1
|
Brunelle DL, Park CR, Fawcett TJ, Walton JP. Signal-in-noise detection across the lifespan in a mouse model of presbycusis. Hear Res 2025; 455:109153. [PMID: 39637601 DOI: 10.1016/j.heares.2024.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The auditory system is constantly tasked with detecting acoustic cues in complex auditory environments. Difficulty hearing speech in noise, largely a result of energetic masking, is a major communication complaint of the elderly, which impacts a third of the global population over 65. The neural mechanisms responsible for processing sound in background noise and subsequently achieving release from energetic masking remain obscure. Furthermore, the senescence of signal-in-noise detection is poorly understood, a phenomenon which could have a myriad of clinical implications. We tested over 300 CBA/CaJ mice aged 1-27 months on tone-in-noise detection ability utilizing prepulse inhibition of the acoustic startle response with a machine learning startle classifier. We found that mice developed profound tone-in-noise detection deficits throughout their lifespan as evidenced by Rd', a detection metric derived from signal detection theory. The most severe decline in Rd' corresponded to a 2.54-fold decrease in tone-in-noise detection across the lifespan. Our findings suggest that CBA/CaJ mice are an appropriate model to study the role of age-related hearing loss in the context of signal-in-noise masking.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Timothy J Fawcett
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Dept. of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
2
|
Santolin C, Crespo-Bojorque P, Sebastian-Galles N, Toro JM. Sensitivity to the sonority sequencing principle in rats (Rattus norvegicus). Sci Rep 2023; 13:17036. [PMID: 37813950 PMCID: PMC10562444 DOI: 10.1038/s41598-023-44081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Albeit diverse, human languages exhibit universal structures. A salient example is the syllable, an important structure of language acquisition. The structure of syllables is determined by the Sonority Sequencing Principle (SSP), a linguistic constraint according to which phoneme intensity must increase at onset, reaching a peak at nucleus (vowel), and decline at offset. Such structure generates an intensity pattern with an arch shape. In humans, sensitivity to restrictions imposed by the SSP on syllables appears at birth, raising questions about its emergence. We investigated the biological mechanisms at the foundations of the SSP, testing a nonhuman, non-vocal-learner species with the same language materials used with humans. Rats discriminated well-structured syllables (e.g., pras) from ill-structured ones (e.g., lbug) after being familiarized with syllabic structures conforming to the SSP. In contrast, we did not observe evidence that rats familiarized with syllables that violate such constraint discriminated at test. This research provides the first evidence of sensitivity to the SSP in a nonhuman species, which likely stems from evolutionary-ancient cross-species biological predispositions for natural acoustic patterns. Humans' early sensitivity to the SSP possibly emerges from general auditory processing that favors sounds depicting an arch-shaped envelope, common amongst animal vocalizations. Ancient sensory mechanisms, responsible for processing vocalizations in the wild, would constitute an entry-gate for human language acquisition.
Collapse
Affiliation(s)
- Chiara Santolin
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | - Juan Manuel Toro
- Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| |
Collapse
|
3
|
Budson AE, Richman KA, Kensinger EA. Consciousness as a Memory System. Cogn Behav Neurol 2022; 35:263-297. [PMID: 36178498 PMCID: PMC9708083 DOI: 10.1097/wnn.0000000000000319] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 01/31/2023]
Abstract
We suggest that there is confusion between why consciousness developed and what additional functions, through continued evolution, it has co-opted. Consider episodic memory. If we believe that episodic memory evolved solely to accurately represent past events, it seems like a terrible system-prone to forgetting and false memories. However, if we believe that episodic memory developed to flexibly and creatively combine and rearrange memories of prior events in order to plan for the future, then it is quite a good system. We argue that consciousness originally developed as part of the episodic memory system-quite likely the part needed to accomplish that flexible recombining of information. We posit further that consciousness was subsequently co-opted to produce other functions that are not directly relevant to memory per se, such as problem-solving, abstract thinking, and language. We suggest that this theory is compatible with many phenomena, such as the slow speed and the after-the-fact order of consciousness, that cannot be explained well by other theories. We believe that our theory may have profound implications for understanding intentional action and consciousness in general. Moreover, we suggest that episodic memory and its associated memory systems of sensory, working, and semantic memory as a whole ought to be considered together as the conscious memory system in that they, together, give rise to the phenomenon of consciousness. Lastly, we suggest that the cerebral cortex is the part of the brain that makes consciousness possible, and that every cortical region contributes to this conscious memory system.
