1
|
González A, Boakes R, Hall G, de Brugada I. Does drinking saccharin weaken an association of sweet with calories? Pre-exposure effects in flavor preference learning. Physiol Behav 2023; 272:114381. [PMID: 37866642 DOI: 10.1016/j.physbeh.2023.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The main aim of this experiment was to examine the claim that exposure to non-nutritive sweeteners weakens the formation of a sweet-calorie association. Three groups of food-deprived rats received training in which they drank an almond-flavored maltodextrin and saccharin solution. A final test phase assessed their preference for almond. The groups differed in preexposure prior to training. One was pre-exposed to saccharin, one to saccharin plus maltodextrin, and the third, control condition, received only water at this stage. When the rats continued under food deprivation for the test phase, the group exposed to the compound (saccharin plus maltodextrin) showed a weaker preference than the other two groups, while those pre-exposed to saccharin showed as strong a preference as the controls. When the test was conducted with the rats no longer food-deprived, only the water group showed a strong preference. These results support the proposal that rats can form both flavor-flavor and flavor-nutrient associations, expression of which will depend on motivational state. They did not find support for the suggestion that prior exposure to a non-nutritive sweetener can enhance subsequent learning about the nutritive properties of a sweet food.
Collapse
Affiliation(s)
- A González
- Department of Experimental Psychology and Mind, Brain and Behavior Research Center (CIMCYC), Campus de Cartuja s/n, Granada 18011, Spain
| | | | - G Hall
- Department of Psychology, University of York, United Kingdom; School of Psychology University of New South Wales, Australia
| | - I de Brugada
- Department of Experimental Psychology and Mind, Brain and Behavior Research Center (CIMCYC), Campus de Cartuja s/n, Granada 18011, Spain.
| |
Collapse
|
2
|
Sclafani A, Castillo A, Carata I, Pines R, Berglas E, Joseph S, Sarker J, Nashed M, Roland M, Arzayus S, Williams N, Glendinning JI, Bodnar RJ. Conditioned preference and avoidance induced in mice by the rare sugars isomaltulose and allulose. Physiol Behav 2023; 267:114221. [PMID: 37146897 DOI: 10.1016/j.physbeh.2023.114221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Isomaltulose, a slowly digested isocaloric analog of sucrose, and allulose, a noncaloric fructose analog, are promoted as "healthful" sugar alternatives in human food products. Here we investigated the appetite and preference conditioning actions of these sugar analogs in inbred mouse strains. In brief-access lick tests (Experiment 1), C57BL/6 (B6) mice showed similar concentration dependent increases in licking for allulose and fructose, but less pronounced concentration-dependent increases in licking for isomaltulose than sucrose. In Experiment 2, B6 male were given one-bottle training with a CS+ flavor (e.g., grape) mixed with 8% isomaltulose or allulose and a CS- flavor (e.g., cherry) mixed in water followed by two-bottle CS flavor tests. The isomaltulose mice showed only a weak CS+ flavor preference but a strong preference for the sugar over water. The allulose mice strongly preferred the CS- flavor and water over the sugar. The allulose avoidance may be due to gut discomfort as reported in humans consuming high amounts of the sugar. Experiment 3 found that the preference for 8% sucrose over 8% isomaltulose could be reversed or blocked by adding different concentrations of a noncaloric sweetener mixture (sucralose + saccharin, SS) to the isomaltulose. Experiment 4 revealed that the preference of B6 or FVB/N mice for isomaltulose+0.01%SS or sucrose over 0.1%SS increased after separate experience with the sugars and SS. This indicates that isomaltulose, like sucrose, has postoral appetition effects that enhances the appetite for the sugar. In Experiments 5 and 6, the appetition actions of the two sugars were directly compared by giving mice isomaltulose+0.05%SS vs. sucrose choice tests before and after separate experience with the two sugars. In general, the initial preference the mice displayed for isomaltulose+0.05%SS was reduced or reversed after separate experience with the two sugars although some strain and sex differences were obtained. This indicates that isomaltulose has weaker postoral appetition effects than sucrose.
