1
|
Maksimoski AN, Stevenson SA, Polzin BJ, Zhao C, Luebke EM, Riters LV. The motivation to flock correlates with vocal-social behaviors and dopamine-related gene expression in male European starlings. Horm Behav 2023; 153:105374. [PMID: 37271085 PMCID: PMC10330916 DOI: 10.1016/j.yhbeh.2023.105374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
It is proposed that songbird flocks are partly reinforced by positive social interactions, however not all flock mate interactions are positive. The combination of both positive and negative social interactions with flock mates may play a role in the motivation for birds to flock. The nucleus accumbens (NAc), medial preoptic area (POM), and ventral tegmental area (VTA) are implicated in vocal-social behaviors in flocks, including singing. Dopamine (DA) within these regions modifies motivated, reward-directed behaviors. Here, we begin to test the hypothesis that individual social interactions and DA within these regions are involved in the motivation to flock. Vocal-social behaviors were recorded in eighteen male European starlings in mixed-sex flocks in fall, when starlings are highly social and form large flocks. Males were then singly removed from their flock and the motivation to flock was quantified as the amount of time spent attempting to join a flock following separation. We used quantitative real-time polymerase chain reaction to measure expression of DA-related genes in the NAc, POM, and VTA. Birds producing high levels of vocal behaviors were more highly motivated to flock and had higher tyrosine hydroxylase (the rate-limiting enzyme in DA synthesis) expression in the NAc and VTA. Birds that received high levels of agonistic behaviors were less motivated to flock and had higher DA receptor subtype 1 expression in the POM. Overall, our findings suggest that interplay between social experience and DA activity in NAc, POM, and VTA plays a key role in social motivation in flocking songbirds.
Collapse
Affiliation(s)
- Alyse N Maksimoski
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Dr, Madison, WI 53706, United States of America.
| | - Sharon A Stevenson
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Dr, Madison, WI 53706, United States of America
| | - Brandon J Polzin
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Dr, Madison, WI 53706, United States of America
| | - Changjiu Zhao
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Dr, Madison, WI 53706, United States of America
| | - Elsa M Luebke
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Dr, Madison, WI 53706, United States of America
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Dr, Madison, WI 53706, United States of America
| |
Collapse
|
2
|
Lopes PC, de Bruijn R. Neurotranscriptomic changes associated with chick-directed parental care in adult non-reproductive Japanese quail. Sci Rep 2021; 11:15481. [PMID: 34326416 PMCID: PMC8322411 DOI: 10.1038/s41598-021-94927-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
For many species, parental care critically affects offspring survival. But what drives animals to display parental behaviours towards young? In mammals, pregnancy-induced physiological transformations seem key in preparing the neural circuits that lead towards attraction (and reduced-aggression) to young. Beyond mammalian maternal behaviour, knowledge of the neural mechanisms that underlie young-directed parental care is severely lacking. We took advantage of a domesticated bird species, the Japanese quail, for which parental behaviour towards chicks can be induced in virgin non-reproductive adults through a sensitization procedure, a process that is not effective in all animals. We used the variation in parental responses to study neural transcriptomic changes associated with the sensitization procedure itself and with the outcome of the procedure (i.e., presence of parental behaviours). We found differences in gene expression in the hypothalamus and bed nucleus of the stria terminalis, but not the nucleus taeniae. Two genes identified are of particular interest. One is neurotensin, previously only demonstrated to be causally associated with maternal care in mammals. The other one is urocortin 3, causally demonstrated to affect young-directed neglect and aggression in mammals. Because our studies were conducted in animals that were reproductively quiescent, our results reflect core neural changes that may be associated with avian young-directed care independently of extensive hormonal stimulation. Our work opens new avenues of research into understanding the neural basis of parental care in non-placental species.
