1
|
Zhang F, Ye Z, Ran Y, Liu C, Zhang M, Xu X, Song F, Yao L. Ruthenium red alleviates post-resuscitation myocardial dysfunction by upregulating mitophagy through inhibition of USP33 in a cardiac arrest rat model. Eur J Pharmacol 2024; 974:176633. [PMID: 38703975 DOI: 10.1016/j.ejphar.2024.176633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cardiac arrest (CA) remains a leading cause of death, with suboptimal survival rates despite efforts involving cardiopulmonary resuscitation and advanced life-support technology. Post-resuscitation myocardial dysfunction (PRMD) is an important determinant of patient outcomes. Myocardial ischemia/reperfusion injury underlies this dysfunction. Previous reports have shown that ruthenium red (RR) has a protective effect against cardiac ischemia-reperfusion injury; however, its precise mechanism of action in PRMD remains unclear. This study investigated the effects of RR on PRMD and analyzed its underlying mechanisms. Ventricular fibrillation was induced in rats, which were then subjected to cardiopulmonary resuscitation to establish an experimental CA model. At the onset of return of spontaneous circulation, RR (2.5 mg/kg) was administered intraperitoneally. Our study showed that RR improved myocardial function and reduced the production of oxidative stress markers such as malondialdehyde (MDA), glutathione peroxidase (GSSG), and reactive oxygen species (ROS) production. RR also helped maintain mitochondrial structure and increased ATP and GTP levels. Additionally, RR effectively attenuated myocardial apoptosis. Furthermore, we observed downregulation of proteins closely related to mitophagy, including ubiquitin-specific protease 33 (USP33) and P62, whereas LC3B (microtubule-associated protein light chain 3B) was upregulated. The upregulation of mitophagy may play a critical role in reducing myocardial injury. These results demonstrate that RR may attenuate PRMD by promoting mitophagy through the inhibition of USP33. These effects are likely mediated through diverse mechanisms, including antioxidant activity, apoptosis suppression, and preservation of mitochondrial integrity and energy metabolism. Consequently, RR has emerged as a promising therapeutic approach for addressing post-resuscitation myocardial dysfunction.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhou Ye
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China
| | - Yingqi Ran
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Cong Liu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Mingtao Zhang
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xiangchang Xu
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Fengqing Song
- Department of Emergency Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China; Institute of Cardiopulmonary Cerebral Resuscitation, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Lan Yao
- Department of Emergency Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Sharma P, Aggarwal K, Awasthi R, Kulkarni GT, Sharma B. Behavioral and biochemical investigations to explore the efficacy of quercetin and folacin in experimental diabetes induced vascular endothelium dysfunction and associated dementia in rats. J Basic Clin Physiol Pharmacol 2023; 34:603-615. [PMID: 34161695 DOI: 10.1515/jbcpp-2020-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 04/16/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Vascular dementia (VaD), being strongly associated with metabolic conditions is a major health concern around the world. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of quercetin and folacin in diabetes induced vascular endothelium dysfunction and related dementia. METHODS Single dose streptozotocin (STZ) (50 mg/kg i.p) was administered to albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), mitochondrial enzyme complex (I, II, and IV), inflammatory markers (interleukin-IL-6, IL-10, tumor necrosis factor-TNF-α, and myeloperoxidase-MPO), and acetylcholinesterase activity-AChE were also assessed. Quercetin (30 mg kg-1/60 mg kg-1) and folacin (30 mg kg-1/60 mg kg-1) were used as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. RESULTS STZ administered rats showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress; inflammation; AChE activity, and decrease in mitochondrial complex (I, II, and IV) activity. Administration of quercetin and folacin in two different doses, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, and biochemical parameters. CONCLUSIONS STZ administration caused diabetes and VaD which was attenuated by the administration of quercetin and folacin. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD conditions.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Khushboo Aggarwal
- Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Meerut, India
| | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
- CNS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
3
|
Alkazmi L, Al-Kuraishy HM, Al-Gareeb AI, El-Bouseary MM, Ahmed EA, Batiha GES. Dantrolene and ryanodine receptors in COVID-19: The daunting task and neglected warden. Clin Exp Pharmacol Physiol 2023; 50:335-352. [PMID: 36732880 DOI: 10.1111/1440-1681.13756] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Dantrolene (DTN) is a ryanodine receptor (RyR) antagonist that inhibits Ca2+ release from stores in the sarcoplasmic reticulum. DTN is mainly used in the management of malignant hyperthermia. RyRs are highly expressed in immune cells and are involved in different viral infections, including severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), because Ca2+ is necessary for viral replication, maturation and release. DTN can inhibit the proliferation of SARS-CoV-2, indicating its potential role in reducing entry and pathogenesis of SARS-CoV-2. DTN may increase clearance of SARS-CoV-2 and promote coronavirus disease 2019 (COVID-19) recovery by shortening the period of infection. DTN inhibits N-methyl-D-aspartate (NMDA) mediated platelets aggregations and thrombosis. Therefore, DTN may inhibit thrombosis and coagulopathy in COVID-19 through suppression of platelet NMDA receptors. Moreover, DTN has a neuroprotective effect against SARS-CoV-2 infection-induced brain injury through modulation of NMDA receptors, which are involved in excitotoxicity, neuronal injury and the development of neuropsychiatric disorders. In conclusion, DTN by inhibiting RyRs may attenuate inflammatory disorders in SARS-CoV-2 infection and associated cardio-pulmonary complications. Therefore, DNT could be a promising drug therapy against COVID-19. Preclinical and clinical studies are warranted in this regards.
Collapse
Affiliation(s)
- Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad, Iraq
| | - Maisra M El-Bouseary
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
4
|
Singla RK, Dhonchak K, Sodhi RK, Arockia Babu M, Madan J, Madaan R, Kumar S, Sharma R, Shen B. Bergenin ameliorates cognitive deficits and neuropathological alterations in sodium azide-induced experimental dementia. Front Pharmacol 2022; 13:994018. [PMID: 36249784 PMCID: PMC9556967 DOI: 10.3389/fphar.2022.994018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Bergenin, 4-O-methyl gallic acid glucoside, is a bioactive compound found in the cortex of Mallotus japonicus (L.f.) Müll.Arg. along with many other natural resources including that from Bergenia species. The present study delineates the neuroprotective potential of bergenin through the modulation of PPAR-γ receptors. Method: Dementia was induced in the Wistar rats by intraperitoneal (i.p.) administration of sodium azide (12.5 mg/kg for the first 5 days followed by 10 mg/kg for the next 9 days). The rats were then exposed to the Morris water maze test to assess the effect on cognitive abilities followed by a series of biochemical and histopathological evaluations. Results: Sodium azide-treated rats exhibited a severe deterioration of memory as suggested by poor performance in the spatial learning task in addition to the enhancement of brain acetylcholinesterase potential, oxidative stress, inflammation, and amyloid-β (Aβ) accumulation. Administration of bergenin to sodium azide-treated rats significantly recovered cognition and related biochemical variations. Further, co-administration of Bisphenol A diglycidyl ether (BADGE), a PPAR-γ antagonist with bergenin challenged its neuroprotective effects. Conclusions: The findings of our study exhibit that the cognitive restoration potential of bergenin may be attributed to its modulatory effects against cholinesterase, oxidative stress, and inflammatory markers, as well as its neuroprotective actions, thus aligning it as a possible therapy for Alzheimer's disease-related dementia. The study also fortifies the significance of PPAR-γ receptors in dementia.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Konika Dhonchak
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, India
| | - Rupinder K. Sodhi
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, India
| | - M. Arockia Babu
