1
|
Martínez-Rivera FJ, Holt LM, Minier-Toribio A, Estill M, Yeh SY, Tofani S, Futamura R, Browne CJ, Mews P, Shen L, Nestler EJ. Transcriptional characterization of cocaine withdrawal versus extinction within nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584637. [PMID: 38559084 PMCID: PMC10980003 DOI: 10.1101/2024.03.12.584637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Substance use disorder is characterized by a maladaptive imbalance wherein drug seeking persists despite negative consequences or drug unavailability. This imbalance correlates with neurobiological alterations some of which are amplified during forced abstinence, thereby compromising the capacity of extinction-based approaches to prevent relapse. Cocaine use disorder (CUD) exemplifies this phenomenon in which neurobiological modifications hijack brain reward regions such as the nucleus accumbens (NAc) to manifest craving and withdrawal-like symptoms. While increasing evidence links transcriptional changes in the NAc to specific phases of addiction, genome-wide changes in gene expression during withdrawal vs. extinction (WD/Ext) have not been examined in a context- and NAc-subregion-specific manner. Here, we used cocaine self-administration (SA) in rats combined with RNA-sequencing (RNA-seq) of NAc subregions (core and shell) to transcriptionally profile the impact of experiencing withdrawal in the home cage or in the previous drug context or experiencing extinction training. As expected, home-cage withdrawal maintained drug seeking in the previous drug context, whereas extinction training reduced it. By contrast, withdrawal involving repetitive exposure to the previous drug context increased drug-seeking behavior. Bioinformatic analyses of RNA-seq data revealed gene expression patterns, networks, motifs, and biological functions specific to these behavioral conditions and NAc subregions. Comparing transcriptomic analysis of the NAc of patients with CUD highlighted conserved gene signatures, especially with rats that were repetitively exposed to the previous drug context. Collectively, these behavioral and transcriptional correlates of several withdrawal-extinction settings reveal fundamental and translational information about potential molecular mechanisms to attenuate drug-associated memories.
Collapse
|
2
|
Menéndez-Delmestre R, Agosto-Rivera JL, González-Segarra AJ, Segarra AC. Cocaine sensitization in male rats requires activation of estrogen receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579327. [PMID: 38370714 PMCID: PMC10871307 DOI: 10.1101/2024.02.07.579327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Gonadal steroids play a modulatory role in cocaine use disorders, and are responsible for many sex differences observed in the behavioral response to cocaine. In females, it is well established that estradiol enhances the behavioral response to cocaine. In males, we have recently shown that testosterone enhances sensitization to cocaine but its mechanism of action remains to be elucidated. The current study investigated the contribution of DHT, a non-aromatizable androgen, and of estradiol, in regulating cocaine-induced sensitization in male rats. Gonadectomized (GDX) male rats treated with estradiol sensitized to repeated cocaine administration, while GDX rats treated with DHT did not, implicating estradiol in cocaine sensitization. Furthermore, intact male rats treated with the antiestrogen ICI 182,780 did not show sensitization to repeated cocaine. This study demonstrates the pivotal role of estradiol in cocaine-induced neuroplasticity and neuroadaptations in the rodent brain.
Collapse
Affiliation(s)
- Raissa Menéndez-Delmestre
- Physiology Department, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| | - José L. Agosto-Rivera
- Department of Biology, University of Puerto Rico, Río Piedras Campus, PO Box 23360, San Juan, Puerto Rico 00931-3360
| | - Amanda J González-Segarra
- Department of Neuroscience and Behavior, Barnard College, Columbia University, New York, New York 10027
| | - Annabell C. Segarra
- Physiology Department, School of Medicine, University of Puerto Rico, Medical Sciences Campus, PO Box 365067, San Juan, Puerto Rico 00936-5067
| |
Collapse
|
3
|
Smith MA, Pearson T, Ballard SL, Camp JD, Sharp JL. The effects of gonadal hormones on heroin Self-Administration in male gonadectomized rats. Psychopharmacology (Berl) 2024; 241:171-179. [PMID: 37833541 PMCID: PMC11135215 DOI: 10.1007/s00213-023-06471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023]
Abstract
RATIONALE Previous studies have shown that gonadal hormones influence opioid self-administration in female rodents, but very few studies have examined these effects in male rodents. OBJECTIVES The purpose of this study was to examine the effects of chronic hormone treatment on intravenous heroin self-administration in gonadectomized male rats using both physiological and supraphysiological doses of testosterone, estradiol, or progesterone. METHODS Gonadectomized male rats were surgically implanted with intravenous catheters and trained to self-administer heroin on a fixed ratio (FR1) schedule of reinforcement. Using a between-subjects design, rats were treated daily with testosterone (0.175 or 1.75 mg, sc), estradiol (0.0005 or 0.005 mg, sc), progesterone, (0.0125 or 0.125 mg, sc), or their vehicles. After 14 days of chronic treatment, a dose-effect curve was determined for heroin (0.0003-0.03 mg/kg/infusion) over the course of one week. RESULTS Neither testosterone nor estradiol altered responding maintained by heroin. In contrast, the high dose of progesterone (0.125 mg) reduced responding maintained by all doses of heroin to saline-control levels. This dose of progesterone did not reduce responding maintained by food on a progressive ratio schedule in either food-restricted or food-sated rats. CONCLUSIONS These data indicate that exogenous progesterone or a pharmacologically active metabolite selectively decreases heroin intake in male rodents, which may have therapeutic implications for men with opioid use disorder.
