1
|
Lin AW, Colvin CA, Kusneniwar H, Kalam F, Makelarski JA, Sen S. Evaluation of daily eating patterns on overall diet quality using decision tree analyses. Am J Clin Nutr 2024; 120:685-695. [PMID: 39069014 PMCID: PMC11393402 DOI: 10.1016/j.ajcnut.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Preliminary evidence suggests that meal timing is associated with higher quality diets. Less is known about whether types of food consumed during specific eating episodes (i.e., day-level eating patterns) predict diet quality. OBJECTIVES We investigated the association between day-level eating patterns and diet quality. METHODS Decision tree models were built using 24-h dietary recall data from the National Health and Nutrition Examination Survey 2015 and 2017 cycles in a cross-sectional study. Sixteen food groups and 12 eating episodes (e.g., breakfast, lunch) were included as input parameters. Diet quality was scored using the Healthy Eating Index-2020 and categorized as higher or lower quality diets based on the median score. Mean decrease in impurity (MDI) ± standard deviation determined the relative contribution that day-level eating patterns had on diet quality; higher values represented greater contributions. RESULTS We analyzed 12,597 dietary recalls from 9347 United States adults who were aged 18 y and older with ≥1 complete recall. Meals (breakfast, lunch, dinner) and respective snacking episodes had the greatest variety of dietary groups that contributed to the Healthy Eating Index-2020 score. Any whole-grain intake at breakfast predicted a higher quality diet (MDI = 0.08 ± 0.00), followed by lower solid fat intake (<8.94 g; MDI = 0.07 ± 0.00) and any plant protein intake at dinner (MDI = 0.05 ± 0.00). CONCLUSIONS Day-level eating patterns were associated with diet quality, emphasizing the relevance of both food type and timing in relation to a high-quality diet. Future interventions should investigate the potential impact of targeting food type and timing to improve diet quality.
Collapse
Affiliation(s)
- Annie W Lin
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Department of Preventive Medicine, Northwestern University, Chicago, IL, United States.
| | - Christopher A Colvin
- Department of Nutrition and Public Health, Benedictine University, Lisle, IL, United States
| | - Hrishikesh Kusneniwar
- Department of Computer Science and Information Systems, Birla Institute of Technology and Sciences, Pilani, Zuarinagar Goa, India
| | - Faiza Kalam
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer A Makelarski
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Sougata Sen
- Department of Computer Science and Information Systems, Birla Institute of Technology and Sciences, Pilani, Zuarinagar Goa, India
| |
Collapse
|
2
|
Pontzer H. The provisioned primate: patterns of obesity across lemurs, monkeys, apes and humans. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220218. [PMID: 37661747 PMCID: PMC10475869 DOI: 10.1098/rstb.2022.0218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Non-human primates are potentially informative but underutilized species for investigating obesity. I examined patterns of obesity across the Primate order, calculating the ratio of body mass in captivity to that in the wild. This index, relative body mass, for n = 40 non-human primates (mean ± s.d.: females: 1.28 ± 0.30, range 0.67-1.78, males: 1.24 ± 0.28, range 0.70-1.97) overlapped with a reference value for humans (women: 1.52, men: 1.44). Among non-human primates, relative body mass was unrelated to dietary niche, and was marginally greater among female cohorts of terrestrial species. Males and females had similar relative body masses, but species with greater sexual size dimorphism (male/female mass) in wild populations had comparatively larger female body mass in captivity. Provisioned populations in wild and free-ranging settings had similar relative body mass to those in research facilities and zoos. Compared to the wild, captive diets are unlikely to be low in protein or fat, or high in carbohydrate, suggesting these macronutrients are not driving overeating in captive populations. Several primate species, including chimpanzees, a sister-species to humans, had relative body masses similar to humans. Humans are not unique in the propensity to overweight and obesity. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Herman Pontzer
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
- Duke Global Health Institute, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Lalanza JF, Snoeren EMS. The cafeteria diet: A standardized protocol and its effects on behavior. Neurosci Biobehav Rev 2020; 122:92-119. [PMID: 33309818 DOI: 10.1016/j.neubiorev.2020.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Obesity is a major health risk, with junk food consumption playing a central role in weight gain, because of its high palatability and high-energy nutrients. The Cafeteria (CAF) diet model for animal experiments consists of the same tasty but unhealthy food products that people eat (e.g. hot dogs and muffins), and considers variety, novelty and secondary food features, such as smell and texture. This model, therefore, mimics human eating patterns better than other models. In this paper, we systematically review studies that have used a CAF diet in behavioral experiments and propose a standardized CAF diet protocol. The proposed diet is ad libitum and voluntary; combines different textures, nutrients and tastes, including salty and sweet products; and it is rotated and varied. Our summary of the behavioral effects of CAF diet show that it alters meal patterns, reduces the hedonic value of other rewards, and tends to reduce stress and spatial memory. So far, no clear effects of CAF diet were found on locomotor activity, impulsivity, coping and social behavior.
