropin-releasing factor (CRF) receptors is associated with increased anxiety and enhanced stress responsivity, which may be mediated via limbic GABAergic and glutamatergic transmission. OBJECTIVE The present study investigated molecular and functional alterations in GABA(A) receptor (GABA(A)R) and metabotropic glutamate receptor (mGluR) responsivity in transgenic mice that chronically overexpress CRF. METHODS CRF(1) receptor, GABA(A)R, and mGluR sensitivity were determined in CRF-overexpressing mice using the stress-induced hyperthermia (SIH) test. In addition, we measured mRNA expression levels of GABA(A)R α subunits and mGluRs in the amygdala and hypothalamus. RESULTS CRF-overexpressing mice were less sensitive to the anxiolytic effects of the CRF(1) receptor antagonists CP154,526 and DMP695, the GABA(A)R α(3)-selective agonist TP003 (0-3 mg/kg) and the mGluR(2/3) agonist LY379268 (0-10 mg/kg) in the SIH test. The hypothermic effect of the non-selective GABA(A)R agonist diazepam (0-4 mg/kg) and the α(1)-subunit-selective GABA(A)R agonist zolpidem (0-10 mg/kg) was reduced in CRF-overexpressing mice. No genotype differences were found using the GABA(A)R α(5)-subunit preferential compound SH-053-2'F-R-CH(3) and mGluR(5) antagonists MPEP and MTEP. CRF-overexpressing mice showed decreased expression levels of GABA(A)R α(2) subunit and mGluR(3) mRNA levels in the amygdala, whereas these expression levels were increased in the hypothalamus. CRF-overexpressing mice also showed increased hypothalamic mRNA levels of α(1) and α(5) GABA(A)R subunits. CONCLUSIONS We found that lifelong CRF overproduction is associated with altered gene expression and reduced functional sensitivity of discrete GABA(A) and mGluR receptor subtypes. These findings suggest that sustained over-activation of cerebral CRF receptors may contribute to the development of altered stress-related behavior via modulation of GABAergic and glutamatergic transmission.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boutros NN, Peters R. Internal gating and somatization disorders: proposing a yet un-described neural system. Med Hypotheses 2011; 78:174-8. [PMID: 22088921 DOI: 10.1016/j.mehy.2011.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
Medically unexplained symptoms (MUS) are a major medical burden and our current understanding of the pathophysiological process leading to their development remains minimal. While research has strongly linked chronic stress to the development of MUS the exact mechanisms and the reason for the many variations in the resultant symptomatology remain unclear. In this paper we advance the hypothesis that an internal (visceral) sensory gating system must exist akin to the much better studied external sensory gating system. The hypothesis is based on the observations that under normal conditions sensations of internal organs do not reach consciousness (i.e., filtered or gated out on a subconscious or preattentive level). As visceral sensations are usually perceived only when there is a pathological process affecting the organ, then failure of this internal gating system leading to the sensations arriving to consciousness must be interpreted by the brain to indicate pathology in this organ. If the hypothesis proves to be true and such a system does exist, the implications are many and significant including developing methods for assessing the system and possibly correcting it.
Collapse
Affiliation(s)
- Nash N Boutros
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, School of Medicine, College of Nursing, Detroit, MI 48207, United States.
| | | |
Collapse
|
19
|
Carrillo M, Ricci LA, Melloni RH. Developmental and withdrawal effects of adolescent AAS exposure on the glutamatergic system in hamsters. Behav Neurosci 2011; 125:452-64. [PMID: 21500881 DOI: 10.1037/a0023475] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the Syrian hamster (Mesocricetus auratus) glutamate activity has been implicated in the modulation of adolescent anabolic-androgenic steroid (AAS)-induced aggression. The current study investigated the time course of adolescent AAS-induced neurodevelopmental and withdrawal effects on the glutamatergic system and examined whether these changes paralleled those of adolescent AAS-induced aggression. Glutamate activity in brain areas comprising the aggression circuit in hamsters and aggression levels were examined following 1, 2, 3, and 4 weeks of AAS treatment or 1, 2, 3, and 4 weeks following the cessation of AAS exposure. In these studies glutamate activity was examined using vesicular glutamate transporter 2 (VGLUT2). The onset of aggression was observed following 2 weeks exposure to AAS and continued to increase showing maximal aggression levels after 4 weeks of AAS treatment. This aggressive phenotype was detected after 2 weeks of withdrawal from AAS. The time-course of AAS-induced changes in latero-anterior hypothalamus (LAH)-VGLUT2 closely paralleled increases in aggression. Increases in LAH-VGLUT2 were first detected in animals exposed to AAS for 2 weeks and were maintained up to 3 weeks following the cessation of AAS treatment. AAS treatment also produced developmental and long-term alterations in VGLUT2 expression within other aggression areas. However, AAS-induced changes in glutamate activity within these regions did not coincide with changes in aggression. Together, these data indicate that adolescent AAS treatment leads to alterations in the glutamatergic system in brain areas implicated in aggression control, yet only alterations in LAH-glutamate parallel the time course of AAS-induced changes in the aggressive phenotype.