Collapse
|
3
|
Buchanan KL, Rupprecht LE, Kaelberer MM, Sahasrabudhe A, Klein ME, Villalobos JA, Liu WW, Yang A, Gelman J, Park S, Anikeeva P, Bohórquez DV. The preference for sugar over sweetener depends on a gut sensor cell. Nat Neurosci 2022; 25:191-200. [PMID: 35027761 PMCID: PMC8825280 DOI: 10.1038/s41593-021-00982-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Guided by gut sensory cues, humans and animals prefer nutritive sugars over non-caloric sweeteners, but how the gut steers such preferences remains unknown. In the intestine, neuropod cells synapse with vagal neurons to convey sugar stimuli to the brain within seconds. Here, we found that cholecystokinin (CCK)-labeled duodenal neuropod cells differentiate and transduce luminal stimuli from sweeteners and sugars to the vagus nerve using sweet taste receptors and sodium glucose transporters. The two stimulus types elicited distinct neural pathways: while sweetener stimulated purinergic neurotransmission, sugar stimulated glutamatergic neurotransmission. To probe the contribution of these cells to behavior, we developed optogenetics for the gut lumen by engineering a flexible fiberoptic. We showed that preference for sugar over sweetener in mice depends on neuropod cell glutamatergic signaling. By swiftly discerning the precise identity of nutrient stimuli, gut neuropod cells serve as the entry point to guide nutritive choices. Buchanan, Rupprecht, Kaelberer and colleagues show that the preference for sugar over sweetener in mice depends on gut neuropod cells. Akin to other sensor cells, neuropod cells swiftly communicate the precise identity of stimuli to drive food choices.
Collapse
Affiliation(s)
- Kelly L Buchanan
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Duke University School of Medicine, Durham, NC, USA
| | - Laura E Rupprecht
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - M Maya Kaelberer
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - Atharva Sahasrabudhe
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marguerita E Klein
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - Jorge A Villalobos
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Department of Medicine, Duke University, Durham, NC, USA
| | - Winston W Liu
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Duke University School of Medicine, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| | - Annabelle Yang
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Trinity College of Arts & Sciences, Duke University, Durham, NC, USA
| | - Justin Gelman
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA.,Trinity College of Arts & Sciences, Duke University, Durham, NC, USA
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Polina Anikeeva
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Departments of Materials Science & Engineering and Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diego V Bohórquez
- Laboratory of Gut Brain Neurobiology, Duke University, Durham, NC, USA. .,Department of Medicine, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA. .,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA. .,MSRB-I, room 221A, 203 Research Drive, Durham, NC, USA.
| |
Collapse
|
4
|
Differential fructose and glucose appetition in DBA/2, 129P3 and C57BL/6 × 129P3 hybrid mice revealed by sugar versus non-nutritive sweetener tests. Physiol Behav 2021; 241:113590. [PMID: 34509472 DOI: 10.1016/j.physbeh.2021.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022]
Abstract
Inbred mouse strains differ in their postoral appetite stimulating response (appetition) to fructose as demonstrated in intragastric (IG) sugar conditioning and oral sugar vs. nonnutritive conditioning experiments. For example, FVB and SWR strains show experience-induced preferences for 8% fructose over a 0.1% sucralose + 0.1% saccharin (S + S) solution, whereas C57BL/6 (B6) and BALB/c strains do not. All strains, however, learn to prefer 8% glucose to S + S after experience, which is attributed to the potent appetition actions of this sugar. The present study extended this analysis to DBA/2 (DBA) and 129P3 (129) inbred mice. In Experiment 1A, ad libitum fed DBA and 129 mice preferred S + S to fructose before and after separate experience with the two sweeteners, indicating an indifference to the postoral nutrient effects of the sugar. When food restricted (Experiment 1B), 129 mice continued to prefer S + S to fructose while DBA mice showed equal preference for the sweeteners after experience, indicating some sensitivity to fructose appetition. In Experiment 1C, both strains acquired significant preferences for glucose over S + S after experience, confirming their sensitivity to postoral glucose appetition. Experiment 2 revealed that C57BL/6 × 129P3 (B6:129) hybrid mice responded like inbred B6 mice and 129 mice in acquiring a preference for glucose but not fructose over S + S. This is of interest because sweet "taste-blind" P2 × 2 / P2 × 3 double-knockout (DKO) mice on a B6:129 genetic background prefer fructose to water in 24 h tests, which is indicative of fructose appetition. Whether differences in the genetic makeup of DKO and B6:129 hybrid mice or other factors explain the fructose appetition of the DKO mice remains to be determined.