Collapse
Affiliation(s)
- Patricia C Lopes
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA.
| | - Robert de Bruijn
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| |
Collapse
|
3
|
Lee NJ, Qi Y, Enriquez RF, Ip CK, Herzog H. Lack of NPY in neurotensin neurons leads to a lean phenotype. Neuropeptides 2020; 80:101994. [PMID: 31740068 DOI: 10.1016/j.npep.2019.101994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/23/2022]
Abstract
Neuropeptide Y (NPY) producing neurons in the arcuate nucleus (Arc) of the hypothalamus are essential to the regulation of food intake and energy homeostasis. Whilst they have classically been thought to co-express agouti-related peptide (AgRP), it is now clear that there is a sub-population of NPY neurons in the Arc that do not. Here, we show that a subset of AgRP-negative, NPY-positive neurons in the Arc also express neurotensin (NTS) and we use an NTS-Cre line to investigate the function of this sub-population of NPY neurons. The lack of NPY in NTS-positive neurons led to a marked reduction in fat mass and bodyweight as well as a significant reduction in food intake in male NPYlox/lox; NTScre/+ mice compared to controls. Despite the reduction in food intake, overall energy expenditure was similar between genotypes due to concomitant reduction in activity in NPYlox/lox; NTScre/+ mice. Furthermore, cortical bone mass was significantly reduced in NPYlox/lox;NTScre/+ mice with no evident alterations in the cancellous bone compartment, likely due to reduced leptin levels as a result of their reduced adiposity. Taken together, these data suggest that the sub-population of Arc NPY neurons expressing NTS are critical for regulating food intake, activity and fat mass but are not directly involved in the control of bone mass.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| | - Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Ronaldo F Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
4
|
Gender Related Changes in Gene Expression Induced by Valproic Acid in A Mouse Model of Autism and the Correction by S-adenosyl Methionine. Does It Explain the Gender Differences in Autistic Like Behavior? Int J Mol Sci 2019; 20:ijms20215278. [PMID: 31652960 PMCID: PMC6862653 DOI: 10.3390/ijms20215278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
In previous studies we produced autism like behavioral changes in mice by Valproic acid (VPA) with significant differences between genders. S-adenosine methionine (SAM) prevented the autism like behavior in both genders. The expression of 770 genes of pathways involved in neurophysiology and neuropathology was studied in the prefrontal cortex of 60 days old male and female mice using the NanoString nCounter. In females, VPA induced statistically significant changes in the expression of 146 genes; 71 genes were upregulated and 75 downregulated. In males, VPA changed the expression of only 19 genes, 16 were upregulated and 3 downregulated. Eight genes were similarly changed in both genders. When considering only the genes that were changed by at least 50%, VPA changed the expression of 15 genes in females and 3 in males. Only Nts was similarly downregulated in both genders. SAM normalized the expression of most changed genes in both genders. We presume that genes that are involved in autism like behavior in our model were similarly changed in both genders and corrected by SAM. The behavioral and other differences between genders may be related to genes that were differently affected by VPA in males and females and/or differently affected by SAM.
Collapse
|
5
|
Schroeder LE, Furdock R, Quiles CR, Kurt G, Perez-Bonilla P, Garcia A, Colon-Ortiz C, Brown J, Bugescu R, Leinninger GM. [Not Available]. Neuropeptides 2019; 76:101930. [PMID: 31079844 PMCID: PMC7721284 DOI: 10.1016/j.npep.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including cardiovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative densities of the Nts-GFP populations observed throughout the male NtsCre;GFP mouse brain, which will pave the way for future work to define their physiologic roles. We also compared the distribution of Nts-GFP neurons with Nts-In situ Hybridization (Nts-ISH) data from the adult mouse brain. By comparing these data sets we can distinguish Nts-GFP populations that may only transiently express Nts during development but not in the mature brain, and hence which populations may not be amenable to Cre-mediated manipulation in adult NtsCre;GFP mice. This atlas of Nts-GFP neurons will facilitate future studies using the NtsCre;GFP line to describe the physiological functions of individual Nts populations and how modulating them may be useful to treat disease.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Ryan Furdock
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Cristina Rivera Quiles
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Patricia Perez-Bonilla
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Angela Garcia
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Crystal Colon-Ortiz
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Juliette Brown
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States.