Collapse
Affiliation(s)
- Andrew E. Budson
- Center for Translational Cognitive Neuroscience, Veterans Affairs Boston Healthcare System, Boston, Massachusetts
- Alzheimer’s Disease Research Center, Boston University, Boston, Massachusetts
| | - Kenneth A. Richman
- Center for Health Humanities, Massachusetts College of Pharmacy and Health Sciences, Boston, Massachusetts
| | | |
Collapse
|
4
|
Lai J, Dowling M, Bartlett EL. Comparison of age-related declines in behavioral auditory responses versus electrophysiological measures of amplitude modulation. Neurobiol Aging 2022; 117:201-211. [DOI: 10.1016/j.neurobiolaging.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
|
5
|
Toro JM, Crespo-Bojorque P. Arc-shaped pitch contours facilitate item recognition in non-human animals. Cognition 2021; 213:104614. [PMID: 33558018 DOI: 10.1016/j.cognition.2021.104614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Acoustic changes linked to natural prosody are a key source of information about the organization of language. Both human infants and adults readily take advantage of such changes to discover and memorize linguistic patterns. Do they so because our brain is efficiently wired to specifically process linguistic stimuli? Or are we co-opting for language acquisition purposes more general principles that might be inherited from our animal ancestors? Here, we address this question by exploring if other species profit from prosody to better process acoustic sequences. More specifically, we test whether arc-shaped pitch contours defining natural prosody might facilitate item recognition and memorization in rats. In two experiments, we presented to the rats nonsense words with flat, natural, inverted and random prosodic contours. We observed that the animals correctly recognized the familiarization words only when arc-shaped pitch contours were implemented over them. Our results suggest that other species might also benefit from prosody for the memorization of items in a sequence. Such capacity seems to be rooted in general principles of how biological sounds are produced and processed.
Collapse
Affiliation(s)
- Juan M Toro
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08019 Barcelona, Spain; Universitat Pompeu Fabra, C. Ramon Trias Fargas, 25-27, 08005 Barcelona, Spain.
| | | |
Collapse
|
6
|
O’Sullivan C, Weible AP, Wehr M. Disruption of Early or Late Epochs of Auditory Cortical Activity Impairs Speech Discrimination in Mice. Front Neurosci 2020; 13:1394. [PMID: 31998064 PMCID: PMC6965026 DOI: 10.3389/fnins.2019.01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022] Open
Abstract
Speech evokes robust activity in auditory cortex, which contains information over a wide range of spatial and temporal scales. It remains unclear which components of these neural representations are causally involved in the perception and processing of speech sounds. Here we compared the relative importance of early and late speech-evoked activity for consonant discrimination. We trained mice to discriminate the initial consonants in spoken words, and then tested the effect of optogenetically suppressing different temporal windows of speech-evoked activity in auditory cortex. We found that both early and late suppression disrupted performance equivalently. These results suggest that mice are impaired at recognizing either type of disrupted representation because it differs from those learned in training.
Collapse
Affiliation(s)
- Conor O’Sullivan
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Biology, University of Oregon, Eugene, OR, United States
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
| | - Michael Wehr
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States
- Department of Psychology, University of Oregon, Eugene, OR, United States
- *Correspondence: Michael Wehr,
| |
Collapse
|
7
|
|
8
|
Steube N, Nowotny M, Pilz PKD, Gaese BH. Dependence of the Startle Response on Temporal and Spectral Characteristics of Acoustic Modulatory Influences in Rats and Gerbils. Front Behav Neurosci 2016; 10:133. [PMID: 27445728 PMCID: PMC4928136 DOI: 10.3389/fnbeh.2016.00133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/13/2016] [Indexed: 11/17/2022] Open
Abstract
The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An interaction of temporal and spectral influences, finally, resulted in higher inhibition for 500 ms gaps than for 75 ms gaps at all frequencies tested. Improved prepulse paradigms based on these results are well suited to quantify the consequences of central processing disorders.
Collapse
Affiliation(s)
- Natalie Steube
- Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt/Main Frankfurt, Germany
| | - Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt/Main Frankfurt, Germany
| | - Peter K D Pilz
- Institute of Neurobiology, University of Tuebingen Tuebingen, Germany
| | - Bernhard H Gaese
- Institute of Cell Biology and Neuroscience, Goethe-University Frankfurt/Main Frankfurt, Germany
| |
Collapse
|
9
|
Centanni TM, Sloan AM, Reed AC, Engineer CT, Rennaker RL, Kilgard MP. Detection and identification of speech sounds using cortical activity patterns. Neuroscience 2014; 258:292-306. [PMID: 24286757 PMCID: PMC3898816 DOI: 10.1016/j.neuroscience.2013.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance and without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. To compare the temporal limits of the classifier to behavior, we developed a novel task that requires rats to identify individual consonant sounds from a stream of distracter consonants. The classifier successfully predicted the ability of rats to accurately identify speech sounds for syllable presentation rates up to 10 syllables per second (up to 17.9 ± 1.5 bits/s), which is comparable to human performance. Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech-processing disorders.
