1
|
Bozkurt S, Lannin NA, Mychasiuk R, Semple BD. Environmental modifications to rehabilitate social behavior deficits after acquired brain injury: What is the evidence? Neurosci Biobehav Rev 2023; 152:105278. [PMID: 37295762 DOI: 10.1016/j.neubiorev.2023.105278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/22/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Social behavior deficits are a common, debilitating consequence of traumatic brain injury and stroke, particularly when sustained during childhood. Numerous factors influence the manifestation of social problems after acquired brain injuries, raising the question of whether environmental manipulations can minimize or prevent such deficits. Here, we examine both clinical and preclinical evidence addressing this question, with a particular focus on environmental enrichment paradigms and differing housing conditions. We aimed to understand whether environmental manipulations can ameliorate injury-induced social behavior deficits. In summary, promising data from experimental models supports a beneficial role of environmental enrichment on social behavior. However, limited studies have considered social outcomes in the chronic setting, and few studies have addressed the social context specifically as an important component of the post-injury environment. Clinically, limited high-caliber evidence supports the use of specific interventions for social deficits after acquired brain injuries. An improved understanding of how the post-injury environment interacts with the injured brain, particularly during development, is needed to validate the implementation of rehabilitative interventions that involve manipulating an individuals' environment.
Collapse
Affiliation(s)
- Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; School of Allied Health (Occupational Therapy), La Trobe University, Melbourne, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Alfred Health, Melbourne, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Physical exercise mediates a cortical FMRP-mTOR pathway to improve resilience against chronic stress in adolescent mice. Transl Psychiatry 2023; 13:16. [PMID: 36658152 PMCID: PMC9852236 DOI: 10.1038/s41398-023-02311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Aerobic exercise effectively relieves anxiety disorders via modulating neurogenesis and neural activity. The molecular mechanism of exercise-mediated anxiolysis, however, remains incomplete. On a chronic restrain stress (CRS) model in adolescent mice, we showed that 14-day treadmill exercise profoundly maintained normal neural activity and axonal myelination in the medial prefrontal cortex (mPFC), in association with the prevention of anxiety-like behaviors. Further interrogation of molecular mechanisms revealed the activation of the mechanistic target of the rapamycin (mTOR) pathway within mPFC under exercise training. At the upstream of mTOR, exercise-mediated brain RNA methylation inhibited the expression of Fragile X mental retardation protein (FMRP) to activate the mTOR pathway. In summary, treadmill exercise modulates an FMRP-mTOR pathway to maintain cortical neural activity and axonal myelination, contributing to improved stress resilience. These results extended our understanding of the molecular substrate of exercise-mediated anxiolytic effect during adolescent period.
Collapse
|
3
|
Calpe-López C, Martínez-Caballero MA, García-Pardo MP, Aguilar MA. Intermittent voluntary wheel running promotes resilience to the negative consequences of repeated social defeat in mice. Physiol Behav 2022; 254:113916. [PMID: 35850205 DOI: 10.1016/j.physbeh.2022.113916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 01/14/2023]
Abstract
A novel approach to reduce the incidence of substance use disorders is to promote resilience to stress using environmental resources such as physical exercise. In the present study we test the hypothesis that Voluntary Wheel Running (VWR) during adolescence blocks the negative consequences of stress induced by intermittent repeated social defeat (IRSD). Four groups of adolescent male C57BL/6 mice were employed in the experiment; two groups were exposed to VWR (1 h, 3 days/week) from postnatal day (PND) 21 until the first social defeat (PND 47), while the remaining two groups did not have access to activity wheels (controls). On PND 47, 50, 53 and 56 mice, who had performed VWR, were exposed to an episode of social defeat by a resident aggressive mouse (VWR+IRSD group) or allowed to explore an empty cage (VWR+EXPL group). The same procedure was performed with control mice that had not undergone VWR (CONTROL+IRSD and CONTROL+EXPL groups). On PND 57, all the mice performed the Elevated Plus Maze (EPM), Hole-Board, Social Interaction, Tail Suspension and Splash tests. After an interval of 3 weeks, all mice underwent a conditioned place preference (CPP) procedure with 1 mg/kg of cocaine. Exposure to VWR prevented the negative consequences of social stress in the EPM, splash test and CPP, since the VWR+IRSD group did not display anxiety- or depression-like effects or the potentiation of cocaine reward observed in the Control+IRSD group. Our results support the idea that physical exercise promotes resilience to stress and represents an excellent target in drug abuse prevention.