Collapse
|
5
|
Zhang R, Wang J, Huang L, Wang TJ, Huang Y, Li Z, He J, Sun C, Wang J, Chen X, Wang J. The pros and cons of motor, memory, and emotion-related behavioral tests in the mouse traumatic brain injury model. Neurol Res 2021; 44:65-89. [PMID: 34308784 DOI: 10.1080/01616412.2021.1956290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is a medical emergency with high morbidity and mortality. Motor, memory, and emotion-related deficits are common symptoms following TBI, yet treatment is very limited. To develop new drugs and find new therapeutic avenues, a wide variety of TBI models have been established to mimic the heterogeneity of TBI. In this regard, along with histologic measures, behavioral functional outcomes provide valuable insight into the underlying neuropathology and guide neurorehabilitation efforts for neuropsychiatric impairment after TBI. Development, characterization, and application of behavioral tests that can assess functional neurologic deficits are essential to the development of translational therapies. This comprehensive review aims to summarize 19 common behavioral tests from three aspects (motor, memory, and emotion-related) that are associated with TBI pathology. Discussion covers the apparatus, the test steps, the evaluation indexes, data collection and analysis, animal performance and applications, advantages and disadvantages as well as precautions to eliminate bias wherever possible. We discussed recent studies on TBI-related preconditioning, biomarkers, and optimized behavioral protocols. The neuropsychologic tests employed in clinics were correlated with those used in mouse TBI models. In summary, this review provides a comprehensive, up-to-date reference for TBI researchers to choose the right neurobehavioral protocol according to the research objectives of their translational investigation.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junming Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Yinrou Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zefu Li
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinxin He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chen Sun
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Mustac T, Yuabov A, Macanian J, Aminov S, Fazylov D, Lulu EB, Nashed M, Albakry A, Jean-Philippe-Morisset B, Bodnar RJ. Acute d-fenfluramine, but not fluoxetine decreases sweet intake in BALB/c, C57BL/6 and SWR inbred mouse strains. Physiol Behav 2020; 224:113029. [PMID: 32590091 DOI: 10.1016/j.physbeh.2020.113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
Dopamine, opioid and muscarinic receptor antagonists differentially reduce sucrose and saccharin intakes across inbred mouse strains. Whereas these systems stimulate sweet intake, serotonin signaling inhibits food intake. The present study examined whether fluoxetine (0.1-10 mg/kg) or d-fenfluramine (0.1-6 mg/kg) differentially inhibited sucrose or saccharin intake in BALB/c, C57BL/6 and SWR mice. Fluoxetine marginally altered sucrose intake in all strains. d-fenfluramine significantly, but quite similarly reduced (ID40) sucrose and saccharin intake in BALB/c (5.7 vs. 5.8 mg/kg), C57BL/6 (4.4 vs. 4.3 mg/kg) and SWR (4.6 vs. 5.6 mg/kg) mice, suggesting serotonin-induced inhibition of orosensory mechanisms in all three inbred mouse strains.