- Department of Pharmacology, Chandigarh College of Pharmacy, Mohali, India
| | - Jitender Madan
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Neurobehavioral and neurobiochemical effect of atomoxetine and N-acetylcysteine in streptozotocin diabetes induced endothelial dysfunction and related dementia. Physiol Behav 2022; 249:113767. [PMID: 35245527 DOI: 10.1016/j.physbeh.2022.113767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 11/20/2022]
Abstract
Metabolic conditions like diabetes, is a major risk factor for the development of dementia of vascular origin. This study investigates the efficacy of atomoxetine (ATX) and N-acetylcysteine (NAC) in streptozotocin (STZ) diabetes induced vascular endothelium dysfunction and related dementia. Single dose STZ (50 mg/kg i.p) was administered to Albino Wistar rats (male, 200-250 g) by dissolving in citrate buffer. Morris water maze (MWM) and attentional set shifting tests (ASST) were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains' oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE and histopathological changes were also assessed. Atomoxetine - ATX (2 mg kg-1/ 4 mg kg-1) and N-acetylcysteine- NAC (250 mg kg-1/ 500 mg kg-1) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg kg-1) was used as a positive control. STZ administered rats showed increase in serum glucose levels and decrease in body weight. Rats administered with STZ also showed reduction in learning, memory, reversal learning, executive functioning, impairment in endothelial function, increase in brains' oxidative stress, inflammation, AChE activity and histopathological changes. Administration of ATX and NAC in two different doses as well as in combination, significantly attenuated the STZ induced diabetes induced impairments in the behavioral, endothelial, biochemical parameters and histopathological changes. Co-treatment of ATX and NAC was better in comparison to the doses when given alone. Hence, STZ administration caused diabetes induced dementia of vascular origin which was attenuated by the administration of ATX and NAC. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced dementia of vascular origin conditions.
Collapse
|
6
|
Sharma P, Kaushik P, Jain S, Sharma BM, Awasthi R, Kulkarni GT, Sharma B. Efficacy of Ulinastatin and Sulforaphane Alone or in Combination in Rat Model of Streptozotocin Diabetes Induced Vascular Dementia. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:470-489. [PMID: 34294616 PMCID: PMC8316668 DOI: 10.9758/cpn.2021.19.3.470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 11/22/2022]
Abstract
Objective Vascular Dementia (VaD), is associated with metabolic conditions. Diabetes is a major risk factor for the development of VaD. This study investigates the efficacy of ulinastatin (UTI) and sulforaphane (SUL) in streptozotocin (STZ)-diabetes induced vascular endothelium dysfunction and related dementia. Methods Single dose STZ (50 mg/kg i.p.) was administered to Albino Wistar rats (male, 200−250 g). Morris water maze and attentional set shifting tests were used to assess the spatial learning, memory, reversal learning, and executive functioning in animals. Body weight, serum glucose, serum nitrite/nitrate, vascular endothelial function, aortic superoxide anion, brains’ oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-a, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, blood brain barrier (BBB) permeability and histopathological changes were also assessed. UTI (10,000 U/kg) and SUL (25 mg/kg) were used alone as well as in combination, as the treatment drugs. Donepezil (0.5 mg/kg) was used as a positive control. Results STZ-administered rats showed reduction in body weight, learning, memory, reversal learning, executive functioning, impairment in endothelial function, BBB permeability, increase in serum glucose, brains’ oxidative stress, inflammation, AChE-activity, BBB permeability and histopathological changes. Administration of UTI and SUL alone as well as in combination, significantly and dose dependently attenuated the STZ-diabetes-induced impairments in the behavioral, endothelial, and biochemical parameters. Conclusion STZ administration caused diabetes and VaD which was attenuated by the administration of UTI and SUL. Therefore, these agents may be studied further for the assessment of their full potential in diabetes induced VaD.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Prachi Kaushik
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Swati Jain