Collapse
Affiliation(s)
- C Calpe-López
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M A Martínez-Caballero
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain
| | - M P García-Pardo
- Department of Psychology and Sociology, Faculty of Social Sciences, University of Zaragoza, Teruel, Spain
| | - M A Aguilar
- Neurobehavioural Mechanisms and Endophenotypes of Addictive Behaviour Research Unit, Department of Psychobiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
4
|
Effect of the dietary intake of fish oil on psycho-social behavioral disorder caused by social-defeat stress. Physiol Behav 2022; 254:113913. [PMID: 35835180 DOI: 10.1016/j.physbeh.2022.113913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
Abstract
Exposure to psychosocial stress is a risk factor for human diseases such as depression. Social defeat stress (SDS) is a well-known rodent model of human psychosocial stress, and animals exposed to SDS show social avoidance behavior. Fish oil, which is rich in docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), is expected to decrease the risk of depressive disorders. In this study, we determined whether fish oil affects the social behavior of SDS-exposed mice and measured serotonin levels and expression of genes related to tryptophan (TRP) metabolism in the hippocampus. The experimental animals were fed a diet containing fish oil during SDS exposure. For the fish oil treatment, experimental mice were fed a diet containing fish oil at low (L-FO), middle (M-FO), and high (H-FO) concentrations. The control group was supplemented with an equivalent amount of canola oil (no fish oil: N-FO). After the SDS protocol, we performed a social interaction test and assessed the sociality of experimental mice. In the N-FO group, SDS-exposed mice showed negative social interactions compared with non-stressed mice. The L-FO and H-FO groups showed negative social interactions after SDS exposure; however, the M-FO group did not exhibit negative social behavior. The serotonin levels of SDS-exposed mice were lower than those of non-stressed mice in the N-FO group. In contrast with these results in the N-FO group, there was no difference in serotonin levels between SDS-exposed and non-stressed mice in the FO groups. In addition, the expression of genes related to TRP metabolism in SDS-exposed mice increased in the N-FO group, but not in the FO group. These results suggest that fish oil improves the psychosocial behavioral disorders caused by SDS. This improvement could be explained by the increase in serotonin synthesis in the hippocampus.
Collapse
|
5
|
Ochi R, Fujita N, Takaishi K, Oshima T, Nguyen ST, Nishijo H, Urakawa S. Voluntary exercise reverses social behavior deficits and the increases in the densities of cholecystokinin-positive neurons in specific corticolimbic regions of diabetic OLETF rats. Behav Brain Res 2022; 428:113886. [DOI: 10.1016/j.bbr.2022.113886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
6
|
Zhang J, He ZX, Qu YS, Li LF, Wang LM, Yuan W, Hou WJ, Zhu YQ, Cai WQ, Zhang XN, Guo QQ, An SC, Jia R, Tai FD. Different baseline physical activity predicts susceptibility and resilience to chronic social defeat stress in mice: Involvement of dopamine neurons. Eur Neuropsychopharmacol 2021; 45:15-28. [PMID: 33730683 DOI: 10.1016/j.euroneuro.2021.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Physical inactivity, the fourth leading mortality risk factor worldwide, is associated with chronic mental illness. Identifying the mechanisms underlying different levels of baseline physical activity and the effects of these levels on the susceptibility to stress is very important. However, whether different levels of baseline physical activity influence the susceptibility and resilience to chronic social defeat stress (CSDS), and the underlying mechanisms in the brain remain unclear. The present study segregated wild-type mice into low baseline physical activity (LBPA) and high baseline physical activity (HBPA) groups based on short term voluntary wheel running (VWR). LBPA mice showed obvious susceptibility to CSDS, while HBPA mice were resilient to CSDS. In addition, the expression of tyrosine hydroxylase (TH) in the ventral tegmental area (VTA) was lower in LBPA mice than in HBPA mice. Furthermore, activation of TH neurons in the VTA of LBPA mice by chemogenetic methods increased the levels of VWR and resilience to CSDS. In contrast, inhibiting TH neurons in the VTA of HBPA mice lowered the levels of VWR and increased their susceptibility to CSDS. Thus, this study suggests that different baseline physical activities might be mediated by the dopamine system. This system also affects the susceptibility and resilience to CSDS, possibly via alteration of the baseline physical activity. This perspective on the neural control and impacts on VWR may aid the development of strategies to motivate and sustain voluntary physical activity. Furthermore, this can maximize the impacts of regular physical activity toward stress-reduction and health promotion.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; School of Physical Education & Health, Nanning Normal University, Nanning 530100, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yi-Shan Qu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lai-Fu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Li-Min Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Ying-Qi Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wen-Qi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xue-Ni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qian-Qian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shu-Cheng An
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Jia
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 710062, China.