Collapse
Affiliation(s)
- Tatjana Mustac
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Asnat Yuabov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Jason Macanian
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Sonya Aminov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - David Fazylov
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Eden Ben Lulu
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Mirna Nashed
- Department of Psychology, Queens College, City University of New York (CUNY)
| | - Ahmed Albakry
- Department of Psychology, Queens College, City University of New York (CUNY)
| | | | - Richard J Bodnar
- Department of Psychology, Queens College, City University of New York (CUNY); CUNY Neuroscience Collaborative and Psychology Doctoral Program, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
7
|
Ayoub SM, Minhas M, Lapointe T, Limebeer CL, Parker LA, Leri F. Effects of high fructose corn syrup on ethanol self-administration in rats. Alcohol 2020; 87:79-88. [PMID: 32497557 DOI: 10.1016/j.alcohol.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/22/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The addition of sweeteners to alcoholic beverages is thought to facilitate heavy alcohol consumption, and this may be of particular concern when the additive is high fructose corn syrup (HFCS). METHODS Four experiments in male Sprague-Dawley rats were performed to investigate whether the addition of 25% HFCS to ethanol (5%, 10%, and 20% v/v ethanol) would alter its intraoral operant self-administration, palatability, and sensitivity to food deprivation stress. RESULTS As anticipated, HFCS drastically increased ethanol intake, and this effect appeared driven by its caloric value. Importantly, HFCS increased the persistence of operant responding following extinction in animals trained to self-administer the combination, and the addition of HFCS to ethanol changed subsequent responses to ethanol, including increased palatability and intake. CONCLUSIONS These results in rats suggest that the addition of HFCS to the list of ingredients in sweetened alcoholic beverages could play a significant role in the harmful consumption of ethanol-containing beverages.
Collapse
|
8
|
Molero-Chamizo A, Rivera-Urbina GN. Taste Processing: Insights from Animal Models. Molecules 2020; 25:molecules25143112. [PMID: 32650432 PMCID: PMC7397205 DOI: 10.3390/molecules25143112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Taste processing is an adaptive mechanism involving complex physiological, motivational and cognitive processes. Animal models have provided relevant data about the neuroanatomical and neurobiological components of taste processing. From these models, two important domains of taste responses are described in this review. The first part focuses on the neuroanatomical and neurophysiological bases of olfactory and taste processing. The second part describes the biological and behavioral characteristics of taste learning, with an emphasis on conditioned taste aversion as a key process for the survival and health of many species, including humans.
Collapse
Affiliation(s)
- Andrés Molero-Chamizo
- Department of Psychology, Psychobiology Area, University of Huelva, Campus El Carmen, 21071 Huelva, Spain
- Correspondence: ; Tel.: +34-959-21-84-78
| | | |
Collapse
|
9
|
Myers KP, Summers MY, Geyer-Roberts E, Schier LA. The Role of Post-Ingestive Feedback in the Development of an Enhanced Appetite for the Orosensory Properties of Glucose over Fructose in Rats. Nutrients 2020; 12:nu12030807. [PMID: 32197514 PMCID: PMC7146512 DOI: 10.3390/nu12030807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/30/2023] Open
Abstract
The simple sugars glucose and fructose share a common “sweet” taste quality mediated by the T1R2+T1R3 taste receptor. However, when given the opportunity to consume each sugar, rats learn to affectively discriminate between glucose and fructose on the basis of cephalic chemosensory cues. It has been proposed that glucose has a unique sensory property that becomes more hedonically positive through learning about the relatively more rewarding post-ingestive effects that are associated with glucose as compared to fructose. We tested this theory using intragastric (IG) infusions to manipulate the post-ingestive consequences of glucose and fructose consumption. Food-deprived rats with IG catheters repeatedly consumed multiple concentrations of glucose and fructose in separate sessions. For rats in the “Matched” group, each sugar was accompanied by IG infusion of the same sugar. For the “Mismatched” group, glucose consumption was accompanied by IG fructose, and vice versa. This condition gave rats orosensory experience with each sugar but precluded the differential post-ingestive consequences. Following training, avidity for each sugar was assessed in brief access and licking microstructure tests. The Matched group displayed more positive evaluation of glucose relative to fructose than the Mismatched group. A second experiment used a different concentration range and compared responses of the Matched and Mismatched groups to a control group kept naïve to the orosensory properties of sugar. Consistent with results from the first experiment, the Matched group, but not the Mismatched or Control group, displayed elevated licking responses to glucose. These experiments yield additional evidence that glucose and fructose have discriminable sensory properties and directly demonstrate that their different post-ingestive effects are responsible for the experience-dependent changes in the motivation for glucose versus fructose.
