1
|
Richards J, Bang N, Ratliff EL, Paszkowiak MA, Khorgami Z, Khalsa SS, Simmons WK. Successful treatment of binge eating disorder with the GLP-1 agonist semaglutide: A retrospective cohort study. OBESITY PILLARS (ONLINE) 2023; 7:100080. [PMID: 37990682 PMCID: PMC10661993 DOI: 10.1016/j.obpill.2023.100080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 11/23/2023]
Abstract
Objective Binge eating disorder (BED) is the most common eating disorder, and yet only one pharmacotherapy (lisdexamfetamine), which has known abuse-potential, is FDA-approved. Topiramate is also commonly prescribed off-label for binge eating but has many contraindications. In contrast, the glucagon-like peptide-1 (GLP1) analog semaglutide has profound effects on central satiety signaling leading to reduced food intake, and has been approved for the treatment of obesity based on its efficacy and safety profile. Semaglutide would thus seem to be a potential candidate for the treatment of BED. Methods This open-label study examined the effects of semaglutide on Binge Eating Scale (BES) scores in individuals with BED. Patients were divided into three groups: those prescribed semaglutide, those prescribed either lisdexamphetamine or topiramate, and those prescribed a combination of semaglutide with lisdexamphetamine or topiramate. Results Patients receiving semaglutide only exhibited greater reductions in BES scores compared to the other groups. Combined pharmacotherapy with both semaglutide and the other anti-obesity medications did not result in greater reductions in BES scores compared to the semaglutide-only group. Findings were similar in patients with moderate/severe BED, as well as the full sample. Conclusion The therapeutic effects of semaglutide in binge eating disorder warrant further investigation.
Collapse
Affiliation(s)
- Jesse Richards
- Department of Internal Medicine, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
| | - Neha Bang
- Department of Internal Medicine, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
| | - Erin L. Ratliff
- Department of Pharmacology & Physiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK, USA
| | - Maria A. Paszkowiak
- Department of Internal Medicine, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
| | - Zhamak Khorgami
- Department of Internal Medicine, University of Oklahoma School of Community Medicine, Tulsa, OK, USA
| | | | - W. Kyle Simmons
- Department of Pharmacology & Physiology, Oklahoma State University, Center for Health Sciences, Tulsa, OK, USA
- OSU Biomedical Imaging Center, OSU-Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
2
|
Decarie-Spain L, Kanoski SE. Ghrelin and Glucagon-Like Peptide-1: A Gut-Brain Axis Battle for Food Reward. Nutrients 2021; 13:977. [PMID: 33803053 PMCID: PMC8002922 DOI: 10.3390/nu13030977] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022] Open
Abstract
Eating behaviors are influenced by the reinforcing properties of foods that can favor decisions driven by reward incentives over metabolic needs. These food reward-motivated behaviors are modulated by gut-derived peptides such as ghrelin and glucagon-like peptide-1 (GLP-1) that are well-established to promote or reduce energy intake, respectively. In this review we highlight the antagonizing actions of ghrelin and GLP-1 on various behavioral constructs related to food reward/reinforcement, including reactivity to food cues, conditioned meal anticipation, effort-based food-motivated behaviors, and flavor-nutrient preference and aversion learning. We integrate physiological and behavioral neuroscience studies conducted in both rodents and human to illustrate translational findings of interest for the treatment of obesity or metabolic impairments. Collectively, the literature discussed herein highlights a model where ghrelin and GLP-1 regulate food reward-motivated behaviors via both competing and independent neurobiological and behavioral mechanisms.
Collapse
Affiliation(s)
- Lea Decarie-Spain
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Scott E. Kanoski
- Human & Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Brierley DI, Holt MK, Singh A, de Araujo A, McDougle M, Vergara M, Afaghani MH, Lee SJ, Scott K, Maske C, Langhans W, Krause E, de Kloet A, Gribble FM, Reimann F, Rinaman L, de Lartigue G, Trapp S. Central and peripheral GLP-1 systems independently suppress eating. Nat Metab 2021; 3:258-273. [PMID: 33589843 PMCID: PMC7116821 DOI: 10.1038/s42255-021-00344-4] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/13/2021] [Indexed: 01/31/2023]
Abstract
The anorexigenic peptide glucagon-like peptide-1 (GLP-1) is secreted from gut enteroendocrine cells and brain preproglucagon (PPG) neurons, which, respectively, define the peripheral and central GLP-1 systems. PPG neurons in the nucleus tractus solitarii (NTS) are widely assumed to link the peripheral and central GLP-1 systems in a unified gut-brain satiation circuit. However, direct evidence for this hypothesis is lacking, and the necessary circuitry remains to be demonstrated. Here we show that PPGNTS neurons encode satiation in mice, consistent with vagal signalling of gastrointestinal distension. However, PPGNTS neurons predominantly receive vagal input from oxytocin-receptor-expressing vagal neurons, rather than those expressing GLP-1 receptors. PPGNTS neurons are not necessary for eating suppression by GLP-1 receptor agonists, and concurrent PPGNTS neuron activation suppresses eating more potently than semaglutide alone. We conclude that central and peripheral GLP-1 systems suppress eating via independent gut-brain circuits, providing a rationale for pharmacological activation of PPGNTS neurons in combination with GLP-1 receptor agonists as an obesity treatment strategy.