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China; Cognition Neuroscience and Learning Division, Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
7
|
Pagliusi M, Bonet I, Brandão A, Magalhães S, Tambeli C, Parada C, Sartori C. Therapeutic and Preventive Effect of Voluntary Running Wheel Exercise on Social Defeat Stress (SDS)-induced Depressive-like Behavior and Chronic Pain in Mice. Neuroscience 2020; 428:165-177. [DOI: 10.1016/j.neuroscience.2019.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/29/2019] [Accepted: 12/23/2019] [Indexed: 01/21/2023]
|
8
|
Zhang J, He ZX, Wang LM, Yuan W, Li LF, Hou WJ, Yang Y, Guo QQ, Zhang XN, Cai WQ, An SC, Tai FD. Voluntary Wheel Running Reverses Deficits in Social Behavior Induced by Chronic Social Defeat Stress in Mice: Involvement of the Dopamine System. Front Neurosci 2019; 13:256. [PMID: 31019446 PMCID: PMC6458241 DOI: 10.3389/fnins.2019.00256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 01/04/2023] Open
Abstract
Voluntary exercise has been reported to have a therapeutic effect on many psychiatric disorders and social stress is known to impair social interaction. However, whether voluntary exercise could reverse deficits in social behaviors induced by chronic social defeat stress (CSDS) and the underlying mechanism remain unclear. The present study shows CSDS impaired social preference and induced social interaction deficiency in susceptible mice. Voluntary wheel running (VWR) reversed these effects. In addition, CSDS decreased the levels of tyrosine hydroxylase in the ventral tegmental area and the D2 receptor (D2R) in the nucleus accumbens (NAc) shell. These changes can be recovered by VWR. Furthermore, the recovery effect of VWR on deficits in social behaviors in CSDS mice was blocked by the microinjection of D2R antagonist raclopride into the NAc shell. Thus, these results suggest that the mechanism underlying CSDS-induced social interaction disorder might be caused by an alteration of the dopamine system. VWR may be a novel means to treat CSDS-induced deficits in social behaviors via modifying the dopamine system.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhi-Xiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Min Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Lai-Fu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Juan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Qian-Qian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xue-Ni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Qi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shu-Cheng An
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Fa-Dao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
9
|
Otsuka A, Shiuchi T, Chikahisa S, Shimizu N, Séi H. Sufficient intake of high-fat food attenuates stress-induced social avoidance behavior. Life Sci 2019; 219:219-230. [PMID: 30653972 DOI: 10.1016/j.lfs.2019.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/02/2023]
Abstract
AIMS Psychosocial stress is a form of mental stress associated with human relationships that underlies the pathogenesis of mental disorders such as depression. Previous studies have suggested that intake of energy-dense foods, also known as "palatable foods," can relieve psychosocial stress. However, it remains unclear whether the volume of palatable food affects abnormal behavior induced by psychosocial stress. In the present study, we aimed to determine whether levels of high-fat food intake significantly influence psychosocial stress using the social-defeat stress (SDS) paradigm. MAIN METHODS Mice subjected to SDS ate either a high-fat or normal chow diet for 10 days. Behavioral tests were conducted following the completion of the SDS paradigm. The hypothalamus, liver, and blood were examined post-mortem. KEY FINDINGS Mice with sufficient intake of high-fat chow immediately following exposure to SDS did not exhibit social avoidance behavior, suggesting that a high-fat diet may improve social behavior. However, inadequate intake of high-fat food, which did not alter cholesterol metabolism or hypothalamic-pituitary-adrenal axis activity, was not associated with such benefits, instead increased anxiety-like behavior. SIGNIFICANCE The results of the present study demonstrate that eating a high-fat diet may attenuate stress, but that this benefit disappears with insufficient intake of high-fat foods. The benefits of a high-fat diet under SDS may be related to cholesterol metabolism in the liver.