Collapse
Affiliation(s)
- Kevin P. Myers
- Department of Psychology, Bucknell University, Lewisburg, PA 17837, USA;
- Neuroscience Program, Bucknell University, Lewisburg, PA 17837, USA;
| | - Megan Y. Summers
- Neuroscience Program, Bucknell University, Lewisburg, PA 17837, USA;
| | | | - Lindsey A. Schier
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: ; Tel.: +1-213-740-6633
| |
Collapse
|
10
|
Onaolapo A, Onaolapo O. Food additives, food and the concept of ‘food addiction’: Is stimulation of the brain reward circuit by food sufficient to trigger addiction? PATHOPHYSIOLOGY 2018; 25:263-276. [DOI: 10.1016/j.pathophys.2018.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/26/2018] [Accepted: 04/07/2018] [Indexed: 02/08/2023] Open
|
11
|
Sclafani A. From appetite setpoint to appetition: 50years of ingestive behavior research. Physiol Behav 2018; 192:210-217. [PMID: 29305256 PMCID: PMC6019132 DOI: 10.1016/j.physbeh.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
I review the main themes of my 50-year research career in ingestive behavior as a graduate student at the University of Chicago and a professor at the City University of New York. A seminar course with my Ph.D. mentor, S. P. Grossman, sparked my interest in the hypothalamic obesity syndrome. I developed a wire knife to dissect the neuropathways and the functional disorder responsible for the syndrome. An elevated appetite setpoint that permitted the overconsumption of palatable foods appeared central to the hypothalamic syndrome. In brain-intact rats, providing an assortment of highly palatable foods (the cafeteria diet) stimulated diet-induced obesity that mimicked elements of hypothalamic obesity. Studies of the determinants of food palatability led to the discovery of a "new" carbohydrate taste (maltodextrin taste) and the confirmation of a fatty taste. In addition to oral taste receptors, gut nutrient sensors stimulated the intake/preference for carbohydrate- and fat-rich foods via an appetition process that stimulates brain reward systems. My research career greatly benefited from many diligent and creative students, collaborators and technicians and research support from my university and the National Institutes of Health.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College and the Graduate Center of the City University of New York, 2900 Bedford Ave, Brooklyn, NY 11210, USA.
| |
Collapse
|
12
|
Bourie F, Olsson K, Iskhakov B, Buras A, Fazilov G, Shenouda M, Zhezherya J, Bodnar RJ. Murine genetic variance in muscarinic cholinergic receptor antagonism of sucrose and saccharin solution intakes in three inbred mouse strains. Pharmacol Biochem Behav 2017; 163:50-56. [PMID: 29042247 DOI: 10.1016/j.pbb.2017.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 10/18/2022]
Abstract
Nutritive (e.g., sucrose) and non-nutritive (e.g., saccharin) sweeteners stimulate intake in inbred mouse strains. BALB/c, SWR and C57BL/6 mice differ in the ability of dopamine (DA) D1 (SCH23390) and opioid (naltrexone) receptor antagonism to alter sucrose intake. Whereas SCH23390 comparably reduced cumulative sucrose intake in all three strains, naltrexone reduced cumulative sucrose intake maximally in C57/BL/6 mice, in intermediate fashion in BALB/c mice, but not in SWR mice. Whereas cumulative saccharin intake was reduced by DA D1 receptor antagonism in BALB/c and SWR mice, naltrexone was more potent in SWR relative to BALB/c mice. The present study first examined whether SCH23390 (50-1600nmol/kg) and naltrexone (0.01-5mg/kg) altered saccharin intake in C57BL/6 mice. Given that scopolamine (SCOP), a muscarinic cholinergic receptor antagonist, reduces sweet intake in outbred rats, a second