1
|
Dafny N, Elizondo GM, Perez-Vasquez C. Differential Impact of Serotonin Signaling Methylphenidate on Young versus Adult: Insights from Behavioral and Dorsal Raphe Nucleus Neuronal Recordings from Freely Behaving Rats. Int J Mol Sci 2024; 25:8082. [PMID: 39125652 PMCID: PMC11311813 DOI: 10.3390/ijms25158082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Methylphenidate (MPD) remains a cornerstone pharmacological intervention for managing ADHD, yet its increasing usage among ordinary youth and adults outside clinical contexts necessitates a thorough investigation into its developmental effects. This study seeks to simultaneously investigate the behavioral and neuronal changes within the dorsal raphe (DR) nucleus, a center of serotonergic neurons in the mammalian brain, before and after the administration of varying doses of acute and chronic MPD in freely behaving young and adult rats implanted with DR recording electrodes. Wireless neuronal and behavioral recording systems were used over 10 consecutive experimental days. Eight groups were examined: saline, 0.6, 2.5, and 10.0 mg/kg MPD for both young and adult rats. Six daily MPD injections were administered on experimental days 1 to 6, followed by a three-day washout period and MPD re-administration on experimental day 10 (ED10). The analysis of neuronal activity recorded from 504 DR neurons (DRNs) in young rats and 356 DRNs in adult rats reveals significant age-dependent differences in acute and chronic MPD responses. This study emphasizes the importance of aligning electrophysiological evaluations with behavioral outcomes following extended MPD exposure, elucidating the critical role of DRNs and serotonin signaling in modulating MPD responses and delineating age-specific variations in young versus adult rat models.
Collapse
Affiliation(s)
- Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Gloria M. Elizondo
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA;
| | - Cruz Perez-Vasquez
- Physiology Department Medical School, National Autonomous University of Mexico, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Yuan A, Claussen C, Jones Z, Tang B, Dafny N. Methylphenidate induces a different response in the dorsal raphe as compared to ventral tegmental area and locus coeruleus: behavioral and concomitant neuronal recordings in adult rats. J Neural Transm (Vienna) 2023; 130:1579-1599. [PMID: 37391573 DOI: 10.1007/s00702-023-02665-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Methylphenidate (MPD) is a psychostimulant used to treat attention deficit hyperactivity disorder. MPD exerts its neurocognitive effects through increasing concentrations of dopamine (DA), norepinephrine (NE), and serotonin (5-HT) in the neuronal synapse. This study recorded from adult freely behaving rats a total of 1170 neurons, 403 from the ventral tegmental area (VTA), 409 from locus coeruleus (LC), and 356 from dorsal raphe (DR) nucleus, which are the main sources of DA, NE, and 5-HT to the mesocorticolimbic circuitry, respectively. Electrophysiological and behavioral activities were recorded simultaneously following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD. The uniqueness of this study is the evaluation of neuronal activity based on the behavioral response to chronic MPD. Animals received daily saline or MPD administration on experimental days 1-6 (ED1-6), followed by a 3-day wash-out period, and then MPD rechallenge on ED10. Each chronic MPD dose elicits behavioral sensitization in some animals, while in others, behavioral tolerance. Neuronal excitation following chronic MPD was observed in brains areas of animals exhibiting behavioral sensitization, while neuronal attenuation following chronic MPD was observed in those animals expressing behavioral tolerance. DR neuronal activity was most affected in response to acute and chronic MPD administration and responded differently compared to the neurons recorded from VTA and LC neurons at all doses. This suggests that although not directly related, DR and 5-HT are involved in the acute and chronic effects of MPD in adult rats, but exhibit a different role in response to MPD.