- Department of Pharmacology, School of Pharmacy, BIT, Meerut, India
| | | | - Rajendra Awasthi
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | | | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India.,CNS and CVS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
7
|
Kumar V, Khare P, Devi K, Kaur J, Kumar V, Kiran Kondepudi K, Chopra K, Bishnoi M. Short-chain fatty acids increase intracellular calcium levels and enhance gut hormone release from STC-1 cells via transient receptor potential Ankyrin1. Fundam Clin Pharmacol 2021; 35:1004-1017. [PMID: 33636045 DOI: 10.1111/fcp.12663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Short-chain fatty acids (SCFAs), metabolites of colonic bacterial fermentation of complex carbohydrates, are closely related to the release of gut hormones. In this study, we examined the involvement of transient receptor potential ankyrin 1 (TRPA1) in SCFA-induced increase in intracellular calcium ([Ca2+ ]i ) and its impact on gut hormone secretion using naturally TRPA1 expressing intestinal secretin tumour cell-1 (STC-1) cell line. Individual SCFAs and their physiological mix enhanced calcium influx in TRPA1-dependent manner. SCFA mix also significantly increased membrane expression of TRPA1. Gene expression studies revealed that SCFA mix elevated the expression of genes involved in calcium-activated calcineurin pathway in TRPA1-dependent manner and cAMP-regulated transcriptional co-activators (CRTC) pathway independent to TRPA1. Genes representing synaptic vesicular exocytosis and gut hormone precursors were significantly elevated with SCFA mix treatment. Treatment with TRPA1 antagonist HC-030031 markedly reduced these effects. The release of gut hormones was elevated with 10 mm SCFA mix in TRPA1 dependent manner. Our in vivo prebiotic study results suggested presence of an environment conducive to increase in gut hormone secretion. Overall, our findings provide an evidence for the possible role of TRPA1 in SCFA-induced increase in gut hormone secretion, hence another mechanism of action for prebiotics.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Pragyanshu Khare
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Kirti Devi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Jasleen Kaur
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Vijay Kumar
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India.,Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- TR(i)P for Health Laboratory, Centre of Excellence in Functional Foods, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab, 140603, India
| |
Collapse
|
8
|
Maikoo S, Makayane D, Booysen IN, Ngubane P, Khathi A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. Eur J Med Chem 2020; 213:113064. [PMID: 33279292 DOI: 10.1016/j.ejmech.2020.113064] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 01/03/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder which is globally responsible for millions of fatalities per year. Management of T2DM typically involves orally administered anti-hyperglycaemic drugs in conjunction with dietary interventions. However, the current conventional therapy seems to be largely ineffective as patients continue to develop complications such as cardiovascular diseases, blindness and kidney failure. Existing alternative treatment entails the administration of organic therapeutic pharmaceuticals, but these drugs have various side effects such as nausea, headaches, weight gain, respiratory and liver damage. Transition metal complexes have shown promise as anti-diabetic agents owing to their diverse mechanisms of activity. In particular, selected ruthenium compounds have exhibited intriguing biological behaviours as Protein Tyrosine Phosphatase (PTP) 1B and Glycogen Synthase Kinase 3 (GSK-3) inhibitors, as well as aggregation suppressants for the human islet amyloid polypeptide (hIAPP). This focussed review serves as a survey on studies pertaining to ruthenium compounds as metallo-drugs for T2DM. Herein, we also provide perspectives on directions to fully elucidate in vivo functions of this class of potential metallopharmaceuticals. More specifically, there is still a need to investigate the pharmacokinetics of ruthenium drugs in order to establish their biodistribution patterns which will affirm whether these metal complexes are substitutionally inert or serve as pro-drugs. In addition, embedding oral-administered ruthenium complexes into bio-compatible polymers can be a prospective means of enhancing stability during drug delivery.