Collapse
Affiliation(s)
- Airi Otsuka
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Tetsuya Shiuchi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan.
| | - Sachiko Chikahisa
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Noriyuki Shimizu
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| | - Hiroyoshi Séi
- Department of Integrative Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Boerema AS, Heesterbeek M, Boersma SA, Schoemaker R, de Vries EFJ, van Heuvelen MJG, Van der Zee EA. Beneficial Effects of Whole Body Vibration on Brain Functions in Mice and Humans. Dose Response 2018; 16:1559325818811756. [PMID: 30574028 PMCID: PMC6299320 DOI: 10.1177/1559325818811756] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
The biological consequences of mechanical whole body vibration (WBV) on the brain are not well documented. The aim of the current study was to further investigate the effects of a 5-week WBV intervention on brain functions. Mice (C57Bl/6J males, age 15 weeks) were exposed to 30 Hz WBV sessions (10 minutes per day, 5 days per week, for a period of 5 weeks; n = 10). Controls received the same intervention without the actual vibration (n = 10). Humans (both genders, age ranging from 44-99 years) were also exposed to daily sessions of 30 Hz WBV (4 minutes per day, 4 days per week, for a period of 5 weeks; n = 18). Controls received the same protocol using a 1 Hz protocol (n = 16). Positron emission tomography imaging was performed in the mice, and revealed that glucose uptake was not changed as a consequence of the 5-week WBV intervention. Whole body vibration did, however, improve motor performance and reduced arousal-induced home cage activity. Cognitive tests in humans revealed a selective improvement in the Stroop Color-Word test. Taken together, it is concluded that WBV is a safe intervention to improve brain functioning, although the subtle effects suggest that the protocol is as yet suboptimal.
Collapse
Affiliation(s)
- Ate S. Boerema
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Marelle Heesterbeek
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Selma A. Boersma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Regien Schoemaker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marieke J. G. van Heuvelen
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eddy A. Van der Zee
- Groningen Institute for Evolutionary Life Sciences (GELIFES), Molecular Neurobiology, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
11
|
Kingston RC, Smith M, Lacey T, Edwards M, Best JN, Markham CM. Voluntary exercise increases resilience to social defeat stress in Syrian hamsters. Physiol Behav 2018; 188:194-198. [DOI: 10.1016/j.physbeh.2018.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 11/29/2022]
|
12
|
Abstract
Accumulating research in rodents and humans indicates that exercise benefits brain function and may prevent or delay onset of neurodegenerative conditions. In particular, exercise modifies the structure and function of the hippocampus, a brain area important for learning and memory. This review addresses the central and peripheral mechanisms underlying the beneficial effects of exercise on the hippocampus. We focus on running-induced changes in adult hippocampal neurogenesis, neural circuitry, neurotrophins, synaptic plasticity, neurotransmitters, and vasculature. The role of peripheral factors in hippocampal plasticity is also highlighted. We discuss recent evidence that systemic factors released from peripheral organs such as muscle (myokines), liver (hepatokines), and adipose tissue (adipokines) during exercise contribute to hippocampal neurotrophin and neurogenesis levels, and memory function. A comprehensive understanding of the body-brain axis is needed to elucidate how exercise improves hippocampal plasticity and cognition.