Collapse
Affiliation(s)
- Anthony Yuan
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Catherine Claussen
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Zachary Jones
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Bin Tang
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School at University of Texas Health Sciences Center, 6431 Fannin Street, MSB 7.208, Houston, TX, 77030-2501, USA.
| |
Collapse
|
3
|
Reciprocal effects of single or repeated exposure to methylphenidate or sex in adult male rats. Psychopharmacology (Berl) 2023; 240:227-237. [PMID: 36544054 DOI: 10.1007/s00213-022-06300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
RATIONALE Exposure to rewards can alter behavioral reactivity to them. For example, stimulants sensitize locomotor activation, whereas sexual experience sensitizes copulatory behaviors. Moreover, rewards can cross-sensitize one another. Although stimulants are known to cross-sensitize locomotor effects, the evidence for cross-sensitization between stimulants and sex is less clear. OBJECTIVES This study determined the effects of single and repeated pre-exposure to methylphenidate (MPH) or sex on one another in adult male rats. METHODS Cross-sensitization between MPH (5 mg/kg) and sex (30 min with sexually experienced female) was examined. Adult male rats were pre-exposed to 0, 1, or 10 trials of either sex or MPH before being exposed to the other reward. Locomotor chambers were used in MPH trials. Bilevel chambers were used in sexual trials, and sexual behaviors were video scored. RESULTS The amount of prior sexual experience differentially influenced the ceiling of MPH-dependent sensitization; in the last drug trial, locomotion was highest in males given 1 previous sexual trial compared with 0 or 10. Compared with MPH-naive males, pre-exposure to MPH (1 and 10 trials) reduced the number of ejaculations without impacting sexual performance (intromission/mount latency and frequency). CONCLUSIONS These findings indicate that the degree of pre-exposure to a reward can differentially affect reactivity to novel rewards. The results showed that previous findings of cross-sensitization between amphetamine and sex do not extend to MPH. However, exposure to MPH prior to sexual experience can increase the amount of sexual stimulation needed to achieve ejaculation.
Collapse
|
4
|
Consequences of Acute or Chronic Methylphenidate Exposure Using Ex Vivo Neurochemistry and In Vivo Electrophysiology in the Prefrontal Cortex and Striatum of Rats. Int J Mol Sci 2022; 23:ijms23158588. [PMID: 35955717 PMCID: PMC9369023 DOI: 10.3390/ijms23158588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/27/2023] Open
Abstract
Methylphenidate (MPH) is among the main drugs prescribed to treat patients with attention-deficit and hyperactivity disease (ADHD). MPH blocks both the norepinephrine and dopamine reuptake transporters (NET and DAT, respectively). Our study was aimed at further understanding the mechanisms by which MPH could modulate neurotransmitter efflux, using ex vivo radiolabelled neurotransmitter assays isolated from rats. Here, we observed significant dopamine and norepinephrine efflux from the prefrontal cortex (PFC) after MPH (100 µM) exposure. Efflux was mediated by both dopamine and norepinephrine terminals. In the striatum, MPH (100 µM) triggered dopamine efflux through both sodium- and vesicular-dependent mechanisms. Chronic MPH exposure (4 mg/kg/day/animal, voluntary oral intake) for 15 days, followed by a 28-day washout period, increased the firing rate of PFC pyramidal neurons, assessed by in vivo extracellular single-cell electrophysiological recordings, without altering the responses to locally applied NMDA, via micro-iontophoresis. Furthermore, chronic MPH treatment resulted in decreased efficiency of extracellular dopamine to modulate NMDA-induced firing activities of medium spiny neurons in the striatum, together with lower MPH-induced (100 µM) dopamine outflow, suggesting desensitization to both dopamine and MPH in striatal regions. These results indicate that MPH can modulate neurotransmitter efflux in brain regions enriched with dopamine and/or norepinephrine terminals. Further, long-lasting alterations of striatal and prefrontal neurotransmission were observed, even after extensive washout periods. Further studies will be needed to understand the clinical implications of these findings.
Collapse
|
5
|
Medina AC, Kabani A, Reyes-Vasquez C, Dafny N. Age differences to methylphenidate-NAc neuronal and behavioral recordings from freely behaving animals. J Neural Transm (Vienna) 2022; 129:1061-1076. [PMID: 35842551 DOI: 10.1007/s00702-022-02526-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
Methylphenidate (MPD) is a psychostimulant that is widely prescribed to treat attention deficit-hyperactivity disorder, but it is abused recreationally as well. The nucleus accumbens (NAc) is part of the motivation circuit implicated in drug-seeking behaviors. The NAc neuronal activity was recorded alongside the behavioral activity from young and adult rats to determine if there are significant differences in the response to MPD. The same dose of MPD elicits behavioral sensitization in some animals and behavioral tolerance in others. In adult animals, higher doses of MPD resulted in a greater ratio of tolerance/sensitization. Animals who responded to chronic MPD with behavioral sensitization usually exhibited further increases in their NAc neuronal firing rates as well. Different upregulations of transcription factors (ΔFOSB/CREB), variable proportions of D1/D2 dopamine receptors, and modulation from other brain areas may predispose certain animals to express behavioral and neuronal sensitization versus tolerance to MPD.