Collapse
Affiliation(s)
- Mark A Smith
- Department of Psychology and Program in Neuroscience, Davidson College, Davidson, NC, USA.
| | - Tallia Pearson
- Department of Psychology and Program in Neuroscience, Davidson College, Davidson, NC, USA
| | - Shannon L Ballard
- Department of Psychology and Program in Neuroscience, Davidson College, Davidson, NC, USA
| | - Jacob D Camp
- Department of Psychology and Program in Neuroscience, Davidson College, Davidson, NC, USA
| | - Jessica L Sharp
- Department of Psychology and Program in Neuroscience, Davidson College, Davidson, NC, USA
| |
Collapse
|
4
|
Catalfio AM, Fetterly TL, Nieto AM, Robinson TE, Ferrario CR. Cocaine-induced sensitization and glutamate plasticity in the nucleus accumbens core: effects of sex. Biol Sex Differ 2023; 14:41. [PMID: 37355656 PMCID: PMC10290362 DOI: 10.1186/s13293-023-00525-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The development and persistence of addiction is mediated in part by drug-induced alterations in nucleus accumbens (NAc) function. AMPA-type glutamate receptors (AMPARs) provide the main source of excitatory drive to the NAc and enhancements in transmission of calcium-permeable AMPARs (CP-AMPARs) mediate increased cue-triggered drug-seeking following prolonged withdrawal. Cocaine treatment regimens that result in psychomotor sensitization enhance subsequent drug-seeking and drug-taking behaviors. Furthermore, cocaine-induced locomotor sensitization followed by 14 days of withdrawal results in an increase in glutamatergic synaptic transmission. However, very few studies have examined cocaine-induced alterations in synaptic transmission of females or potential effects of experimenter-administered cocaine on NAc CP-AMPAR-mediated transmission in either sex. METHODS Male and female rats were given repeated systemic cocaine injections to induce psychomotor sensitization (15 mg/kg, i.p. 1 injection/day, 8 days). Controls received repeated saline (1 mL/kg, i.p). After 14-16 days of withdrawal brain slices were prepared and whole-cell patch-clamp approaches in the NAc core were used to measure spontaneous excitatory post-synaptic currents (sEPSC), paired pulse ratio, and CP-AMPAR transmission. Additional female rats from this same cohort were also given a challenge injection of cocaine at withdrawal day 14 to assess the expression of sensitization. RESULTS Repeated cocaine produced psychomotor sensitization in both sexes. In males this was accompanied by an increase in sEPSC frequency, but not amplitude, and there was no effect on the paired pulse ratio. Males treated with cocaine and saline had similar sensitivity to Naspm. In contrast, in females there were no significant differences between cocaine and saline groups on any measure, despite females showing robust psychomotor sensitization both during the induction and expression phase. CONCLUSIONS Overall, these data reveal striking sex differences in cocaine-induced NAc glutamate plasticity that accompany the induction of psychomotor sensitization. This suggests that the neural adaptations that contribute to sensitization vary by sex.
