1
|
De Luca LA, Laurin M, Menani JV. Control of fluid intake in dehydrated rats and evolution of sodium appetite. Physiol Behav 2024; 284:114642. [PMID: 39032667 DOI: 10.1016/j.physbeh.2024.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The objective of the present work is to examine from a new perspective the existence of causal factors not predicted by the classical theory that thirst and sodium appetite are two distinct motivations. For example, we ask why water deprivation induces sodium appetite, thirst is not "water appetite", and intracellular dehydration potentially causes sodium appetite. Contrary to the classical theory, we suggest that thirst first, and sodium appetite second, designate a temporal sequence underlying the same motivation. The single motivation becomes an "intervenient variable" a concept borrowed from the literature, fully explained in the text, between causes of dehydration (extracellular, intracellular, or both together), and respective behavioral responses subserved by hindbrain-dependent inhibition (e.g., lateral parabrachial nucleus) and forebrain facilitation (e.g., angiotensin II). A corollary is homology between rat sodium appetite and marine teleost thirst-like motivation that we name "protodipsia". The homology argument rests on similarities between behavior (salty water intake) and respective neuroanatomical as well as functional mechanisms. Tetrapod origin in a marine environment provides additional support for the homology. The single motivation hypothesis is also consistent with ingestive behaviors in nature given similarities (e.g., thirst producing brackish water intake) between the behavior of the laboratory rat and wild animals, rodents included. The hypotheses of single motivation and homology might explain why hyperosmotic rats, or eventually any other hyperosmotic tetrapod, shows paradoxical signs of sodium appetite. They might also explain how ingestive behaviors determined by dehydration and subserved by hindbrain inhibitory mechanisms contributed to tetrapod transition from sea to land.
Collapse
Affiliation(s)
- Laurival A De Luca
- Department of Physiology & Pathology, School of Dentistry, São Paulo State University (UNESP), 14801-903 Araraquara, São Paulo, Brazil.
| | - Michel Laurin
- CR2P, UMR 7207, CNRS/MNHN/SU, Muséum National d'Histoire Naturelle, Bâtiment de Géologie, CP 48, F-75231 Paris cedex 05, France
| | - José Vanderlei Menani
- Department of Physiology & Pathology, School of Dentistry, São Paulo State University (UNESP), 14801-903 Araraquara, São Paulo, Brazil
| |
Collapse
|
2
|
Pereira ED, Zenatti AA, Menani JV, De Luca LA, Andrade CAF. Inhibition of salty taste and sodium appetite by estrogens in spontaneously hypertensive rats. Front Physiol 2023; 14:1163568. [PMID: 37284542 PMCID: PMC10240049 DOI: 10.3389/fphys.2023.1163568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
Estrogen has a well-known effect of reducing salt intake in rats. This mini review focuses on recent findings regarding the interaction of estradiol with brain angiotensin II to control increased sodium palatability that occurs as a result of sodium appetite in spontaneously hypertensive rats.
Collapse
|
3
|
Felintro V, Trujillo V, dos-Santos RC, da Silva-Almeida C, Reis LC, Rocha FF, Mecawi AS. Water deprivation induces hypoactivity in rats independently of oxytocin receptor signaling at the central amygdala. Front Endocrinol (Lausanne) 2023; 14:1062211. [PMID: 36817576 PMCID: PMC9928579 DOI: 10.3389/fendo.2023.1062211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
INTRODUCTION Vasopressin (AVP) and oxytocin (OXT) are neuropeptides produced by magnocellular neurons (MCNs) of the hypothalamus and secreted through neurohypophysis to defend mammals against dehydration. It was recently demonstrated that MCNs also project to limbic structures, modulating several behavioral responses. METHODS AND RESULTS We found that 24 h of water deprivation (WD) or salt loading (SL) did not change exploration or anxiety-like behaviors in the elevated plus maze (EPM) test. However, rats deprived of water for 48 h showed reduced exploration of open field and the closed arms of EPM, indicating hypoactivity during night time. We evaluated mRNA expression of glutamate decarboxylase 1 (Gad1), vesicular glutamate transporter 2 (Slc17a6), AVP (Avpr1a) and OXT (Oxtr) receptors in the lateral habenula (LHb), basolateral (BLA) and central (CeA) amygdala after 48 h of WD or SL. WD, but not SL, increased Oxtr mRNA expression in the CeA. Bilateral pharmacological inhibition of OXTR function in the CeA with the OXTR antagonist L-371,257 was performed to evaluate its possible role in regulating the EPM exploration or water intake induced by WD. The blockade of OXTR in the CeA did not reverse the hypoactivity response in the EPM, nor did it change water intake induced in 48-h water-deprived rats. DISCUSSION We found that WD modulates exploratory activity in rats, but this response is not mediated by oxytocin receptor signaling to the CeA, despite the upregulated Oxtr mRNA expression in that structure after WD for 48 h.