Collapse
Affiliation(s)
- A C Medina
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, USA
| | - A Kabani
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, USA
| | - C Reyes-Vasquez
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, USA
| | - N Dafny
- Department of Neurobiology and Anatomy, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
6
|
Dafny N. Immunotherapy as a treatment to confront the ongoing opioid epidemic- A review. JOURNAL OF CELLULAR AND MOLECULAR IMMUNOLOGY 2022; 1:20-27. [PMID: 36624866 PMCID: PMC9825804 DOI: 10.46439/immunol.1.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substance use disorders continue to be major medical and social problems worldwide. The use of opiate has grown substantially over the past three decades reaching the dimensions of a global epidemic. Current drug treatments have many limitations: long treatment times, dependency on treatment medications, relapses after treatment, high costs of treatment, and non-adherence by affected persons. Most of the available drug treatments for opiate addiction belong to the opioid family. Some worry that the availability of the drugs may simply cause substituting one opioid medication for another. Immunotherapy has a great potential of becoming an additional therapeutic strategy in the treatment of addiction. Immunotherapy also prevents overdose of treatment drugs. This monograph reviews preclinical studies of immunotherapy and experiments using treatments with three different immunomodifiers that were able to significantly attenuate the severity of opioid withdrawal symptoms in morphine dependent animals. These immunotherapy treatments are short, and will prevent relapse of opioid dependency and toxicity.
Collapse
|
7
|
Broussard E, Reyes-Vazquez C, Dafny N. Methylphenidate dose-response behavioral and neurophysiological study of the ventral tegmental area and nucleus accumbens in adolescent rats. Eur J Neurosci 2019; 50:2635-2652. [PMID: 30866123 DOI: 10.1111/ejn.14402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 02/20/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023]
Abstract
The psychostimulant methylphenidate (MPD) is the most common medication used in treating ADHD in children. Studies have shown an increasing prevalence among adolescents without ADHD to take MPD as a cognitive booster and recreational drug, even though it is a Schedule II drug and has a high potential for abuse. The objective of this study is to explore if there is an association between the animals' behavioral and neurophysiological responses to acute and/or chronic methylphenidate exposure within the ventral tegmental area and the nucleus accumbens, and to compare how these two brain structures fire in response to methylphenidate. Freely moving adolescent rats implanted with semimicroelectrodes within the VTA and NAc were divided into three MPD dosing groups: 0.6, 2.5, and 10 mg/kg i.p., as well as a saline control group. The animals were divided into two groups based on their behavioral responses to chronic MPD, behavioral sensitization and tolerance, and the neuronal responses of the two groups were compared for each MPD dosing. Significant differences in the proportion of neuronal units in the VTA and NAc responding to MPD were observed at the 0.6 and 10.0 mg/kg MPD dosing groups. Moreover, the same doses of 0.6, 2.5, and 10.0 mg/kg MPD elicited behavioral sensitization in some animals and behavioral tolerance in others. This specific study shows that the VTA and NAc neurons respond differently to the same doses of MPD. MPD has different neuronal and behavioral effects depending on the individual, the dosage of MPD, and the brain structure studied.