Collapse
Affiliation(s)
- C'iana Cooper
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| | - Hyo Youl Moon
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
- Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Biomedical Research Center, Baltimore, Maryland 21224
| |
Collapse
|
13
|
Mul JD. Voluntary exercise and depression-like behavior in rodents: are we running in the right direction? J Mol Endocrinol 2018; 60:R77-R95. [PMID: 29330149 DOI: 10.1530/jme-17-0165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022]
Abstract
Acute or chronic exposure to stress can increase the risk to develop major depressive disorder, a severe, recurrent and common psychiatric condition. Depression places an enormous social and financial burden on modern society. Although many depressed patients are treated with antidepressants, their efficacy is only modest, underscoring the necessity to develop clinically effective pharmaceutical or behavioral treatments. Exercise training produces beneficial effects on stress-related mental disorders, indicative of clinical potential. The pro-resilient and antidepressant effects of exercise training have been documented for several decades. Nonetheless, the underlying molecular mechanisms and the brain circuitries involved remain poorly understood. Preclinical investigations using voluntary wheel running, a frequently used rodent model that mimics aspects of human exercise training, have started to shed light on the molecular adaptations, signaling pathways and brain nuclei underlying the beneficial effects of exercise training on stress-related behavior. In this review, I highlight several neurotransmitter systems that are putative mediators of the beneficial effects of exercise training on mental health, and review recent rodent studies that utilized voluntary wheel running to promote our understanding of exercise training-induced central adaptations. Advancements in our mechanistic understanding of how exercise training induces beneficial neuronal adaptations will provide a framework for the development of new strategies to treat stress-associated mental illnesses.
Collapse
Affiliation(s)
- Joram D Mul
- Department of Endocrinology and MetabolismAcademic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of EndocrinologyDepartment of Clinical Chemistry, University of Amsterdam, Amsterdam, the Netherlands
- Netherlands Institute for NeuroscienceRoyal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| |
Collapse
|
14
|
Saszik SM, Smith CM. The impact of stress on social behavior in adult zebrafish (Danio rerio). Behav Pharmacol 2018; 29:53-59. [DOI: 10.1097/fbp.0000000000000338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Watanasriyakul WT, Wardwell J, McNeal N, Schultz R, Woodbury M, Dagner A, Cox M, Grippo AJ. Voluntary physical exercise protects against behavioral and endocrine reactivity to social and environmental stressors in the prairie vole. Soc Neurosci 2017; 13:602-615. [PMID: 28786739 DOI: 10.1080/17470919.2017.1365761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Physical activity can combat detrimental effects of stress. The current study examined the potential protective effects of exercise against a combination of social isolation and chronic mild stress (CMS) in a prairie vole model. Female voles were isolated for 4 weeks, with the addition of CMS during the final 2 weeks. Half of the voles were allowed access to a running wheel during this final 2 weeks, while the other half remained sedentary. Animals underwent behavioral tests to assess depressive- and anxiety-behaviors. In a subset of animals, plasma was collected 10 minutes after behavioral testing for corticosterone analysis. In a separate subset, brains were collected 2 hours after behavioral testing for cFos analysis in the paraventricular nucleus (PVN). Voles in the exercise group displayed significantly lower depressive- and anxiety-behaviors, and displayed significantly lower corticosterone levels, compared to animals in the sedentary group. There was no difference in PVN cFos activity between groups. Interestingly, animals that moderately exercised displayed lower levels of depressive-behavior and attenuated corticosterone reactivity compared to animals in the low and high activity subgroups. These findings suggest that physical activity can protect against a combination of social and environmental stressors.