| |
Collapse
|
6
|
Tobari Y, Tsutsui K. Effects of Social Information on the Release and Expression of Gonadotropin-Inhibitory Hormone in Birds. Front Endocrinol (Lausanne) 2019; 10:243. [PMID: 31068902 PMCID: PMC6491735 DOI: 10.3389/fendo.2019.00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
Abstract
The social environment changes circulating hormone levels and associated behavior in animals. Although social information is perceived by sensory systems in the brain, and peripheral reproductive hormonal levels are regulated mainly by the hypothalamus-pituitary-gonadal (HPG) axis, the neurochemical systems that convey social information to the HPG axis were not well-understood until the 2000s. In recent years, a growing body of evidence has demonstrated that a neuropeptide localized in the hypothalamus, gonadotropin-inhibitory hormone (GnIH), is responsive to social information. GnIH was first identified in the quail hypothalamo-hypophyseal system and named for its ability to inhibit gonadotropin secretion. Hypothalamic GnIH neurons have thus begun to be regarded as integrators, translating social information into changes in the levels of circulating gonadal hormones through the HPG axis. Here, we review current research investigating the responses of the GnIH neuronal systems to social status, offspring, and the presence/absence of conspecifics, and describe the neurochemical pathways linking visual perception of a potential mate to a rapid change in blood gonadotropin levels via the hypothalamus-pituitary axis in male birds.
Collapse
Affiliation(s)
- Yasuko Tobari
- Laboratory of Animal Genetics and Breeding, Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University, Sagamihara, Japan
- *Correspondence: Yasuko Tobari
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Woodworth HL, Brown JA, Batchelor HM, Bugescu R, Leinninger GM. Determination of neurotensin projections to the ventral tegmental area in mice. Neuropeptides 2018; 68:57-74. [PMID: 29478718 PMCID: PMC5906039 DOI: 10.1016/j.npep.2018.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/11/2018] [Accepted: 02/11/2018] [Indexed: 12/15/2022]
Abstract
Pharmacologic treatment with the neuropeptide neurotensin (Nts) modifies motivated behaviors such as feeding, locomotor activity, and reproduction. Dopamine (DA) neurons of the ventral tegmental area (VTA) control these behaviors, and Nts directly modulates the activity of DA neurons via Nts receptor-1. While Nts sources to the VTA have been described in starlings and rats, the endogenous sources of Nts to the VTA of mice remain incompletely understood, impeding determination of which Nts circuits orchestrate specific behaviors in this model. To overcome this obstacle we injected the retrograde tracer Fluoro-Gold into the VTA of mice that express GFP in Nts neurons. Identification of GFP-Nts cells that accumulate Fluoro-Gold revealed the Nts afferents to the VTA in mice. Similar to rats, most Nts afferents to the VTA of mice arise from the medial and lateral preoptic areas (POA) and the lateral hypothalamic area (LHA), brain regions that are critical for coordination of feeding and reproduction. Additionally, the VTA receives dense input from Nts neurons in the nucleus accumbens shell (NAsh) of mice, and minor Nts projections from the amygdala and periaqueductal gray area. Collectively, our data reveal multiple populations of Nts neurons that provide direct afferents to the VTA and which may regulate specific aspects of motivated behavior. This work lays the foundation for understanding endogenous Nts actions in the VTA, and how circuit-specific Nts modulation may be useful to correct motivational and affective deficits in neuropsychiatric disease.