Collapse
Affiliation(s)
| | | | - Allison M. Nieto
- Pharmacology Department, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of California, Berkeley, CA USA
| | - Terry E. Robinson
- Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI USA
| | - Carrie R. Ferrario
- Pharmacology Department, University of Michigan, Ann Arbor, MI USA
- Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
5
|
Abstract
OBJECTIVE Research points to exercise having a positive effect in fighting relapse and use of drugs of abuse. Through conducting this research, differences have been observed in the effects of exercise on drug abuse between sexes. Many of the studies found that exercise tends to cause a more profound effect in blocking drug relapse or reinstatement in males when compared with females. METHODS Our hypothesis is that these differences in response to drugs of abuse after an exercise regimen could in part be attributed to variations in testosterone levels between males and females. RESULTS Testosterone has been shown to have a modulatory impact on the dopaminergic activity in the brain, causing an effect on the brain's response to drugs of abuse. Exercise has demonstrated a causal effect on increasing testosterone levels in males, whereas drugs of abuse decrease testosterone levels in males. CONCLUSIONS Thus, exercise raising testosterone levels in males helps to decrease the dopaminergic response in the brain to drugs of abuse causing attenuation to drugs. To find sex-specific exercise treatments for drugs of abuse, it is important to continue researching exercise's efficacy against drugs of abuse.
Collapse
|
6
|
Liu Y, Guo X, Yang B. Age at onset of drug use and aggressive behavior: The role of internal and environmental factors. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-02013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Wickens MM, Kirkland JM, Knouse MC, McGrath AG, Briand LA. Sex-specific role for prefrontal cortical protein interacting with C kinase 1 in cue-induced cocaine seeking. Addict Biol 2021; 26:e13051. [PMID: 34110073 DOI: 10.1111/adb.13051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/16/2021] [Accepted: 04/27/2021] [Indexed: 12/22/2022]
Abstract
Disruption of prefrontal glutamate receptor interacting protein (GRIP), which anchors GluA2-containing AMPA receptors (AMPARs) into the synaptic membrane, potentiates cue-induced cocaine seeking in both males and females. Protein interacting with C kinase 1 (PICK1) plays an opposing role to that of GRIP, removing AMPARs from the synapse. Consistent with our hypothesis that disruption of PICK1 in the mPFC would lead to a decrease in addiction-like behaviour, we found that conditional deletion of PICK1 in the mPFC attenuates cue-induced cocaine seeking in male mice. However, prefrontal PICK1 deletion had the opposite effect in females, leading to an increase in cue-induced reinstatement of cocaine seeking. We did not see any effects of PICK1 knockdown on sucrose taking or seeking, suggesting the sex-specific effects do not generalise to natural reinforcers. These findings suggest the role of PICK1 in the prefrontal cortex of females may not be consistent with its accepted role in males. To determine whether these sex differences were influenced by gonadal hormones, we gonadectomised a cohort of males and found that removal of circulating androgens eliminated the effect of prefrontal PICK1 knockdown. As there was no effect of gonadectomy on its own on any of the behavioural measures collected, our results suggest that androgens may be involved in compensatory downstream effects of PICK1 knockdown. Taken together, these results highlight the need for consideration of sex as a biological variable when examining mechanisms underlying all behaviours, as convergent sex differences can reveal different mechanisms where behavioural sex differences do not exist.
Collapse
Affiliation(s)
- Megan M. Wickens
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Julia M. Kirkland
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Melissa C. Knouse
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Anna G. McGrath
- Department of Psychology Temple University Philadelphia Pennsylvania USA
| | - Lisa A. Briand
- Department of Psychology Temple University Philadelphia Pennsylvania USA
- Neuroscience Program Temple University Philadelphia Pennsylvania USA
| |
Collapse
|
8
|
Swenson S, Blum K, McLaughlin T, Gold MS, Thanos PK. The therapeutic potential of exercise for neuropsychiatric diseases: A review. J Neurol Sci 2020; 412:116763. [PMID: 32305746 DOI: 10.1016/j.jns.2020.116763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Exercise is known to have a myriad of health benefits. There is much to be learned from the effects of exercise and its potential for prevention, attenuation and treatment of multiple neuropsychiatric diseases and behavioral disorders. Furthermore, recent data and research on exercise benefits with respect to major health crises, such as, that of opioid and general substance use disorders, make it very important to better understand and review the mechanisms of exercise and how it could be utilized for effective treatments or adjunct treatments for these diseases. In addition, mechanisms, epigenetics and sex differences are examined and discussed in terms of future research implications.