Collapse
Affiliation(s)
| | - Joshua Wardwell
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Neal McNeal
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Rachel Schultz
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Matthew Woodbury
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Ashley Dagner
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Miranda Cox
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| | - Angela J Grippo
- a Department of Psychology , Northern Illinois University , DeKalb , IL , USA
| |
Collapse
|
16
|
Zang J, Liu Y, Li W, Xiao D, Zhang Y, Luo Y, Liang W, Liu F, Wei W. Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3β activity in mice. Neuroscience 2017; 354:122-135. [PMID: 28456716 DOI: 10.1016/j.neuroscience.2017.04.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 02/06/2023]
Abstract
Exercise has been proven to promote learning and memory, and is closely related to increased adult neurogenesis in the hippocampus. In our study, the β subunit of Glycogen synthase kinase-3 (GSK3β) can be significantly regulated by exercise, and the modulation of GSK3β activity can enhance adult neurogenesis and memory. To explore the mechanism by which exercise can improve cognitive function and adult neurogenesis, and the role GSK3β plays in this process, we established a mouse model of voluntary exercise to examine the expression and activity of GSK3β, and its associated signaling pathways, in the hippocampus dentate gyrus. The results showed an obvious increase in adult neurogenesis and cognitive functions, and the up-regulation of GSK3β, after exercise. The activity of the insulin pathway, which negatively regulates GSK3β, was also increased. Moreover, our results showed that the dopamine D1 receptor (DARP D1) pathway and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were also activated, which indicates a relationship between GSK3β and neurogenesis. Overall, our findings demonstrated that voluntary exercise promotes cognition and neurogenesis in the adult mouse dentate gyrus by the regulation of GSK3β expression and activity, which may be implemented through the DARP D1 receptor-signaling pathway.
Collapse
Affiliation(s)
- Jiankun Zang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wei Li
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Di Xiao
- Department of Epidemiology, School of Medicine, Jinan University, Guangzhou 510632, PR China
| | - Yingcheng Zhang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Yuxiang Luo
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Wanying Liang
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China
| | - Fei Liu
- Department of Neurochemistry, Inge-Grundke Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
17
|
Phillips C. Physical Activity Modulates Common Neuroplasticity Substrates in Major Depressive and Bipolar Disorder. Neural Plast 2017; 2017:7014146. [PMID: 28529805 PMCID: PMC5424494 DOI: 10.1155/2017/7014146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/10/2017] [Accepted: 03/16/2017] [Indexed: 12/13/2022] Open
Abstract
Mood disorders (MDs) are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although the biogenic amine model has provided some clinical utility, a need remains to better understand the interrelated mechanisms that contribute to neuroplasticity deficits in MDs and the means by which various therapeutics mitigate them. Of those therapeutics being investigated, physical activity (PA) has shown clear and consistent promise. Accordingly, the aims of this review are to (1) explicate key modulators, processes, and interactions that impinge upon multiple susceptibility points to effectuate neuroplasticity deficits in MDs; (2) explore the putative mechanisms by which PA mitigates these features; (3) review protocols used to induce the positive effects of PA in MDs; and (4) highlight implications for clinicians and researchers.
Collapse
|
18
|
Koch CE, Leinweber B, Drengberg BC, Blaum C, Oster H. Interaction between circadian rhythms and stress. Neurobiol Stress 2016; 6:57-67. [PMID: 28229109 PMCID: PMC5314421 DOI: 10.1016/j.ynstr.2016.09.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/26/2016] [Accepted: 09/05/2016] [Indexed: 01/24/2023] Open
Abstract
Life on earth has adapted to the day-night cycle by evolution of internal, so-called circadian clocks that adjust behavior and physiology to the recurring changes in environmental conditions. In mammals, a master pacemaker located in the suprachiasmatic nucleus (SCN) of the hypothalamus receives environmental light information and synchronizes peripheral tissues and central non-SCN clocks to geophysical time. Regulatory systems such as the hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system (ANS), both being important for the regulation of stress responses, receive strong circadian input. In this review, we summarize the interaction of circadian and stress systems and the resulting physiological and pathophysiological consequences. Finally, we critically discuss the relevance of rodent stress studies for humans, addressing complications of translational approaches and offering strategies to optimize animal studies from a chronobiological perspective.
Collapse
Affiliation(s)
- C E Koch
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - B Leinweber
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - B C Drengberg
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - C Blaum
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| | - H Oster
- University of Lübeck, Chronophysiology Group, Medical Department 1, Lübeck, Germany
| |
Collapse
|
19
|
Late feeding in the active period decreases slow-wave activity. Life Sci 2016; 160:18-26. [DOI: 10.1016/j.lfs.2016.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 01/15/2023]
|