Collapse
Affiliation(s)
- Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Daniel Makayane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin Noel Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
9
|
Ghosh A, Beyazcicek O, Davis ES, Onyenwoke RU, Tarran R. Cellular effects of nicotine salt-containing e-liquids. J Appl Toxicol 2020; 41:493-505. [PMID: 33034066 DOI: 10.1002/jat.4060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/30/2022]
Abstract
"Pod-based" e-cigarettes such as JUUL are currently the most prevalent electronic nicotine delivery systems (ENDS) in the United States. JUUL-type ENDS utilize nicotine salts protonated with benzoic acid rather than freebase nicotine. However, limited information is available on the cellular effects of these products. Cytoplasmic Ca2+ is a universal second messenger that controls many cellular functions including cell growth and cell death. Of note, dysregulation of cell Ca2+ homeostasis has been linked with several disease processes including autoimmune disease and several types of cancer. We exposed HEK293T cells and THP-1 macrophage-like cells to different JUUL e-liquids. We evaluated their effects on cellular viability and Ca2+ signaling by measuring fluorescence from calcein-AM/propidium iodide and Fluo-4, respectively. E-liquid autofluorescence was used to look for e-liquid permeation into cells. To identify the mechanisms behind the Ca2+ responses, different inhibitors of Ca2+ channels and phospholipase C signaling were used. JUUL e-liquids caused significant cytotoxic effects, with "Mint" flavor being the most cytotoxic. The Mint flavored e-liquid also caused a significant elevation in cytoplasmic Ca2+ . Using autofluorescence, the permeation of JUUL e-liquids into live cells was confirmed, indicating that intracellular organelles are directly exposed to e-liquids. Further studies identified the endoplasmic reticulum as being the source of e-liquid-induced changes in cytoplasmic Ca2+ . Nicotine salt-based e-liquids cause cytotoxicity and elevate cytoplasmic Ca2+ , indicating that they can exert biological effects beyond what would be expected with nicotine alone. These effects are flavor-dependent, and we propose that flavored e-liquids be reassessed for potential lung toxicity.
Collapse
Affiliation(s)
- Arunava Ghosh
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ozge Beyazcicek
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eric S Davis
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rob U Onyenwoke
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, North Carolina, USA
| | - Robert Tarran
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Possible involvement of D2/D3 receptor activation in ischemic preconditioning mediated protection of the brain. Brain Res 2020; 1748:147116. [PMID: 32919985 DOI: 10.1016/j.brainres.2020.147116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
Ischemic stroke is a medical condition that arises because of poor blood supply to the brain. Reperfusion being salvage to the brain further causes, exacerbation of tissue injury, known as reperfusion injury. Ischemic preconditioning (IPC) has been known to provide benefits against ischemia reperfusion (I/R) injury. Dopamine D2/D3 receptor mediated several pathways are also reported as mediators in the IPC mediated neuroprotection. This study investigates the possible involvement of D2/D3 receptor activation in IPC mediated neuroprotection in the I/R brain. Global cerebral ischemia/reperfusion (GCI/R) injury in swiss albino mice was induced by occluding the common carotid arteries for 17 min, followed by 24 h reperfusion. IPC was provided by giving 3 episodes of I/R prior to Ischemia (17 min). Morris water maze (MWM) was used to assess the spatial learning, memory and Rota rod, lateral push test as well as inclined beam test were conducted to assess the motor functions in animals. Cerebral oxidative markers (thiobarbituric acid reactive species-TBARS, reduced glutathione-GSH, superoxide dismutase-SOD, and catalase-CAT), inflammatory markers (IL-6, IL-10, TNF-α, and myeloperoxidase-MPO), acetylcholinesterase activity-AChE, infarct size (% weight and % volume), and histopathological changes were also assessed. Haloperidol (0.05 mg/kg, i.p) was used to antagonize the effects of D2/D3 receptor activation. I/R animals showed reduction in memory, motor function, increase in cerebral oxidative stress, inflammation, AChE activity, infarct size and histopathological changes. Episodes of IPC prior to ischemia, attenuated the deleterious effects of I/R injury. Administration of haloperidol abolished the protective effects of IPC. Hence, it may be concluded that IPC mediated neuroprotection may involves dopamine D2/D3 receptor activation in mice.