Collapse
Affiliation(s)
- Maria Carrillo
- Behavioral Neuroscience Program, Department of Psychology, Northeastern University, Boston, MA 02155, USA
| | | | | |
Collapse
|
20
|
Measures of anxiety, amygdala volumes, and hippocampal scopolamine phMRI response in elderly female rhesus macaques. Neuropharmacology 2011; 62:385-90. [PMID: 21867720 DOI: 10.1016/j.neuropharm.2011.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 12/28/2022]
Abstract
In nonhuman primates, anxiety levels are typically assessed by observing social hierarchies or behavior in an intruder task. As measures of anxiety might influence performance on a particular cognitive task, it is important to analyze these measures in the same room as used for the cognitive task. As we use a playroom for the spatial maze test, we classified elderly female rhesus macaques (Macaca mulatta) monkeys, as bold or reserved monkeys based on the time spent in specific areas of this room. Based on their exploratory behavior in the playroom, bold monkeys were defined as animals that spent 20% more time in the unprotected areas of the room than in the protected areas, whereas reserved monkeys spent a comparable amount of time in both areas. MRI analyses showed that reserved monkeys had a smaller amygdala compared to bold monkeys but there were no group differences in hippocampal volumes. In addition, the amount of time spent in the corners of the room was negatively correlated with the right amygdala as well as the total amygdala size. Finally, reserved monkeys showed a lower phMRI response to the muscarinic receptor antagonist scopolamine compared to the bold monkeys. Thus, in elderly female nonhuman primates measures of anxiety are associated with structural amygdala differences and hippocampal muscarinic receptor function. This article is part of a Special Issue entitled 'Anxiety and Depression'.
Collapse
|
21
|
Baisley SK, Cloninger CL, Bakshi VP. Fos expression following regimens of predator stress versus footshock that differentially affect prepulse inhibition in rats. Physiol Behav 2011; 104:796-803. [PMID: 21843541 DOI: 10.1016/j.physbeh.2011.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 11/18/2022]
Abstract
Stress is suggested to exacerbate symptoms and contribute to relapse in patients with schizophrenia and several other psychiatric disorders. A prominent feature of many of these illnesses is an impaired ability to filter information through sensorimotor gating processes. Prepulse inhibition (PPI) is a functional measure of sensorimotor gating, and known to be deficient in schizophrenia and sometimes in post-traumatic stress disorder (PTSD), both of which are also sensitive to stress-induced symptom deterioration. We previously found that a psychological stressor (exposure to a ferret without physical contact), but not footshock, disrupted PPI in rats, suggesting that intense psychological stress/trauma may uniquely model stress-induced sensorimotor gating abnormalities. In the present experiment, we sought to recreate the conditions where we found this behavioral difference, and to explore possible underlying neural substrates. Rats were exposed acutely to ferret stress, footshock, or no stress (control). 90 min later, tissue was obtained for Fos immunohistochemistry to assess neuronal activation. Several brain regions (prelimbic, infralimbic, and cingulate cortices, the paraventricular hypothalamic nucleus, the paraventricular thalamic nucleus, and the lateral periaqueductal gray) were equally activated following exposure to either stressor. Interestingly, the medial amygdala and dorsomedial periaqueductal gray had nearly twice as much Fos activation in the ferret-exposed rats as in the footshock-exposed rats, suggesting that higher activation within these structures may contribute to the unique behavioral effects induced by predator stress. These results may have implications for understanding the neural substrates that could participate in sensorimotor gating abnormalities seen in several psychiatric disorders after psychogenic stress.