Collapse
Affiliation(s)
| | - A M Sloan
- University of Texas at Dallas, United States
| | - A C Reed
- University of Texas at Dallas, United States
| | | | | | - M P Kilgard
- University of Texas at Dallas, United States
| |
Collapse
|
10
|
Engineer CT, Perez CA, Carraway RS, Chang KQ, Roland JL, Sloan AM, Kilgard MP. Similarity of cortical activity patterns predicts generalization behavior. PLoS One 2013; 8:e78607. [PMID: 24147140 PMCID: PMC3797841 DOI: 10.1371/journal.pone.0078607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022] Open
Abstract
Humans and animals readily generalize previously learned knowledge to new situations. Determining similarity is critical for assigning category membership to a novel stimulus. We tested the hypothesis that category membership is initially encoded by the similarity of the activity pattern evoked by a novel stimulus to the patterns from known categories. We provide behavioral and neurophysiological evidence that activity patterns in primary auditory cortex contain sufficient information to explain behavioral categorization of novel speech sounds by rats. Our results suggest that category membership might be encoded by the similarity of the activity pattern evoked by a novel speech sound to the patterns evoked by known sounds. Categorization based on featureless pattern matching may represent a general neural mechanism for ensuring accurate generalization across sensory and cognitive systems.
Collapse
Affiliation(s)
- Crystal T. Engineer
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail:
| | - Claudia A. Perez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Ryan S. Carraway
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Kevin Q. Chang
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Jarod L. Roland
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Andrew M. Sloan
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Michael P. Kilgard
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| |
Collapse
|
11
|
Centanni TM, Engineer CT, Kilgard MP. Cortical speech-evoked response patterns in multiple auditory fields are correlated with behavioral discrimination ability. J Neurophysiol 2013; 110:177-89. [PMID: 23596332 DOI: 10.1152/jn.00092.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different speech sounds evoke unique patterns of activity in primary auditory cortex (A1). Behavioral discrimination by rats is well correlated with the distinctness of the A1 patterns evoked by individual consonants, but only when precise spike timing is preserved. In this study we recorded the speech-evoked responses in the primary, anterior, ventral, and posterior auditory fields of the rat and evaluated whether activity in these fields is better correlated with speech discrimination ability when spike timing information is included or eliminated. Spike timing information improved consonant discrimination in all four of the auditory fields examined. Behavioral discrimination was significantly correlated with neural discrimination in all four auditory fields. The diversity of speech responses across recordings sites was greater in posterior and ventral auditory fields compared with A1 and anterior auditor fields. These results suggest that, while the various auditory fields of the rat process speech sounds differently, neural activity in each field could be used to distinguish between consonant sounds with accuracy that closely parallels behavioral discrimination. Earlier observations in the visual and somatosensory systems that cortical neurons do not rely on spike timing should be reevaluated with more complex natural stimuli to determine whether spike timing contributes to sensory encoding.
Collapse
Affiliation(s)
- T M Centanni
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA.
| | | | | |
Collapse
|
12
|
Centanni TM, Booker AB, Sloan AM, Chen F, Maher BJ, Carraway RS, Khodaparast N, Rennaker R, LoTurco JJ, Kilgard MP. Knockdown of the dyslexia-associated gene Kiaa0319 impairs temporal responses to speech stimuli in rat primary auditory cortex. Cereb Cortex 2013; 24:1753-66. [PMID: 23395846 DOI: 10.1093/cercor/bht028] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
One in 15 school age children have dyslexia, which is characterized by phoneme-processing problems and difficulty learning to read. Dyslexia is associated with mutations in the gene KIAA0319. It is not known whether reduced expression of KIAA0319 can degrade the brain's ability to process phonemes. In the current study, we used RNA interference (RNAi) to reduce expression of Kiaa0319 (the rat homolog of the human gene KIAA0319) and evaluate the effect in a rat model of phoneme discrimination. Speech discrimination thresholds in normal rats are nearly identical to human thresholds. We recorded multiunit neural responses to isolated speech sounds in primary auditory cortex (A1) of rats that received in utero RNAi of Kiaa0319. Reduced expression of Kiaa0319 increased the trial-by-trial variability of speech responses and reduced the neural discrimination ability of speech sounds. Intracellular recordings from affected neurons revealed that reduced expression of Kiaa0319 increased neural excitability and input resistance. These results provide the first evidence that decreased expression of the dyslexia-associated gene Kiaa0319 can alter cortical responses and impair phoneme processing in auditory cortex.