Collapse
Affiliation(s)
- Viviane Felintro
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Verónica Trujillo
- Department of Physiology, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Raoni C. dos-Santos
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Claudio da Silva-Almeida
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Luís C. Reis
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - Fábio F. Rocha
- Department of Physiological Sciences, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | - André S. Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: André S. Mecawi,
| |
Collapse
|
4
|
Volcko KL, Brakey DJ, McNamara TE, Meyer MJ, McKay NJ, Santollo J, Daniels D. Control of water intake by a pathway from the nucleus of the solitary tract to the paraventricular hypothalamic nucleus. Appetite 2022; 172:105943. [PMID: 35131386 PMCID: PMC9903207 DOI: 10.1016/j.appet.2022.105943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
Abstract
Several brain areas have been shown to participate in thirst and control of fluid intake. An understanding of how these circuits interact, and their roles in the activation, maintenance, and termination of fluid intake remains incomplete. Central glucagon-like peptide-1 (GLP-1) receptor activation appears to be an important part of the termination of drinking, but the site(s) of action for this suppression has not yet been determined. In an attempt to use GLP-1 responsiveness as a means to screen targets of hindbrain cells that participate in the termination of thirst and the resultant water intake, we injected the GLP-1 receptor agonist exendin-4 (Ex-4) into three brain areas known to express GLP-1 receptors, and measured subsequent water intake. Ex-4 reduced water consumption when injected into the paraventricular hypothalamic nucleus (PVH) and nucleus of the solitary tract (NTS), but not when injected into the nucleus accumbens (NAc). Using the effective response after injection into the PVH as a guide, we examined the connection between the NTS - the site of endogenous central GLP-1 production - and the PVH. Retrograde tracing combined with Fos immunohistochemistry suggested intake-induced activity in PVH-projecting NTS cells. To test the hypothesis that this pathway is important in the termination of drinking, we chemogenetically activated PVH-projecting hindbrain cells. Interestingly, activation of this population of cells increased water intake, calling into question the heterogeneity of the pathway with respect to the control of fluid intake. Taken together, we conclude that the PVH is a site of action for GLP-1 receptor activation in the inhibition of water intake, but suspect that endogenous GLP-1 in NTS-to-PVH projections may be counterbalanced by a parallel pathway that either activates or maintains already activated water intake.
Collapse
Affiliation(s)
- K L Volcko
- Department of Psychology, USA; Behavioral Neuroscience Program, USA
| | - D J Brakey
- Department of Psychology, USA; Behavioral Neuroscience Program, USA
| | | | | | - N J McKay
- Department of Psychology, State University of New York Buffalo State College,Buffalo, NY, 14222, USA
| | - J Santollo
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - D Daniels
- Department of Psychology, USA; Behavioral Neuroscience Program, USA; Center for Ingestive Behavior Research. University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
5
|
Zheng D, Fu JY, Tang MY, Yu XD, Zhu Y, Shen CJ, Li CY, Xie SZ, Lin S, Luo M, Li XM. A Deep Mesencephalic Nucleus Circuit Regulates Licking Behavior. Neurosci Bull 2022; 38:565-575. [PMID: 35080731 DOI: 10.1007/s12264-021-00817-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Licking behavior is important for water intake. The deep mesencephalic nucleus (DpMe) has been implicated in instinctive behaviors. However, whether the DpMe is involved in licking behavior and the precise neural circuit behind this behavior remains unknown. Here, we found that the activity of the DpMe decreased during water intake. Inhibition of vesicular glutamate transporter 2-positive (VGLUT2+) neurons in the DpMe resulted in increased water intake. Somatostatin-expressing (SST+), but not protein kinase C-δ-expressing (PKC-δ+), GABAergic neurons in the central amygdala (CeA) preferentially innervated DpMe VGLUT2+ neurons. The SST+ neurons in the CeA projecting to the DpMe were activated at the onset of licking behavior. Activation of these CeA SST+ GABAergic neurons, but not PKC-δ+ GABAergic neurons, projecting to the DpMe was sufficient to induce licking behavior and promote water intake. These findings redefine the roles of the DpMe and reveal a novel CeASST-DpMeVGLUT2 circuit that regulates licking behavior and promotes water intake.