Collapse
Affiliation(s)
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Merullo DP, Asogwa CN, Sanchez-Valpuesta M, Hayase S, Pattnaik BR, Wada K, Riters LV. Neurotensin and neurotensin receptor 1 mRNA expression in song-control regions changes during development in male zebra finches. Dev Neurobiol 2018; 78:671-686. [PMID: 29569407 DOI: 10.1002/dneu.22589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/24/2022]
Abstract
Learned vocalizations are important for communication in some vertebrate taxa. The neural circuitry for the learning and production of vocalizations is well known in songbirds, many of which learn songs initially during a critical period early in life. Dopamine is essential for motor learning, including song learning, and dopamine-related measures change throughout development in song-control regions such as HVC, the lateral magnocellular nucleus of the anterior nidopallium (LMAN), Area X, and the robust nucleus of the arcopallium (RA). In mammals, the neuropeptide neurotensin strongly interacts with dopamine signaling. This study investigated a potential role for the neurotensin system in song learning by examining how neurotensin (Nts) and neurotensin receptor 1 (Ntsr1) expression change throughout development. Nts and Ntsr1 mRNA expression was analyzed in song-control regions of male zebra finches in four stages of the song learning process: pre-subsong (25 days posthatch; dph), subsong (45 dph), plastic song (60 dph), and crystallized song (130 dph). Nts expression in LMAN during the subsong stage was lower compared to other time points. Ntsr1 expression was highest in HVC, Area X, and RA during the pre-subsong stage. Opposite and complementary expression patterns for the two genes in song nuclei and across the whole brain suggest distinct roles for regions that produce and receive Nts. The expression changes at crucial time points for song development are similar to changes observed in dopamine studies and suggest Nts may be involved in the process of vocal learning. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 671-686, 2018.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Chinweike N Asogwa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Bikash R Pattnaik
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
9
|
Hahn AH, Merullo DP, Spool JA, Angyal CS, Stevenson SA, Riters LV. Song-associated reward correlates with endocannabinoid-related gene expression in male European starlings (Sturnus vulgaris). Neuroscience 2017; 346:255-266. [PMID: 28147243 DOI: 10.1016/j.neuroscience.2017.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Vocal communication is required for successful social interactions in numerous species. During the breeding season, songbirds produce songs that are reinforced by behavioral consequences (e.g., copulation). However, some songbirds also produce songs not obviously directed at other individuals. The consequences maintaining or reinforcing these songs are less obvious and the neural mechanisms associated with undirected communication are not well-understood. Previous studies indicate that undirected singing is intrinsically rewarding and mediated by opioid or dopaminergic systems; however, endocannabinoids are also involved in regulating reward and singing behavior. We used a conditioned place preference paradigm to examine song-associated reward in European starlings and quantitative real-time PCR to measure expression of endocannabinoid-related neural markers (CB1, FABP7, FABP5, FAAH, DAGLα), in brain regions involved in social behavior, reward and motivation (ventral tegmental area [VTA], periaqueductal gray [PAG], and medial preoptic nucleus [POM]), and a song control region (Area X). Our results indicate that starlings producing high rates of song developed a conditioned place preference, suggesting that undirected song is associated with a positive affective state. We found a significant positive relationship between song-associated reward and CB1 receptors in VTA and a significant negative relationship between song-associated reward and CB1 in PAG. There was a significant positive relationship between reward and the cannabinoid transporter FABP7 in POM and a significant negative relationship between reward and FABP7 in PAG. In Area X, FABP5 and DAGLα correlated positively with singing. These results suggest a role for endocannabinoid signaling in vocal production and reward associated with undirected communication.
Collapse
Affiliation(s)
- Allison H Hahn
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Devin P Merullo
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeremy A Spool
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Caroline S Angyal
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lauren V Riters
- Department of Zoology, 426 Birge Hall, 430 Lincoln Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Riters LV, Cordes MA, Stevenson SA. Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 2016; 320:37-47. [PMID: 27913257 DOI: 10.1016/j.bbr.2016.11.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022]
Abstract
Numerous animal species display behavioral changes in response to changes in social status or territory possession. For example, in male European starlings only males that acquire nesting sites display high rates of sexual and agonistic behavior. Past studies show that mu and delta opioid receptors regulate behaviors associated with social ascension or defeat. Opioids also act at kappa receptors, with dynorphin binding with the highest affinity; however, the role of these opioids in social behavior has not been well studied. We observed flocks of male starlings during the breeding season and ran quantitative real-time polymerase chain reaction (qPCR) to measure expression of kappa opioid receptors (OPRK1) and prodynorphin (PDYN) in brain regions involved in social behavior and motivation (ventral tegmental area [VTA], medial preoptic nucleus [mPOA]) and vocal behavior (Area X). Males with nesting territories displayed more sexual/agonistic behavior than males without nesting territories. They also had lower OPRK1 expression in VTA and mPOA. OPRK1 expression in VTA correlated negatively with sexual/agonistic behaviors, consistent with past studies showing kappa receptors in VTA to inhibit sociosexual behaviors. PDYN in mPOA correlated negatively with a measure of nesting behavior that may also reflect sexual motivation. PDYN in Area X related positively to song. Distinct patterns of OPRK1 and PDYN expression in VTA, mPOA, and Area X related to gonad volume, suggesting that breeding condition may modify (or be modified by) OPRK1 and PDYN expression. Studies are now needed to further characterize the role of OPRK1 and PDYN in status-appropriate social behaviors.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.