Collapse
Affiliation(s)
| | - Cruz Reyes-Vazquez
- Departmento de Fisiologia Division de Investigacion, Universidad Nacional Autonoma de Mexico, Mexico, Mexico
| | - Nachum Dafny
- University of Texas McGovern Medical School, Houston, Texas
| |
Collapse
|
8
|
Venkataraman SS, Joseph M, Dafny N. Concomitant behavioral and prefrontal cortex neuronal responses following acute and chronic methylphenidate exposure in adolescent and adult rats. Brain Res Bull 2018; 144:200-212. [PMID: 30502401 DOI: 10.1016/j.brainresbull.2018.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022]
Abstract
There is growing concern that the psychostimulant Methylphenidate (MPD) is being abused for cognitive enhancement and recreation by healthy adults and adolescents seeking to improve their work or academic performance. This study concomitantly recorded the behavioral and prefrontal cortex (PFC) neuronal activity in freely behaving animals exposed to acute and chronic MPD doses (0.6, 2.5, and 10.0 mg/kg MPD) in order to compare MPD effects on adult and adolescent rats. The PFC is one of the primary brain areas affected by MPD and the drug of choice for treating ADHD. Moreover, the PFC is one of the last brain areas to complete development, suggesting that the behavioral and neurophysiological response to MPD may differ in adolescents and adults. In both adult and adolescent animals, it was observed that the same repetitive (chronic) dose of either 0.6, 2.5, or 10.0 mg/kg MPD elicited behavioral sensitization in some animals and tolerance in others, experimental biomarkers indicating drug of abuse symptoms, and the majority of PFC units recorded in animals expressing behavioral sensitization or tolerance to chronic MPD exposure responded by increasing and decreasing their neuronal firing rate, respectively. Further, it was shown that high doses of 10.0 mg/kg MPD significantly modified adolescent behavioral activity but did not impact adults suggesting that adolescents may be more receptive to chronic MPD exposure. These findings raise concerns regarding the use and abuse of MPD in normal, healthy individuals and support the notion that the adolescent PFC is more susceptible than the adult PFC to neuromodulation from chronic MPD use.
Collapse
Affiliation(s)
- Sidish S Venkataraman
- University of Texas McGovern Medical School at Houston, Department of Neurobiology and Anatomy, 6431 Fannin Street, Houston TX, 77030, United States
| | - Michael Joseph
- University of Texas McGovern Medical School at Houston, Department of Neurobiology and Anatomy, 6431 Fannin Street, Houston TX, 77030, United States
| | - Nachum Dafny
- University of Texas McGovern Medical School at Houston, Department of Neurobiology and Anatomy, 6431 Fannin Street, Houston TX, 77030, United States.
| |
Collapse
|
9
|
Locus coeruleus neuronal activity correlates with behavioral response to acute and chronic doses of methylphenidate (Ritalin) in adolescent rats. J Neural Transm (Vienna) 2017; 124:1239-1250. [DOI: 10.1007/s00702-017-1760-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022]
|
10
|
Karim TJ, Reyes-Vazquez C, Dafny N. Comparison of the VTA and LC response to methylphenidate: a concomitant behavioral and neuronal study of adolescent male rats. J Neurophysiol 2017; 118:1501-1514. [PMID: 28615331 DOI: 10.1152/jn.00145.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 12/21/2022] Open
Abstract
Methylphenidate (MPD), also known as Ritalin, is a psychostimulant used to treat attention deficit hyperactivity disorder. However, it is increasingly being misused by normal adolescents for recreation and academic advantage. Therefore, it is important to elucidate the behavioral and neurophysiological effects of MPD in normal subjects. MPD inhibits the reuptake of catecholamines, mainly found in the ventral tegmental area (VTA) and locus coeruleus (LC). The VTA and LC normally mediate attention, motivation, and drug reward behaviors. Selective neuronal connections between the VTA and LC have been identified implicating regular interaction between the structures. The objective of this study was to compare the neuronal responses of the VTA and LC to MPD in normal adolescent rats. Animals were implanted with permanent electrodes in the VTA and LC, and neuronal units were recorded following acute and repetitive (chronic) saline or 0.6, 2.5, or 10.0 mg/kg MPD exposure. Animals displayed either behavioral sensitization or tolerance to all three doses of MPD. Acute MPD exposure elicited excitation in the majority of all VTA and LC units. Chronic MPD exposure elicited a further increase in VTA and LC neuronal activity in animals exhibiting behavioral sensitization and an attenuation in VTA and LC neuronal activity in animals exhibiting behavioral tolerance, demonstrating neurophysiological sensitization and tolerance, respectively. The similar pattern in VTA and LC unit activity suggests that the two structures are linked in their response to MPD. These results may help determine the exact mechanism of action of MPD, resulting in optimized treatment of patients.NEW & NOTEWORTHY The same dose of 0.6, 2.5, and 10 mg/kg methylphenidate (MPD) elicits either behavioral sensitization or tolerance in adolescent rats. There is a direct correlation between the ventral tegmental area (VTA) and locus coeruleus (LC) neuronal response to chronic MPD exposure. Both the VTA and LC are involved in the behavioral and neurophysiological effects of chronic MPD.