experiment examined whether SCOP (0.1-10mg/kg) altered 0.2% saccharin and 10% sucrose intakes in BALB/c, SWR and C57BL/6 mice. Cumulative saccharin intake was significantly reduced by SCH23390 (200-1600nmol/kg; ID40=175nmol/kg) and naltrexone (0.1-5mg/kg; ID40>5mg/kg) in C57BL/6 mice. Cumulative sucrose intake was significantly reduced following SCOP in C57BL/6 (0.1-10mg/kg; ID40=2.32mg/kg) and BALB/c (2.5-10mg/kg; ID40=0.52mg/kg) mice. In contrast, SWR mice (ID40=41.61mg/kg) only displayed transient (15min) reductions in sucrose intake following SCOP (2.5-10mg/kg). Cumulative saccharin intake was significantly reduced following SCOP in C57BL/6 and BALB/c mice (0.1-10mg/kg; ID40<0.1mg/kg). In contrast, SWR mice (ID40=2.28mg/kg) displayed smaller significant reductions in saccharin intake following SCOP (0.1-10mg/kg). These data indicate that although both nutritive and non-nutritive sweet intakes are governed by muscarinic cholinergic receptor signaling, this process is subject to murine genetic variance with greater sensitivity observed in C57BL/6 and BALB/c relative to SWR inbred mouse strains.
Collapse
Affiliation(s)
- Faye Bourie
- Department of Psychology, Queens College, CUNY, USA
| | | | - Ben Iskhakov
- Department of Psychology, Queens College, CUNY, USA
| | - Agata Buras
- Department of Psychology, Queens College, CUNY, USA
| | | | | | | | - Richard J Bodnar
- Department of Psychology, Queens College, CUNY, USA; CUNY Neuroscience Collaborative, CUNY Graduate Center, New York, NY, USA.
| |
Collapse
|
13
|
Bissonnette DJ, List S, Knoblich P, Hadley M. The Effect of Nonnutritive Sweeteners Added to a Liquid Diet on Volume and Caloric Intake and Weight Gain in Rats. Obesity (Silver Spring) 2017; 25:1556-1563. [PMID: 28763168 DOI: 10.1002/oby.21920] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/18/2017] [Accepted: 06/07/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Long-term effects of diet beverage consumption on the regulation of caloric intake is unclear. The goal of this study was to investigate whether the chronic intake of a liquid diet with nonnutritive sweeteners (NNS) would lead to greater appetite and weight gain. METHODS Wistar rats were fed a liquid diet (Osmolite) sweetened with nutritive sweetener (NS; sucrose) and NNS (stevia and saccharin) or a nonsweetened control. Intakes and weight gain were measured. Phases 1 and 2 investigated sweetness preference, phase 3 used diets with or without sweeteners, and phase 4 measured the effect on volume of food and caloric intake of alternating between NNS, NS, and control diets. RESULTS In phase 1, rats preferred: stevia, 0.10%; saccharin, 0.20%; and sucrose, 15%. In phase 2, rats preferred the sweetened diet over the control. In phase 3, rats fed the NS diet consumed less volume and more calories but gained less weight. In phase 4, when altering diet from NNS to NS, no differences were observed in appetite or weight gain. CONCLUSIONS Using sucrose-sweetened diet as a control, increased weight gain with the ingestion of NNS was observed. However, using a nonsweetened control, neither increased caloric intake nor weight gain occurred with NNS intake. Alternating diets between NNS, NS, and control did not affect the appetite.
Collapse
Affiliation(s)
- David J Bissonnette
- Department of Family Consumer Science, Minnesota State University, Mankato, Minnesota, USA
| | - Samantha List
- Department of Clinical Nutrition, Nebraska Medicine, Omaha, Nebraska, USA
| | - Penny Knoblich
- Department of Biological Sciences, Minnesota State University, Mankato, Minnesota, USA
| | - M Hadley
- Department of Chemistry and Geology, Minnesota State University, Mankato, Minnesota, USA
| |
Collapse
|