Collapse
Affiliation(s)
- T M Centanni
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | | | - A M Sloan
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - F Chen
- University of Connecticut
| | | | - R S Carraway
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - N Khodaparast
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | - R Rennaker
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| | | | - M P Kilgard
- School of Behavioral and Brain Sciences, University of Texas at Dallas
| |
Collapse
|
13
|
Auditory cortex lesions do not disrupt habituation of HPA axis responses to repeated noise stress. Brain Res 2012; 1443:18-26. [PMID: 22290179 DOI: 10.1016/j.brainres.2012.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
Previous research has suggested that sensory areas may play a role in adaptation to repeated stress. The auditory cortex was the target of the present studies because it is a major projection area of the auditory thalamus, where functional inactivation disrupts stress habituation to repeated loud noise. Large bilateral excitotoxic lesions of the auditory cortex were made in male rats 2 weeks prior to (Experiment 1) or a few days after (Experiment 2) a 5 day 30 min repeated 95 dBA noise or no noise regimen. Blood was collected immediately after exposure on days 1, 3, and 5. Two weeks after the 5th exposure, the rats were retested with 30 min noise or no noise to determine retention of the habituated responses. Animals were killed immediately after the retest and trunk blood and brains collected for lesion verification. Plasma adrenocorticotropic hormone (ACTH) and corticosterone levels were determined. In both experiments, significant between-subjects effects were found for noise (95 dBA or no noise) but not for surgery (lesion, sham, or no surgery control rats), with lesion groups exhibiting similar levels of ACTH and corticosterone across days as the sham and no surgery control groups. All noise exposed groups displayed similar habituation rates and retention levels. A third experiment indicated that similar auditory cortex lesions significantly disrupted background noise gap detection in an acoustic startle paradigm. Overall, these data suggest that the information mediating hypothalamic-pituitary-adrenal axis response habituation to repeated loud noise exposures is not derived from the auditory cortex.
Collapse
|
14
|
Jakkamsetti V, Chang KQ, Kilgard MP. Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment. J Neurophysiol 2011; 107:1457-75. [PMID: 22131375 DOI: 10.1152/jn.01057.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Environmental enrichment induces powerful changes in the adult cerebral cortex. Studies in primary sensory cortex have observed that environmental enrichment modulates neuronal response strength, selectivity, speed of response, and synchronization to rapid sensory input. Other reports suggest that nonprimary sensory fields are more plastic than primary sensory cortex. The consequences of environmental enrichment on information processing in nonprimary sensory cortex have yet to be studied. Here we examine physiological effects of enrichment in the posterior auditory field (PAF), a field distinguished from primary auditory cortex (A1) by wider receptive fields, slower response times, and a greater preference for slowly modulated sounds. Environmental enrichment induced a significant increase in spectral and temporal selectivity in PAF. PAF neurons exhibited narrower receptive fields and responded significantly faster and for a briefer period to sounds after enrichment. Enrichment increased time-locking to rapidly successive sensory input in PAF neurons. Compared with previous enrichment studies in A1, we observe a greater magnitude of reorganization in PAF after environmental enrichment. Along with other reports observing greater reorganization in nonprimary sensory cortex, our results in PAF suggest that nonprimary fields might have a greater capacity for reorganization compared with primary fields.