Collapse
Affiliation(s)
- Sarah K Baisley
- Neuroscience Training Program, Department of Psychiatry, University of Wisconsin-Madison, 7225 Medical Sciences Center, 1300 University Ave, Madison, WI 53706, USA.
| | | | | |
Collapse
|
22
|
Bakshi VP, Alsene KM, Roseboom PH, Connors EE. Enduring sensorimotor gating abnormalities following predator exposure or corticotropin-releasing factor in rats: a model for PTSD-like information-processing deficits? Neuropharmacology 2011; 62:737-48. [PMID: 21288473 DOI: 10.1016/j.neuropharm.2011.01.040] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 01/23/2011] [Accepted: 01/24/2011] [Indexed: 01/21/2023]
Abstract
A deficit in prepulse inhibition (PPI) can be one of the clinically observed features of post-traumatic stress disorder (PTSD) that is seen long after the acute traumatic episode has terminated. Thus, reduced PPI may represent an enduring psychophysiological marker of this illness in some patients. PPI is an operational measure of sensorimotor gating and refers to the phenomenon in which a weak stimulus presented immediately before an intense startling stimulus inhibits the magnitude of the subsequent startle response. The effects of stress on PPI have been relatively understudied, and in particular, there is very little information on PPI effects of ethologically relevant psychological stressors. We aimed to develop a paradigm for evaluating stress-induced sensorimotor gating abnormalities by comparing the effects of a purely psychological stressor (predator exposure) to those of a nociceptive physical stressor (footshock) on PPI and baseline startle responses in rats over an extended period of time following stressor presentation. Male Sprague-Dawley rats were exposed (within a protective cage) to ferrets for 5 min or left in their homecage and then tested for PPI immediately, 24 h, 48 h, and 9 days after the exposure. The effects of footshock were evaluated in a separate set of rats. The effects seen with stressor presentation were compared to those elicited by corticotropin-releasing factor (CRF; 0.5 and 3 μg/6 μl, intracerebroventricularly). Finally, the effects of these stressors and CRF administration on plasma corticosterone were measured. PPI was disrupted 24 h after ferret exposure; in contrast, footshock failed to affect PPI at any time. CRF mimicked the predator stress profile, with the lowdose producing a PPI deficit 24 h after infusion. Interestingly, the high dose also produced a PPI deficit 24 h after infusion, but with this dose, the PPI deficit was evident even 9d later. Plasma corticosterone levels were elevated acutely (before PPI deficits emerged) by both stressors and CRF, but returned to normal control levels 24 h later, when PPI deficits were present. Thus, predator exposure produces a delayed disruption of PPI, and stimulation of CRF receptors recapitulates these effects. Contemporaneous HPA axis activation is neither necessary nor sufficient for these PPI deficits. These results indicate that predator exposure, perhaps acting through CRF, may model the delayed-onset and persistent sensorimotor gating abnormalities that have been observed clinically in PTSD, and that further studies using this model may shed insight on the mechanisms of information-processing deficits in this disorder. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Vaishali P Bakshi
- Department of Psychiatry and Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53719, USA.
| | | | | | | |
Collapse
|
23
|
Lin Y, Li X, Lupi M, Kinsey-Jones JS, Shao B, Lightman SL, O'Byrne KT. The role of the medial and central amygdala in stress-induced suppression of pulsatile LH secretion in female rats. Endocrinology 2011; 152:545-55. [PMID: 21159851 PMCID: PMC3101805 DOI: 10.1210/en.2010-1003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stress exerts profound inhibitory effects on reproductive function by suppressing the pulsatile release of GnRH and therefore LH. Although the mechanisms by which stressors disrupt the hypothalamic GnRH pulse generator remain to be fully elucidated, numerous studies have implicated the amygdala, especially its medial (MeA) and central nuclei (CeA), as key modulators of the neuroendocrine response to stress. In the present study, we investigated the roles of the MeA and CeA in stress-induced suppression of LH pulses. Ovariectomized rats received bilateral ibotenic acid or sham lesions targeting the MeA or CeA; blood samples (25 μl) were taken via chronically implanted cardiac catheters every 5 min for 6 h for the measurement of LH pulses. After 2 h of baseline sampling, the rats were exposed to either: restraint (1 h), insulin-induced hypoglycemia (IIH) (0.3 U/kg, iv), or lipopolysaccharide (LPS) (25 μg/kg, iv) stress. The restraint but not IIH or LPS stress-induced suppression of LH pulses was markedly attenuated by the MeA lesions. In contrast, CeA lesioning attenuated LPS, but not restraint or IIH stress-induced suppression of LH pulses. Moreover, after restraint stress, the number of Fos-positive neurons and the percentage of glutamic acid decarboxylase(67) neurons expressing Fos was significantly greater in the GnRH-rich medial preoptic area (mPOA) of rats with intact, rather than lesioned, MeA. These data indicate that the MeA and CeA play key roles in psychogenic and immunological stress-induced suppression of the GnRH pulse generator, respectively, and the MeA-mediated effect may involve γ-aminobutyric acid ergic signaling within the mPOA.
Collapse
Affiliation(s)
- Yuanshao Lin
- Division of Women's Health, School of Medicine, King's College London, 2.92W Hodgkin Building, Guy's Campus, London, SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|