Collapse
Affiliation(s)
- Di Zheng
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Yu Fu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Jie Shen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yue Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Minmin Luo
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.,Chinese Institute for Brain Research, Beijing, 102206, China.,School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiao-Ming Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou, 310058, China. .,Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, China/Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine Between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Vilela FC, Vieira JS, Vitor-Vieira F, Kalil-Cutti B, da Silva JRT, Giusti-Paiva A, da Silva ML. Maternal separation increases pain sensitivity by reducing the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus. Neurosci Lett 2021; 748:135734. [PMID: 33596470 DOI: 10.1016/j.neulet.2021.135734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 01/04/2023]
Abstract
Animals subjected to early life maternal separation exhibit increased sensitivity to chemical, thermal, and mechanical stimuli during adulthood. However, the mechanism by which maternal separation can alter pain sensitivity in adulthood has not yet been investigated. Thus, we aimed to evaluate the activity of serotonergic and noradrenergic neurons and the effect of serotonin (5-HT) and noradrenaline (NA) reuptake inhibitors in male and female Wistar rats subjected to maternal separation. This study consisted of two experiments: 1) to confirm whether maternal separation increased pain sensitivity (n = 8 per group) and to evaluate the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus in animals subjected to maternal separation in comparison to controls (n = 6 per group); and 2) to evaluate the effect of fluoxetine (a selective 5-HT reuptake inhibitor) and desipramine (a NA reuptake inhibitor) on sensitivity to chemical stimulation using formalin in animals subjected to maternal separation (n = 8 per group). Our findings indicated that maternal separation increases an animal's sensitivity to painful chemical stimulation and reduces the activity of 5-HT and NA neurons. In addition, acute pretreatment with a 5-HT or NA reuptake inhibitor prevented the increased response to painful stimulation induced by maternal separation. In conclusion, maternal separation increases pain sensitivity by reducing the activity of serotonergic neurons in the dorsal raphe nucleus and noradrenergic neurons in locus coeruleus. This study contributes to possible treatments for pain in individuals exposed to early life stress.
Collapse
Affiliation(s)
- Fabiana C Vilela
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.
| | - Jádina S Vieira
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fernando Vitor-Vieira
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Bruna Kalil-Cutti
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Josie R T da Silva
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Marcelo L da Silva
- Instituto de Ciências da Motricidade, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| |
Collapse
|
7
|
Phenotyping neurons activated in the mouse brain during restoration of salt debt. J Chem Neuroanat 2019; 101:101665. [PMID: 31398430 DOI: 10.1016/j.jchemneu.2019.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
Salt overconsumption contributes to hypertension, which is a major risk factor for stroke, heart and kidney disease. Characterising neuronal pathways that may control salt consumption is therefore important for developing novel approaches for reducing salt overconsumption. Here, we identify neurons within the mouse central amygdala (CeA), lateral parabrachial nucleus (LPBN), intermediate nucleus of the solitary tract (iNTS), and caudal NTS (cNTS) that are activated and display Fos immunoreactivity in mice that have consumed salt in order to restore a salt debt, relative to salt replete and salt depleted controls. Double-label immunohistochemical studies revealed that salt restoring mice had significantly greater densities of activated enkephalin neurons within the CeA and iNTS, while statistically significant changes within the LPBN and cNTS were not observed. Furthermore, within the CeA, restoration of salt debt conferred a significant increase in the density of activated calretinin neurons, while there was no change relative to control groups in the density of activated neurons that co-expressed protein kinase C delta (PKC-δ). Taken together, these studies highlight the importance of opioid systems within the CeA and iNTS in neuronal processes associated with salt restoration, and may aid the development of future pharmacological and other strategies for reducing salt overconsumption.
Collapse
|
8
|
Saalfield J, Spear L. Fos activation patterns related to acute ethanol and conditioned taste aversion in adolescent and adult rats. Alcohol 2019; 78:57-68. [PMID: 30797833 DOI: 10.1016/j.alcohol.2019.02.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
Studies in rats have revealed marked age differences in sensitivity to the aversive properties of ethanol, with a developmental insensitivity to ethanol aversion that is most pronounced during pre- and early adolescence, declining thereafter to reach the enhanced aversive sensitivity of adults. The adolescent brain undergoes significant transitions throughout adolescence, including in regions linked with drug reward and aversion; however, it is unknown how ontogenetic changes within this reward/aversion circuitry contribute to developmental differences in aversive sensitivity. The current study examined early adolescent (postnatal day [P]28-30) and adult (P72-74) Sprague-Dawley male rats for conditioned taste aversion (CTA) after doses of 0, 1.0, or 2.5 g/kg ethanol, and patterns of neuronal activation in response to ethanol using Fos-like immunohistochemistry (Fos+) to uncover regions where age differences in activation are associated with ethanol aversion. An adolescent-specific ethanol-induced increase in Fos+ staining was seen within the nucleus accumbens shell and core. An age difference was also noted within the Edinger-Westphal nucleus (EW) following administration of the lower dose of ethanol, with 1 g/kg ethanol producing CTA in adults but not in adolescents and inducing a greater EW Fos response in adults than adolescents. Regression analysis revealed that greater numbers of Fos+ neurons within the EW and insula (Ins) were related to lower consumption of the conditioned stimulus (CS) on test day (reflecting greater CTA). Some regionally specific age differences in Fos+ were noted under baseline conditions, with adolescents displaying fewer Fos+ neurons than adults within the prelimbic (PrL) cortex, but more than adults in the bed nucleus of the stria terminalis (BNST). In the BNST (but not PrL), ethanol-induced increases in Fos-immunoreactivity (IR) were evident at both ages. Increased ethanol-induced activity within critical appetitive brain regions (NAc core and shell) supports a role for greater reward-related activation during adolescence, possibly along with attenuated responsiveness to ethanol in EW and Ins in the age-typical resistance of adolescents to the aversive properties of ethanol.