Collapse
|
11
|
Sharma Y, Garabadu D. Ruthenium red, mitochondrial calcium uniporter inhibitor, attenuates cognitive deficits in STZ-ICV challenged experimental animals. Brain Res Bull 2020; 164:121-135. [PMID: 32858127 DOI: 10.1016/j.brainresbull.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cardinal features of cognitive dysfunction in an individual. Recently, the blockade of mitochondrial calcium uniporter (MCU) exhibits neuroprotective activity in experimental animals. However, the therapeutic potential of MCU has not yet been established in the management of AD. Therefore, the present study explored the therapeutic potential of either Ruthenium red (RR), a MCU blocker, or Spermine, a MCU opener, on the extent of mitochondrial calcium accumulation, function, integrity and bioenergetics in hippocampus, pre-frontal cortex and amygdale of ICV-STZ challenged rats. Experimental AD was induced in male rats by intracerebroventricular injection of streptozotocin (ICV-STZ) on day-1 (D-1) of the experimental protocol at a sub-diabetogenic dose (3 mg/kg) twice at an interval of 48 h into both rat lateral ventricles. RR attenuated ICV-STZ-induced memory-related behavioral abnormalities in Morris water maze and Y-maze tests. RR also attenuated ICV-STZ-induced decrease in the level of acetylcholine and activity of choline acetyltransferase and, increase in the activity of acetylcholinestarase in memory-sensitive rat brain regions. Further, RR attenuated mitochondrial toxicity in terms of reducing mitochondrial calcium accumulation and improving the mitochondrial function, integrity and bioenergetics in memory-sensitive brain regions of ICV-STZ challenged rats. Furthermore, RR attenuated the percentage of apoptotic cells in ICV-STZ challenged rat brain regions. However, Spermine did not alter ICV-STZ-induced behavioral, biochemical and molecular observations in any of the brain regions. These observations indicate the fact that the MCU blockage could be a potential therapeutic option in the management of sporadic type of AD.
Collapse
Affiliation(s)
- Yati Sharma
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India.
| |
Collapse
|
12
|
Iwamoto M, Takashima M, Ohtubo Y. A subset of taste receptor cells express biocytin-permeable channels activated by reducing extracellular Ca 2+ concentration. Eur J Neurosci 2020; 51:1605-1623. [PMID: 31912931 DOI: 10.1111/ejn.14672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 12/03/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
Taste receptor cells (type II cells) transmit taste information to taste nerve fibres via ATP-permeable channels, including calcium homeostasis modulator (CALHM), connexin and/or pannexin1 channels, via the paracrine release of adenosine triphosphate (ATP) as a predominant transmitter. In the present study, we demonstrate that extracellular Ca2+ -dependent biocytin-permeable channels are present in a subset of type II cells in mouse fungiform taste buds using biocytin uptake, immunohistochemistry and in situ whole-cell recordings. Type II cells were labelled with biocytin in an extracellular Ca2+ concentration ([Ca2+ ]out )-sensitive manner. We found that the ratio of biocytin-labelled type II cells to type II cells per taste bud was approximately 20% in 2 mM Ca2+ saline, and this ratio increased to approximately 50% in nominally Ca2+ -free saline. The addition of 300 µM GdCl3 , which inhibits various channels including CALHM1 channels, significantly inhibited biocytin labelling in nominally Ca2+ -free saline, whereas the addition of 20 µM ruthenium red did not. Moreover, Cs+ -insensitive currents increased in nominally Ca2+ -free saline in approximately 40% of type II cells. These increased currents appeared at a potential of above -35 mV, reversed at approximately +10 mV and increased with depolarization. These results suggest that biocytin labels type II cells via ion channels activated by [Ca2+ ]out reduction, probably "CALHM-like" channels, on the basolateral membrane and that taste receptor cells can be categorized into two groups based on differences in the expression levels of [Ca2+ ]out -dependent biocytin-permeable channels. These data indicate electrophysiological and pharmacologically relevant properties of biocytin-permeable channels and suggest their contributions to taste signal transduction.