Collapse
Affiliation(s)
- Daniel I Brierley
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Marie K Holt
- Department of Psychology, Program in Neuroscience, Florida State University, Gainesville, FL, USA
| | - Arashdeep Singh
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan de Araujo
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Molly McDougle
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Macarena Vergara
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Majd H Afaghani
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Shin Jae Lee
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Karen Scott
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Calyn Maske
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Wolfgang Langhans
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Eric Krause
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Annette de Kloet
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Fiona M Gribble
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Frank Reimann
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Linda Rinaman
- Department of Psychology, Program in Neuroscience, Florida State University, Gainesville, FL, USA
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA.
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
5
|
Eren-Yazicioglu CY, Yigit A, Dogruoz RE, Yapici-Eser H. Can GLP-1 Be a Target for Reward System Related Disorders? A Qualitative Synthesis and Systematic Review Analysis of Studies on Palatable Food, Drugs of Abuse, and Alcohol. Front Behav Neurosci 2021; 14:614884. [PMID: 33536884 PMCID: PMC7848227 DOI: 10.3389/fnbeh.2020.614884] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/15/2020] [Indexed: 11/15/2022] Open
Abstract
The role of glucagon-like peptide 1 (GLP-1) in insulin-dependent signaling is well-known; GLP-1 enhances glucose-dependent insulin secretion and lowers blood glucose in diabetes. GLP-1 receptors (GLP-1R) are also widely expressed in the brain, and in addition to its role in neuroprotection, it affects reward pathways. This systematic review aimed to analyze the studies on GLP-1 and reward pathways and its currently identified mechanisms. Methods: “Web of Science” and “Pubmed” were searched to identify relevant studies using GLP-1 as the keyword. Among the identified 26,539 studies, 30 clinical, and 71 preclinical studies were included. Data is presented by grouping rodent studies on palatable food intake, drugs of abuse, and studies on humans focusing on GLP-1 and reward systems. Results: GLP-1Rs are located in reward-related areas, and GLP-1, its agonists, and DPP-IV inhibitors are effective in decreasing palatable food intake, along with reducing cocaine, amphetamine, alcohol, and nicotine use in animals. GLP-1 modulates dopamine levels and glutamatergic neurotransmission, which results in observed behavioral changes. In humans, GLP-1 alters palatable food intake and improves activity deficits in the insula, hypothalamus, and orbitofrontal cortex (OFC). GLP-1 reduces food cravings partially by decreasing activity to the anticipation of food in the left insula of obese patients with diabetes and may inhibit overeating by increasing activity to the consumption of food in the right OFC of obese and left insula of obese with diabetes. Conclusion: Current preclinical studies support the view that GLP-1 can be a target for reward system related disorders. More translational research is needed to evaluate its efficacy on human reward system related disorders.
Collapse
Affiliation(s)
| | - Arya Yigit
- School of Medicine, Koç University, Istanbul, Turkey
| | - Ramazan Efe Dogruoz
- Department of Neuroscience, University of Chicago, Chicago, IL, United States
| | - Hale Yapici-Eser
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey.,Department of Psychiatry, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
6
|
Da Porto A, Casarsa V, Colussi G, Catena C, Cavarape A, Sechi L. Dulaglutide reduces binge episodes in type 2 diabetic patients with binge eating disorder: A pilot study. Diabetes Metab Syndr 2020; 14:289-292. [PMID: 32289741 DOI: 10.1016/j.dsx.2020.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Abstract
AIMS Binge eating disorder (BED) is the most common eating disorder in the United States and Europe and is associated with obesity and type 2 diabetes (T2D). Presence and severity of BED have been associated with worse metabolic control and greater BMI in T2D patients. Glucagon Like Peptide-1 (GLP1) receptors are present in central nervous system areas involved in appetite regulation and treatment with GLP-1 receptor agonists modulates appetite and reward-related brain areas in humans. We evaluated the effects of treatment with dulaglutide on eating behavior in T2D outpatients with BED. METHODS This was a pilot open label, prospective controlled study. Inclusion criteria were: Age ≤65, HbA1c between 7.5 and 9% on metformin therapy alone, normal renal function and diagnosis of BED. Patients were randomly assigned to receive either Dulaglutide 1,5 mg/sett or Gliclazide 60 mg for 12 weeks. We evaluated baseline binge eating scale score (BES), weight, BMI, percentage fat mass, HbA1c and their changes after treatment. A multivariate linear regression model was used to verify the association between Δ BES from baseline with Δ Hba1c and variation of anthropometric parameters after treatment. RESULTS After 12 weeks patients treated with dulaglutide had grater reduction of binge eating behaviour (p < 0.0001), body weight (p < 0,0001), BMI (p < 0.0001), percentage fat mass (p < 0.0001) and HbA1c (p = 0.009) than patients treated with gliclazide. Reduction in BES was associated with reduction in body weight (p < 0.0001) and HbA1c (p = 0.033). CONCLUSION Dulaglutide treatment reduces binge eating behaviour in T2D patients with BED.