Collapse
|
9
|
Kim J, Zhang X, Muralidhar S, LeBlanc SA, Tonegawa S. Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors. Neuron 2017; 93:1464-1479.e5. [PMID: 28334609 DOI: 10.1016/j.neuron.2017.02.034] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/30/2017] [Accepted: 02/15/2017] [Indexed: 01/07/2023]
Abstract
Basolateral amygdala (BLA) principal cells are capable of driving and antagonizing behaviors of opposing valence. BLA neurons project to the central amygdala (CeA), which also participates in negative and positive behaviors. However, the CeA has primarily been studied as the site for negative behaviors, and the causal role for CeA circuits underlying appetitive behaviors is poorly understood. Here, we identify several genetically distinct populations of CeA neurons that mediate appetitive behaviors and dissect the BLA-to-CeA circuit for appetitive behaviors. Protein phosphatase 1 regulatory subunit 1B+ BLA pyramidal neurons to dopamine receptor 1+ CeA neurons define a pathway for promoting appetitive behaviors, while R-spondin 2+ BLA pyramidal neurons to dopamine receptor 2+ CeA neurons define a pathway for suppressing appetitive behaviors. These data reveal genetically defined neural circuits in the amygdala that promote and suppress appetitive behaviors analogous to the direct and indirect pathways of the basal ganglia. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Joshua Kim
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Xiangyu Zhang
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shruti Muralidhar
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah A LeBlanc
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Susumu Tonegawa
- RIKEN-MIT Center for Neural Circuit Genetics at The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Brain Science Institute, RIKEN, Saitama 351-0198, Japan.
| |
Collapse
|
10
|
Early oxytocin inhibition of salt intake after furosemide treatment in rats? Physiol Behav 2017; 173:34-41. [PMID: 28131863 DOI: 10.1016/j.physbeh.2017.01.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 11/23/2022]
Abstract
Body fluid homeostasis requires a complex suite of physiological and behavioral processes. Understanding of the role of the central nervous system (CNS) in integrating these processes has been advanced by research employing immunohistochemical techniques to assess responses to a variety of body fluid challenges. Such techniques have revealed sex/estrogen differences in CNS activation in response to hypotension and hypernatremia. In contrast, it has been difficult to conclusively identify specific CNS areas and neurotransmitter systems that are activated by hyponatremia using these techniques. In part, this difficulty is due to the temporal disconnect between the physiological effects of treatments commonly used to deplete body sodium and the behavioral response to such depletion. In some methods, sodium ingestion is delayed in association with increased oxytocin (OT), suggesting an inhibitory role for OT in sodium intake. Urinary sodium loss increases within an hour after treatment with furosemide, a natriuretic-diuretic, but sodium intake is delayed for 18-24h. Accordingly, we hypothesized that acute furosemide-induced sodium loss activates centrally-projecting OT neurons which provide an initial inhibition of sodium intake, and tested this hypothesis in ovariectomized Sprague-Dawley rats with or without estrogen using immunohistochemical methods. Neuronal activation in the hypothalamic paraventricular nuclei (PVN) after administration of furosemide corresponded to the timing of the physiological effects. The activation was not different in estrogen-treated rats, nor did estrogen alter the initial suppression of sodium intake. However, virtually no fos immunoreactive (fos-IR) neurons in the parvocellular PVN were also immunolabeled for OT. Thus, acute sodium loss after furosemide produces neural activation and an early inhibition of sodium intake that does not appear to involve activation of centrally-projecting OT neurons and is not influenced by estrogen.
Collapse
|
11
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol effects on neuroendocrine responses induced by water deprivation in rats. J Endocrinol 2016; 231:167-180. [PMID: 27613338 DOI: 10.1530/joe-16-0311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - André Souza Mecawi
- Department of Physiological SciencesInstitute of Biological and Healthy Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Department of PhysiologyFaculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lucila Leico Kagohara Elias
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|