Collapse
Affiliation(s)
- Vikram Jakkamsetti
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75083, USA
| | | | | |
Collapse
|
15
|
Nowotny M, Remus M, Kössl M, Gaese BH. Characterization of the perceived sound of trauma-induced tinnitus in gerbils. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2011; 130:2827-2834. [PMID: 22087911 DOI: 10.1121/1.3646902] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Tinnitus often develops following inner ear pathologies, like acoustic trauma. Therefore, an acoustic trauma model of tinnitus in gerbils was established using a modulated acoustic startle response. Cochlear trauma evoked by exposure to narrow-band noise at 10 kHz was assessed by auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE). Threshold shift amounted to about 25 dB at frequencies > 10 kHz. Induction of a phantom-noise perception was documented by an acoustic startle response paradigm. A reduction of the gap-prepulse inhibition of acoustic startle (GPIAS) was taken as evidence for tinnitus at the behavioral level. Three to five weeks after trauma the ABR and DPOAE thresholds were back to normal. At that time, a reduction of GPIAS in the frequency range 16-20 kHz indicated a phantom noise perception. Seven weeks post trauma the tinnitus-affected frequency range became narrow and shifted to the center-trauma frequency at 10 kHz. Taken together, by investigating frequency-dependent effects in detail, this study in gerbils found trauma-evoked tinnitus developing in the frequency range bordering the low frequency slope of the induced noise trauma. This supports the theory of lateral inhibition as the physiological basis of tinnitus.
Collapse
Affiliation(s)
- Manuela Nowotny
- Institute of Cell Biology and Neuroscience, Siesmayerstrasse 70A, Goethe University Frankfurt am Main, D-60323 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
16
|
Clause A, Nguyen T, Kandler K. An acoustic startle-based method of assessing frequency discrimination in mice. J Neurosci Methods 2011; 200:63-7. [PMID: 21672556 DOI: 10.1016/j.jneumeth.2011.05.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/08/2011] [Accepted: 05/27/2011] [Indexed: 11/28/2022]
Abstract
The acoustic startle response (ASR) is a reflexive contraction of skeletal muscles in response to a loud, abrupt acoustic stimulus. ASR magnitude is reduced if the startle stimulus is preceded by a weaker acoustic or non-acoustic stimulus, a phenomenon known as prepulse inhibition (PPI). PPI has been used to test various aspects of sensory discrimination in both animals and humans. Here we show that PPI of the ASR is an advantageous method of assessing frequency discrimination. We describe the apparatus and its performance testing frequency discrimination in young CD1 mice. Compared to classical conditioning paradigms, PPI of the ASR is less time consuming, produces robust results, and can be used without training even in young animals. This approach can be used to investigate the neuronal mechanisms underlying frequency discrimination, its maturation during development, and its relationship to tonotopic organization.
Collapse
Affiliation(s)
- Amanda Clause
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
17
|
Chen Y, Lai W. Behavioral phenotyping of v-akt murine thymoma viral oncogene homolog 1-deficient mice reveals a sex-specific prepulse inhibition deficit in females that can be partially alleviated by glycogen synthase kinase-3 inhibitors but not by antipsychotics. Neuroscience 2011; 174:178-89. [DOI: 10.1016/j.neuroscience.2010.09.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 11/29/2022]
|
18
|
Porter BA, Rosenthal TR, Ranasinghe KG, Kilgard MP. Discrimination of brief speech sounds is impaired in rats with auditory cortex lesions. Behav Brain Res 2010; 219:68-74. [PMID: 21167211 DOI: 10.1016/j.bbr.2010.12.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 12/08/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022]
Abstract
Auditory cortex (AC) lesions impair complex sound discrimination. However, a recent study demonstrated spared performance on an acoustic startle response test of speech discrimination following AC lesions (Floody et al., 2010). The current study reports the effects of AC lesions on two operant speech discrimination tasks. AC lesions caused a modest and quickly recovered impairment in the ability of rats to discriminate consonant-vowel-consonant speech sounds. This result seems to suggest that AC does not play a role in speech discrimination. However, the speech sounds used in both studies differed in many acoustic dimensions and an adaptive change in discrimination strategy could allow the rats to use an acoustic difference that does not require an intact AC to discriminate. Based on our earlier observation that the first 40 ms of the spatiotemporal activity patterns elicited by speech sounds best correlate with behavioral discriminations of these sounds (Engineer et al., 2008), we predicted that eliminating additional cues by truncating speech sounds to the first 40 ms would render the stimuli indistinguishable to a rat with AC lesions. Although the initial discrimination of truncated sounds took longer to learn, the final performance paralleled rats using full-length consonant-vowel-consonant sounds. After 20 days of testing, half of the rats using speech onsets received bilateral AC lesions. Lesions severely impaired speech onset discrimination for at least one-month post lesion. These results support the hypothesis that auditory cortex is required to accurately discriminate the subtle differences between similar consonant and vowel sounds.
Collapse
Affiliation(s)
- Benjamin A Porter
- The University of Texas at Dallas, School of Behavioral Brain Sciences, 800 West Campbell Road, GR41, Richardson, TX 75080-3021, United States.
| | | | | | | |
Collapse
|