Collapse
|
7
|
Effects of thylakoid intake on appetite and weight loss: a systematic review. J Diabetes Metab Disord 2020; 19:565-573. [PMID: 32550209 DOI: 10.1007/s40200-019-00443-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Background Previous studies have shown thylakoids, the membrane proteins which are extracted from green leaves like spinach, can induce satiety through homeostatic and non-homeostatic pathways. In this study, we reviewed the current human literature on thylakoids' characteristics and their relationship to satiety regulation and weight loss. Methods A systematic search of literature published between January 1990 and May 2019 was conducted on the electronic databases; including WEB OF SCIENCE, Cochrane Library, MEDLINE, Scopus, and EMBASE databases. We included all clinical trials that addressed the effects of thylakoids or chloroplast intake on satiety and weight loss. Results After excluding non-human studies, non-RCTs, duplications, studies with irrelevant data and interventions, eight studies were included in the qualitative synthesis. All studies supported this hypothesis that thylakoids reduce the feeling of hunger by increasing postprandial cholecystokinin and leptin and decreasing serum ghrelin, but the consequences of thylakoid intake on anthropometric characteristics were controversial. Conclusion In conclusion, our results may approve this postulation that receiving a thylakoid-enriched meal can decrease appetite and probably food intake in short term; however, more studies are needed to explore the effects of long term supplementation with thylakoids on weight loss in human subjects.
Collapse
|
8
|
Mukherjee A, Hum A, Gustafson TJ, Mietlicki-Baase EG. Binge-like palatable food intake in rats reduces preproglucagon in the nucleus tractus solitarius. Physiol Behav 2020; 219:112830. [PMID: 32061682 DOI: 10.1016/j.physbeh.2020.112830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
Binge eating involves eating larger than normal quantities of food within a discrete period of time. The neurohormonal controls governing binge-like palatable food intake are not well understood. Glucagon-like peptide-1 (GLP-1), a hormone produced peripherally in the intestine and centrally in the nucleus tractus solitarius (NTS), reduces food intake. Given that the NTS plays a critical role in integrating peripheral and central signals relevant for food intake, as well as the role of GLP-1 in motivated feeding, we tested the hypothesis that expression of the GLP-1 precursor preproglucagon (PPG) would be reduced in the NTS of rats with a history of binge-like palatable food intake. Adult male rats received access to fat for 1 h shortly before lights off, either every day (Daily, D) or only 3d/week (Intermittent, INT). INT rats ate significantly more fat than did D rats in sessions where all rats had fat access. After ~8.5 weeks of diet maintenance, we measured plasma GLP-1 as well as NTS PPG and GLP-1 receptor expression. INT rats had significantly lower NTS PPG mRNA expression compared to D rats. However, plasma GLP-1 was significantly increased in the INT group versus D rats. No significant differences were observed in NTS GLP-1 receptor expression. We also measured plasma insulin levels, fasted blood glucose, and plasma corticosterone but no differences were detected between groups. These results support the hypothesis that binge-like eating reduces NTS GLP-1 expression, and furthermore, demonstrate divergent impacts of binge-like eating on peripheral (plasma) versus central GLP-1.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Avery Hum
- Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Tyler J Gustafson
- Exercise and Nutrition Sciences, University at Buffalo, State University of New York, G10G Farber Hall, Buffalo, NY 14214, USA
| | - Elizabeth G Mietlicki-Baase
- Exercise and Nutrition Sciences, University at Buffalo, State University of New York, G10G Farber Hall, Buffalo, NY 14214, USA; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
9
|
Would glucagon-like peptide-1 receptor agonists have efficacy in binge eating disorder and bulimia nervosa? A review of the current literature. Med Hypotheses 2018; 111:90-93. [DOI: 10.1016/j.mehy.2017.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/15/2017] [Accepted: 12/31/2017] [Indexed: 11/22/2022]
|