Collapse
Affiliation(s)
- Masafumi Iwamoto
- Graduate school of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Japan
| | - Madoka Takashima
- Graduate school of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Japan
| | - Yoshitaka Ohtubo
- Graduate school of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu-shi, Japan
| |
Collapse
|
13
|
Zhang L, Wang H, Zhou X, Mao L, Ding K, Hu Z. Role of mitochondrial calcium uniporter-mediated Ca 2+ and iron accumulation in traumatic brain injury. J Cell Mol Med 2019; 23:2995-3009. [PMID: 30756474 PMCID: PMC6433723 DOI: 10.1111/jcmm.14206] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies have suggested that the cellular Ca2+ and iron homeostasis, which can be regulated by mitochondrial calcium uniporter (MCU), is associated with oxidative stress, apoptosis and many neurological diseases. However, little is known about the role of MCU‐mediated Ca2+ and iron accumulation in traumatic brain injury (TBI). Under physiological conditions, MCU can be inhibited by ruthenium red (RR) and activated by spermine (Sper). In the present study, we used RR and Sper to reveal the role of MCU in mouse and neuron TBI models. Our results suggested that the Ca2+ and iron concentrations were obviously increased after TBI. In addition, TBI models showed a significant generation of reactive oxygen species (ROS), decrease in adenosine triphosphate (ATP), deformation of mitochondria, up‐regulation of deoxyribonucleic acid (DNA) damage and increase in apoptosis. Blockage of MCU by RR prevented Ca2+ and iron accumulation, abated the level of oxidative stress, improved the energy supply, stabilized mitochondria, reduced DNA damage and decreased apoptosis both in vivo and in vitro. Interestingly, Sper did not increase cellular Ca2+ and iron concentrations, but suppressed the Ca2+ and iron accumulation to benefit the mice in vivo. However, Sper had no significant impact on TBI in vitro. Taken together, our data demonstrated for the first time that blockage of MCU‐mediated Ca2+ and iron accumulation was essential for TBI. These findings indicated that MCU could be a novel therapeutic target for treating TBI.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoming Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Lei Mao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhigang Hu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
14
|
Cisneros-Mejorado A, Gottlieb M, Ruiz A, Chara JC, Pérez-Samartín A, Marambaud P, Matute C. Blockade and knock-out of CALHM1 channels attenuate ischemic brain damage. J Cereb Blood Flow Metab 2018; 38:1060-1069. [PMID: 28597712 PMCID: PMC5999001 DOI: 10.1177/0271678x17713587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overactivation of purinergic receptors during cerebral ischemia results in a massive release of neurotransmitters, including adenosine triphosphate (ATP), to the extracellular space which leads to cell death. Some hypothetical pathways of ATP release are large ion channels, such as calcium homeostasis modulator 1 (CALHM1), a membrane ion channel that can permeate ATP. Since this transmitter contributes to postischemic brain damage, we hypothesized that CALHM1 activation may be a relevant target to attenuate stroke injury. Here, we analyzed the contribution of CALHM1 to postanoxic depolarization after ischemia in cultured neurons and in cortical slices. We observed that the onset of postanoxic currents in neurons in those preparations was delayed after its blockade with ruthenium red or silencing of Calhm1 gene by short hairpin RNA, as well as in slices from CALHM1 knockout mice. Subsequently, we used transient middle cerebral artery occlusion and found that ruthenium red, a blocker of CALHM1, or the lack of CALHM1, substantially attenuated the motor symptoms and reduced significantly the infarct volume. These results show that CALHM1 channels mediate postanoxic depolarization in neurons and brain damage after ischemia. Therefore, targeting CALHM1 may have a high therapeutic potential for treating brain damage after ischemia.