Collapse
Affiliation(s)
- Tahseen J Karim
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Cruz Reyes-Vazquez
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, McGovern Medical School, Houston, Texas
| |
Collapse
|
11
|
Venkataraman SS, Claussen C, Joseph M, Dafny N. Concomitant behavioral and PFC neuronal activity recorded following dose-response protocol of MPD in adult male rats. Brain Res Bull 2017; 130:125-137. [DOI: 10.1016/j.brainresbull.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022]
|
12
|
Kharas N, Whitt H, Reyes-Vasquez C, Dafny N. Methylphenidate modulates dorsal raphe neuronal activity: Behavioral and neuronal recordings from adolescent rats. Brain Res Bull 2016; 128:48-57. [PMID: 27889580 DOI: 10.1016/j.brainresbull.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023]
Abstract
Methylphenidate (MPD) is a widely prescribed psychostimulants used for the treatment of attention deficit hyperactive disorder (ADHD). Unlike the psychostimulants cocaine and amphetamine, MPD does not exhibit direct actions on the serotonin transporter, however there is evidence suggesting that the therapeutic effects of MPD may be mediated in part by alterations in serotonin transmission. This study aimed to investigate the role of the dorsal raphe (DR) nucleus, one of the major sources of serotonergic innervation in the mammalian brain, in the response to MPD exposure. Freely behaving adolescent rats previously implanted bilaterally with permanent electrodes were used. An open field assay and a wireless neuronal recording system were used to concomitantly record behavioral and DR electrophysiological activity following acute and chronic MPD exposure. Four groups were used: one control (saline) and three experimental groups treated with 0.6, 2.5, and 10.0mg/kg MPD respectively. Animals received daily MPD or saline injections on experimental days 1-6, followed by 3 washout days and MPD rechallenge dose on experimental day (ED)10. The same chronic dose of MPD resulted in either behavioral sensitization or tolerance, and we found that neuronal activity recorded from the DR neuronal units of rats expressing behavioral sensitization to chronic MPD exposure responded significantly differently to MPD rechallenge on ED10 compared to the DR unit activity recorded from animals that expressed behavioral tolerance. This correlation between behavioral response and DR neuronal activity following chronic MPD exposure provides evidence that the DR is involved in the acute effects as well as the chronic effects of MPD in adolescent rats.
Collapse
Affiliation(s)
- Natasha Kharas
- The University of Texas Health Science Center, Medical School at Houston, Department of Neurobiology and Anatomy, 6431 Fannin St., MSB 7.208B, Houston, TX 77030, USA
| | - Holly Whitt
- The University of Texas Health Science Center, Medical School at Houston, Department of Neurobiology and Anatomy, 6431 Fannin St., MSB 7.208B, Houston, TX 77030, USA
| | - Cruz Reyes-Vasquez
- Departmento de Fisiologia Division de Investigacion Universidad Nacional Autonoma de Mexico Mexico City, Mexico
| | - Nachum Dafny
- The University of Texas Health Science Center, Medical School at Houston, Department of Neurobiology and Anatomy, 6431 Fannin St., MSB 7.208B, Houston, TX 77030, USA.