Collapse
Affiliation(s)
- Sabrina Swenson
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Western Univesity Health Sciences, Graduate College, Pomona, CA, USA
| | | | - Mark S Gold
- Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Psychology, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
9
|
Swenson S, Hamilton J, Robison L, Thanos PK. Chronic aerobic exercise: Lack of effect on brain CB1 receptor levels in adult rats. Life Sci 2019; 230:84-88. [DOI: 10.1016/j.lfs.2019.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 01/25/2023]
|
10
|
Kohtz AS, Walf AA, Frye CA. Effects of non-contingent cocaine on 3alpha-androstanediol. I. Disruption of male sexual behavior. Physiol Behav 2019; 203:120-127. [PMID: 29248633 DOI: 10.1016/j.physbeh.2017.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 12/03/2017] [Accepted: 12/14/2017] [Indexed: 01/21/2023]
Abstract
One of the hallmarks of drug abuse is a reduction in the salience of, and motivation for, natural rewards, such as mating. The effects of psychostimulants on male sexual interest and performance are conflicting; use of psychostimulants can produce increases in risky sexual behaviors but have detrimental effects on sexual ability. We hypothesize that these conflicting effects on sexual behavior are due to interactions between cocaine and androgens, such as testosterone and its neuroactive metabolite, 3α-androstanediol (3α-diol). Male rats were administered saline or cocaine (5, 10, or 20mg/kg, i.p.). Motor behavior was observed in the first 30min following drug-administration, and then sexual responding was assessed for 15min. Levels of androgens (testosterone, 3ɑ-diol, and testosterone's aromatized metabolite, estradiol) were measured in circulation and brain regions (frontal cortex, hippocampus, hypothalamus/striatum (hypo/str), and midbrain). Cocaine had no effect on measures of sexual interest (i.e. anogenital investigation). However, cocaine had substantial effects on consummatory sexual behaviors, such as the latency to mount/intromit and the number of sexual contacts. Frontal cortex and hypo/str 3α-diol levels were strongly correlated with consummatory behaviors in saline administered rats; however, this relationship was disrupted by cocaine at all dosages, concomitant with impaired sexual behaviors. Additionally, there was a shift in metabolism at low dosages of cocaine to push testosterone metabolism in the midbrain towards 3α-diol. On the contrary, moderate and high dosages of cocaine shifted testosterone metabolism towards estradiol. These data demonstrate that the association between cortical and hypo/str 3α-diol levels and sexual behavior of male rats is disrupted by non-contingent cocaine and that there may be dose-dependent effects of acute cocaine on androgen metabolism.
Collapse
Affiliation(s)
- Amy S Kohtz
- Dept. of Psychology, The University at Albany, SUNY, Albany, NY, USA
| | - Alicia A Walf
- Dept. of Psychology, The University at Albany, SUNY, Albany, NY, USA; Cognitive Science Dept., Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Cheryl A Frye
- Dept. of Psychology, The University at Albany, SUNY, Albany, NY, USA; Biological Sciences, The University at Albany, SUNY, Albany, NY, USA; Center for Neuroscience, The University at Albany, SUNY, Albany, NY, USA; Center for Life Sciences Research, The University at Albany, SUNY, Albany, NY, USA.
| |
Collapse
|
11
|
Modeling drug addiction in females: how internal state and environmental context facilitate vulnerability. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Dib T, Martínez-Pinto J, Reyes-Parada M, Torres GE, Sotomayor-Zárate R. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats. Behav Brain Res 2018; 346:80-85. [DOI: 10.1016/j.bbr.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/16/2017] [Accepted: 12/01/2017] [Indexed: 12/13/2022]
|
13
|
Estradiol increases choice of cocaine over food in male rats. Physiol Behav 2017; 203:18-24. [PMID: 29056351 DOI: 10.1016/j.physbeh.2017.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Estradiol modulates the rewarding and reinforcing properties of cocaine in females, including an increase in selection of cocaine over alternative reinforcers. However, the effects of estradiol on male cocaine self-administration behavior are less studied despite equivalent levels of estradiol in the brains of adult males and females, estradiol effects on motivated behaviors in males that share underlying neural substrates with cocaine reinforcement as well as expression of estrogen receptors in the male brain. Therefore, we sought to characterize the effects of estradiol in males on choice between concurrently-available cocaine and food reinforcement as well as responding for cocaine or food in isolation. Male castrated rats (n=46) were treated daily with estradiol benzoate (EB) (5μg/0.1, S.C.) or vehicle (peanut oil) throughout operant acquisition of cocaine (1mg/kg, IV; FI20 sec) and food (3×45mg; FI20 sec) responding, choice during concurrent access and cocaine and food reinforcement under progressive ratio (PR) schedules. EB increased cocaine choice, both in terms of percent of trials on which cocaine was selected and the proportion of rats exhibiting a cocaine preference as well as increased cocaine, but not food, intake under PR. Additionally, within the EB treated group, cocaine-preferring rats exhibited enhanced acquisition of cocaine, but not food, reinforcement whereas no acquisition differences were observed across preferences in the vehicle treated group. These findings demonstrate that estradiol increases cocaine choice in males similarly to what is observed in females.