Collapse
Affiliation(s)
- Abraham Cisneros-Mejorado
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Miroslav Gottlieb
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,3 Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Asier Ruiz
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Juan C Chara
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | - Alberto Pérez-Samartín
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| | | | - Carlos Matute
- 1 Achucarro Basque Center for Neuroscience, Departamento de Neurociencias and CIBERNED, Universidad del País Vasco (UPV/EHU), Leioa, Spain.,2 Neurotek-UPV/EHU, Parque Tecnológico de Bizkaia, Zamudio, Spain
| |
Collapse
|
15
|
Lindström JB, Pierce NT, Latz MI. Role of TRP Channels in Dinoflagellate Mechanotransduction. THE BIOLOGICAL BULLETIN 2017; 233:151-167. [PMID: 29373067 DOI: 10.1086/695421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd3+), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.
Collapse
Key Words
- AA, amino acids
- AMTB hydrochloride, N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide hydrochloride
- Ce, Caenorhabditis elegans
- Cr, Chlamydomonas reinhardtii
- DMSO, dimethyl sulfoxide
- Dm, Drosophila melanogaster
- Dr, Danio rerio
- FSW, filtered seawater
- Gd3+, gadolinium
- GsMTx4, Grammostola spatulata mechanotoxin 4
- HC067047, 2-Methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide
- HMM, Hidden Markov Model
- Hs, Homo sapiens
- Lp, Lingulodinium polyedra
- ML204, 4-Methyl-2-(1-piperidinyl)-quinoline
- Mb, Monosiga brevicollis
- ORF, open reading frame
- PIP2, Phosphatidylinositol 4,5-bisphosphate
- PLC, phospholipase C
- Pt, Paramecium tetraurelia
- RHC80267, O,O′-[1,6-Hexanediylbis(iminocarbonyl)]dioxime cyclohexanone
- RN1734, 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzenesulfonamide
- RN1747, 1-(4-Chloro-2-nitrophenyl)sulfonyl-4-benzylpiperazine
- TMHMM, transmembrane helix prediction
- TRP, transient receptor potential channel
- U73122, 1-[6-[((17β)-3-Methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dione
Collapse
|
16
|
Jin X, Li T, Zhang L, Ma J, Yu L, Li C, Niu L. Environmental Enrichment Improves Spatial Learning and Memory in Vascular Dementia Rats with Activation of Wnt/β-Catenin Signal Pathway. Med Sci Monit 2017; 23:207-215. [PMID: 28082734 PMCID: PMC5253348 DOI: 10.12659/msm.902728] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Environmental enrichment (EE) has a beneficial effect on some neuropsychiatric disorders. In this study, we aimed to investigate whether environmental enrichment could improve the spatial learning and memory in rats with vascular dementia (VaD) and the mechanism underpinning it. Material/Methods Bilateral common carotid occlusion (2-vessel occlusion [2VO]) was used to develop the animal model of vascular dementia. Adult male Sprague-Dawley (SD) rats were used in the experiment and were randomly divided into 4 groups: sham group, 2VO group, sham+EE group, and 2VO+EE group (n=19/group). The 2VO group and 2VO+EE group underwent bilateral common carotid occlusion. Two different housing conditions were used in this experiment: standard environment (SE) and enriched environment (EE). Rats in the sham group and 2VO group were put into SE cages for 4 weeks, while rats in the sham+EE group and 2VO+EE group were put in EE cages for 4 weeks. The Morris water maze and Y-maze were used to assess spatial learning and memory. Apoptosis was detected by TUNEL. The damage of neurons in the hippocampus was assessed by Nissl staining. The level of wnt pathway proteins were detected by Western blot. Results Compared with the 2VO group, the rats in the 2VO+EE group had better behavioral performance, fewer apoptotic neurons, and more surviving neurons. Western blot analysis showed that the levels of wnt pathway proteins were higher in 2VO+EE rats than in the 2VO group. Conclusions Environmental enrichment can improve the spatial learning and memory in rats with vascular dementia, and the mechanism may be related to activation of the wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Xinhao Jin
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Tao Li
- Department of Orthopedics, The General Hospital of Chonggang, Chongqing, China (mainland)
| | - Lina Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Jingxi Ma
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lehua Yu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Lingchuan Niu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|