Collapse
Affiliation(s)
- Jaume F Lalanza
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Eelke M S Snoeren
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway; Regional Health Authority of North Norway, Norway.
| |
Collapse
|
4
|
Oliva L, Aranda T, Caviola G, Fernández-Bernal A, Alemany M, Fernández-López JA, Remesar X. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. PeerJ 2017; 5:e3697. [PMID: 28929011 PMCID: PMC5600723 DOI: 10.7717/peerj.3697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/26/2017] [Indexed: 11/20/2022] Open
Abstract
Background Food selection and ingestion both in humans and rodents, often is a critical factor in determining excess energy intake and its related disorders. Methods Two different concepts of high-fat diets were tested for their obesogenic effects in rats; in both cases, lipids constituted about 40% of their energy intake. The main difference with controls fed standard lab chow, was, precisely, the lipid content. Cafeteria diets (K) were self-selected diets devised to be desirable to the rats, mainly because of its diverse mix of tastes, particularly salty and sweet. This diet was compared with another, more classical high-fat (HF) diet, devised not to be as tasty as K, and prepared by supplementing standard chow pellets with fat. We also analysed the influence of sex on the effects of the diets. Results K rats grew faster because of a high lipid, sugar and protein intake, especially the males, while females showed lower weight but higher proportion of body lipid. In contrast, the weight of HF groups were not different from controls. Individual nutrient’s intake were analysed, and we found that K rats ingested large amounts of both disaccharides and salt, with scant differences of other nutrients’ proportion between the three groups. The results suggest that the key differential factor of the diet eliciting excess energy intake was the massive presence of sweet and salty tasting food. Conclusions The significant presence of sugar and salt appears as a powerful inducer of excess food intake, more effective than a simple (albeit large) increase in the diet’s lipid content. These effects appeared already after a relatively short treatment. The differential effects of sex agree with their different hedonic and obesogenic response to diet.
Collapse
Affiliation(s)
- Laia Oliva
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Tània Aranda
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Giada Caviola
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Anna Fernández-Bernal
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain
| | - Marià Alemany
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigaciones Biomédicas en Red, Barcelona, Spain
| | - José Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigaciones Biomédicas en Red, Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Faculty of Biology, Barcelona, Spain.,Institute of Biomedicine, University of Barcelona, Barcelona, Spain.,CIBER OBN, Centro de Investigaciones Biomédicas en Red, Barcelona, Spain
| |
Collapse
|
5
|
Magden ER, Mansfield KG, Simmons JH, Abee CR. Nonhuman Primates. LABORATORY ANIMAL MEDICINE 2015:771-930. [DOI: 10.1016/b978-0-12-409527-4.00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
6
|
Toufexis D, Rivarola MA, Lara H, Viau V. Stress and the reproductive axis. J Neuroendocrinol 2014; 26:573-86. [PMID: 25040027 PMCID: PMC4166402 DOI: 10.1111/jne.12179] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022]
Abstract
There exists a reciprocal relationship between the hypothalamic-pituitary-adrenal (HPA) and the hypothalamic-pituitary-gonadal (HPG) axes, wherein the activation of one affects the function of the other and vice versa. For example, both testosterone and oestrogen modulate the response of the HPA axis, whereas activation of the stress axis, especially activation that is repeating or chronic, has an inhibitory effect upon oestrogen and testosterone secretion. Alterations in maternal care can produce significant effects on both HPG and HPA physiology, as well as behaviour in the offspring at adulthood. For example, changes in reproductive behaviour induced by altered maternal care may alter the expression of sex hormone receptors such as oestrogen receptor (ER)α that govern sexual behaviour, and may be particularly important in determining the sexual strategies utilised by females. Stress in adulthood continues to mediate HPG activity in females through activation of a sympathetic neural pathway originating in the hypothalamus and releasing norepinephrine into the ovary, which produces a noncyclic anovulatory ovary that develops cysts. In the opposite direction, sex differences and sex steroid hormones regulate the HPA axis. For example, although serotonin (5-HT) has a stimulatory effect on the HPA axis in humans and rodents that is mediated by the 5-HT1A receptor, only male rodents respond to 5-HT1A antagonism to show increased corticosterone responses to stress. Furthermore, oestrogen appears to decrease 5-HT1A receptor function at presynaptic sites, yet increases 5-HT1A receptor expression at postsynaptic sites. These mechanisms could explain the heightened stress HPA axis responses in females compared to males. Studies on female rhesus macaques show that chronic stress in socially subordinate female monkeys produces a distinct behavioural phenotype that is largely unaffected by oestrogen, a hyporesponsive HPA axis that is hypersensitive to the modulating effects of oestrogen, and changes in 5-HT1A receptor binding in the hippocampus and hypothalamus of social subordinate female monkeys that are restored or inverted by oestrogen replacement. This review summarises all of these studies, emphasising the profound effect that the interaction of the reproductive and stress axes may have on human reproductive health and emotional wellbeing.
Collapse
Affiliation(s)
- Donna Toufexis
- Department of Psychological Sciences, University of Vermont, Burlington VT USA
- Yerkes National Primate Research Center, Emory University, Atlanta GA USA
| | | | - Hernan Lara
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile. Santiago, Chile
| | - Victor Viau
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|