Collapse
|
14
|
Sex differences in drug addiction and response to exercise intervention: From human to animal studies. Front Neuroendocrinol 2016; 40:24-41. [PMID: 26182835 PMCID: PMC4712120 DOI: 10.1016/j.yfrne.2015.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 02/08/2023]
Abstract
Accumulated research supports the idea that exercise could be an option of potential prevention and treatment for drug addiction. During the past few years, there has been increased interest in investigating of sex differences in exercise and drug addiction. This demonstrates that sex-specific exercise intervention strategies may be important for preventing and treating drug addiction in men and women. However, little is known about how and why sex differences are found when doing exercise-induced interventions for drug addiction. In this review, we included both animal and human that pulled subjects from a varied age demographic, as well as neurobiological mechanisms that may highlight the sex-related differences in these potential to assess the impact of sex-specific roles in drug addiction and exercise therapies.
Collapse
|
15
|
Gill KE, Madison FN, Akins CK. Cocaine-induced sensitization correlates with testosterone in male Japanese quail but not with estradiol in female Japanese quail. Horm Behav 2015; 67:21-7. [PMID: 25456105 PMCID: PMC4291289 DOI: 10.1016/j.yhbeh.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 11/23/2022]
Abstract
Research has indicated that gonadal hormones may mediate behavioral and biological responses to cocaine. Estrogen, in particular, has been shown to increase behavioral responding to cocaine in female rats relative to male rats. The current study investigated the effect of cocaine on locomotor activity and hormonal correlates in male and female Japanese quail (Coturnix japonica). In Japanese quail, circulating hormone levels can be manipulated without surgical alterations via modifying the photoperiod. Male and female quail were housed on either 8L:16D (light:dark) or 16L:8D (light:dark) cycle for 21days. Blood samples were taken prior to the beginning of the experiment and assays were performed to determine the levels of testosterone (T) and estradiol (E2). Quail were given injections of saline or cocaine (10 or 20mg/kg) once a day for 10days. Immediately after each injection, birds were placed in open field arenas and distance traveled was measured for 30min. Results showed that male quail housed under long-light conditions exhibited cocaine-induced sensitization to 10mg/kg cocaine which was correlated with the high levels of plasma T. Female quail housed under short-light conditions demonstrated sensitization to 10mg/kg cocaine, but this was not correlated with the levels of plasma E2. The current findings suggest that cocaine-induced locomotor activity was associated with T in males but not with E2 in females.
Collapse
Affiliation(s)
- Karin E Gill
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA.
| | - Farrah N Madison
- Dept of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chana K Akins
- Department of Psychology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
16
|
Cruz FC, Engi SA, Leão RM, Planeta CS, Crestani CC. Influence of the single or combined administration of cocaine and testosterone in autonomic and neuroendocrine responses to acute restraint stress. J Psychopharmacol 2012; 26:1366-74. [PMID: 22767371 DOI: 10.1177/0269881112453210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abuse of cocaine and androgenic-anabolic steroids (AASs) has become a serious public health problem. Despite reports of an increase in the incidence of simultaneous abuse of these substances, potential toxic interactions between cocaine and AASs are poorly known. In the present study, we investigated the effects of either single or combined administration of testosterone and cocaine for one or 10 consecutive days on autonomic (arterial pressure, heart rate and tail cutaneous temperature) and neuroendocrine (plasma corticosterone) responses induced by acute restraint stress in rats. Combined administration of testosterone and cocaine for 10 days reduced the increase in heart rate and plasma corticosterone level, as well as the fall in tail skin temperature induced by restraint stress. Furthermore, repeated administration of cocaine inhibited the increase in arterial pressure observed during restraint, and this effect was not affected by coadministration of testosterone. Ten-day combined administration of testosterone and cocaine increased basal values of arterial pressure. Moreover, chronic administration of testosterone induced rest bradycardia and elevated basal level of plasma corticosterone. One-day single or combined administration of the drugs did not affect any parameter investigated. In conclusion, the present study demonstrated that combined administration of testosterone and cocaine changed the autonomic and neuroendocrine responses to acute restraint stress. These findings suggest that interaction between AASs and cocaine may affect the ability to cope with stressful events.
Collapse
Affiliation(s)
- Fábio C Cruz
- Laboratory of Pharmacology, Department of Natural Active Principles and Toxicology, School of Pharmaceutical Sciences, São Paulo State University-UNESP, Araraquara, Brazil
| | | | | | | | | |
Collapse
|