| | - Melissa A Cordes
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Sharon A Stevenson
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
11
|
Merullo DP, Angyal CS, Stevenson SA, Riters LV. Song in an Affiliative Context Relates to the Neural Expression of Dopamine- and Neurotensin-Related Genes in Male European Starlings. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:81-92. [PMID: 27614972 DOI: 10.1159/000448191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/02/2016] [Indexed: 12/14/2022]
Abstract
Some animals, including songbirds, vocalize at high rates when alone or in large groups. In songbirds, vocal behavior in these contexts is important for song learning and group cohesion. It is not obviously targeted at any particular individual and is described as 'undirected'. Studies suggest a role for dopamine (DA) in undirected song. The neuropeptide neurotensin (NT) can enhance dopaminergic signaling upon binding to the NT receptor 1 (NTR1) and is found in regions where DA can influence song, including the ventral tegmental area (VTA), septum, and the song control nucleus Area X. To begin to test the hypothesis that NT and DA in these regions interact to influence undirected song, we used quantitative real-time PCR to relate undirected singing to mRNA expression of NT, NTR1, tyrosine hydroxylase (TH; a synthetic enzyme for DA) and D1 and D2 receptors in male European starlings. TH and NT expression in VTA, and NT and D1 expression in Area X, positively correlated with song. NT markers also correlated positively with DA markers in VTA. Given the role of VTA projections to Area X in song learning, these results suggest that interactions between NT and DA in these regions may contribute to vocal learning. In septum, NTR1 expression positively correlated with song and NT and DA markers were correlated, suggesting that NT in this region may influence dopaminergic transmission to facilitate undirected vocalizations. Overall, these findings implicate interactions between NT and DA in affiliative communication.
Collapse
Affiliation(s)
- Devin P Merullo
- Department of Zoology, University of Wisconsin-Madison, Madison, Wis., USA
| | | | | | | |
Collapse
|
12
|
DeVries MS, Cordes MA, Rodriguez JD, Stevenson SA, Riters LV. Neural endocannabinoid CB1 receptor expression, social status, and behavior in male European starlings. Brain Res 2016; 1644:240-8. [PMID: 27206544 DOI: 10.1016/j.brainres.2016.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
Abstract
Many species modify behavior in response to changes in resource availability or social status; however, the neural mechanisms underlying these modifications are not well understood. Prior work in male starlings demonstrates that status-appropriate changes in behavior involve brain regions that regulate social behavior and vocal production. Endocannabinoids are ubiquitously distributed neuromodulators that are proposed to play a role in adjusting behavior to match social status. As an initial step to provide insight into this hypothesis we observed flocks of male starlings in outdoor aviaries during the breeding season. We used quantitative real-time PCR to measure expression of endocannabinoid CB1 receptors in brain regions involved in social behavior and motivation (lateral septum [LS], ventral tegmental area [VTA], medial preoptic nucleus [POM]) and vocal behavior (Area X and robust nucleus of the arcopallium; RA). Males with nesting sites sang to females and displaced other males more than males without nesting sites. They also had higher levels of CB1 receptor expression in LS and RA. CB1 expression in LS correlated positively with agonistic behaviors. CB1 expression in RA correlated positively with singing behavior. CB1 in VTA also correlated positively with singing when only singing birds were considered. These correlations nicely map onto the well-established role of LS in agonistic behavior and the known role of RA in song production and VTA in motivation and song production. Studies are now needed to precisely characterize the role of CB1 receptors in these regions in the production of status-appropriate social behaviors.
Collapse
Affiliation(s)
- M Susan DeVries
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Melissa A Cordes
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Jonathan D Rodriguez
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Sharon A Stevenson
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA
| | - Lauren V Riters
- Department of Zoology, 428 Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706 USA.
| |
Collapse
|