| |
Collapse
|
13
|
D1 and D2 specific dopamine antagonist modulate the caudate nucleus neuronal responses to chronic methylphenidate exposure. J Neural Transm (Vienna) 2016; 124:159-170. [DOI: 10.1007/s00702-016-1647-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/06/2016] [Indexed: 01/09/2023]
|
14
|
Reyes-Vasquez C, Cannon CJ, Dafny N. Ritalin Dose Response Effect on Medial Prefrontal Cortex and on Animal Behavior. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbbs.2016.63015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Ponchio R, Teodorov E, Kirsten T, Coelho C, Oshiro A, Florio J, Bernardi M. Repeated methylphenidate administration during lactation reduces maternal behavior, induces maternal tolerance, and increases anxiety-like behavior in pups in adulthood. Neurotoxicol Teratol 2015; 50:64-72. [DOI: 10.1016/j.ntt.2015.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/02/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
|
16
|
Claussen CM, Witte LJ, Dafny N. Single exposure of dopamine D1 antagonist prevents and D2 antagonist attenuates methylphenidate effect. J Exp Pharmacol 2015; 7:1-9. [PMID: 27186140 PMCID: PMC4863529 DOI: 10.2147/jep.s75300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Methylphenidate (MPD) is a readily prescribed drug for the treatment of attention deficit hyperactivity disorder (ADHD) and moreover is used illicitly by youths for its cognitive-enhancing effects and recreation. MPD exposure in rodents elicits increased locomotor activity. Repetitive MPD exposure leads to further augmentation of their locomotor activity. This behavioral response is referred to as behavioral sensitization. Behavioral sensitization is used as an experimental marker for a drug’s ability to elicit dependence. There is evidence that dopamine (DA) is a key player in the acute and chronic MPD effect; however, the role of DA in the effects elicited by MPD is still debated. The objective of this study was to investigate the role of D1 and/or D2 DA receptors in the acute and chronic effect of MPD on locomotor activity. The study lasted for 12 consecutive days. Seven groups of male Sprague Dawley® rats were used. A single D1 or D2 antagonist was given before and after acute and chronic MPD administration. Single injection of D1 DA antagonist was able to significantly attenuate the locomotor activity when given prior to the initial MPD exposure and after repetitive MPD exposure, while the D2 DA antagonist partially attenuated the locomotor activity only when given before the second MPD exposure. The results show the role, at least in part, of the D1 DA receptor in the mechanism of behavioral sensitization, whereas the D2 DA receptor only partially modulates the response to acute and chronic MPD.
Collapse
Affiliation(s)
- Catherine M Claussen
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center Medical School at Houston, Houston, TX, USA
| | - Lindsey J Witte
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center Medical School at Houston, Houston, TX, USA
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, The University of Texas Health Science Center Medical School at Houston, Houston, TX, USA
| |
Collapse
|
17
|
Frolov A, Reyes-Vasquez C, Dafny N. Behavioral and neuronal recording of the nucleus accumbens in adolescent rats following acute and repetitive exposure to methylphenidate. J Neurophysiol 2014; 113:369-79. [PMID: 25318764 DOI: 10.1152/jn.00633.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nucleus accumbens (NAc) has been shown to play a key role in the brain's response to methylphenidate (MPD). The present study focuses on neuronal recording from this structure. The study postulates that repetitive exposure to the same dose of MPD will elicit in some rats behavioral sensitization and in others tolerance. Furthermore, the study postulates that NAc neuronal activity recorded from animals expressing behavioral tolerance after repetitive MPD exposure will be significantly different from NAc neuronal activity recorded from animals expressing behavioral sensitization after repetitive MPD exposure at doses of 0.6, 2.5, 5.0, and 10.0 mg/kg. To test this, behavioral and neuronal activity was recorded concomitantly from the NAc of freely behaving adolescent rats (postnatal day 40) before and after acute and repetitive administration of four different MPD doses. Comparing the acute MPD effect to the repetitive MPD effect revealed that the acute response to MPD exhibited dose-response characteristics: an increase in behavioral activity correlated with increasing MPD doses. On the other hand, following repetitive MPD exposure, some animals exhibited attenuated behavior (tolerance), while others exhibited further increases in the recorded behavior (sensitization). Moreover, the neuronal activity following repetitive MPD exposure recorded in animals exhibiting behavioral sensitization was significantly different from neuronal activity recorded in animals exhibiting behavioral tolerance. This implies that when studying the effects of repetitive MPD administration on adolescent rats, it is advisable to simultaneously record both neuronal and behavioral activity and to evaluate all data based on the animals' behavioral response to the repetitive MPD exposure.
Collapse
Affiliation(s)
- Alexander Frolov
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas; and
| | - Cruz Reyes-Vasquez
- Departmento de Fisiologia, Devivion de Investigacion, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Nachum Dafny
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas; and
| |
Collapse
|