1
|
Ploppert E, Jacob J, Deutsch A, Watanabe S, Gillenwater K, Choe A, Cruz GB, Cabañas E, Vasquez MA, Ayaz Z, Neuwirth LS, Lambert K. Influence of Effort-based Reward Training on Neuroadaptive Cognitive Responses: Implications for Preclinical Behavioral Approaches for Depressive Symptoms. Neuroscience 2022; 500:63-78. [PMID: 35961524 PMCID: PMC9464718 DOI: 10.1016/j.neuroscience.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022]
Abstract
Despite the presence of multiple pharmacotherapeutic options, incidence rates for depressive disorders continue to rise. Nonpharmacological approaches (e.g., cognitive and behavioral therapies) exhibit encouraging efficacy rates; however, a lack of preclinical models has prevented progress in the identification of relevant neurobiological mechanisms of these approaches. Accordingly, the effort-based reward (EBR) preclinical model exposes rats to response-outcome (R-O) contingencies and provides an opportunity to investigate behavioral clinical approaches. In the current study, male and female rats were assigned to either an EBR contingent- or noncontingent-trained group and exposed to 7 weeks of training. Neuroadaptive cognitive responses were assessed in a cognitive uncertainty task (UT) and an object pattern separation task (OPST). Although no significant effects of EBR were observed in the UT, EBR contingent-trained rats approached the novel panel in the most difficult trial of the OPST faster than the noncontingent-trained group. Additionally, female EBR contingent-trained rats exhibited increased engagement with the novel stimulus panel across all trials. Examination of brain-derived neurotrophic factor (BDNF) in the lateral habenula (LHb), a putative neurobiological target for depressive symptoms, revealed lower BDNF immunoreactivity in EBR contingent-trained rats. Females in both training groups exhibited higher dehydroepiandrosterone/cortisol (DHEA/CORT) ratios, suggesting, along with the increased engagement with novel stimulus panels, that female rats may be more responsive to EBR contingency training than males. Together, these results suggest that EBR contingency training offers promise as a preclinical rat model for behavioral therapeutic interventions for depressive symptoms leading to a clearer understanding of putative neurobiological mechanisms.
Collapse
Affiliation(s)
- Emily Ploppert
- Dept of Psychology, University of Richmond, Richmond, VA, USA
| | - Joanna Jacob
- Dept of Psychology, University of Richmond, Richmond, VA, USA
| | - Ana Deutsch
- Dept of Psychology, University of Richmond, Richmond, VA, USA
| | - Sally Watanabe
- Dept of Psychology, University of Richmond, Richmond, VA, USA
| | | | - Alison Choe
- Dept of Psychology, University of Richmond, Richmond, VA, USA
| | - George B Cruz
- Dept of Biology, SUNY Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, Old Westbury, NY, USA
| | - Ericka Cabañas
- Dept of Biology, SUNY Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, Old Westbury, NY, USA
| | - Michelle A Vasquez
- SUNY Neuroscience Research Institute, Old Westbury, NY, USA; Dept Chemistry & Physics, SUNY Old Westbury, Old Westbury, NY, USA
| | - Zaid Ayaz
- Dept of Biology, SUNY Old Westbury, Old Westbury, NY, USA; SUNY Neuroscience Research Institute, Old Westbury, NY, USA
| | - Lorenz S Neuwirth
- SUNY Neuroscience Research Institute, Old Westbury, NY, USA; Dept of Psychology, SUNY Old Westbury, Old Westbury, NY, USA
| | - Kelly Lambert
- Dept of Psychology, University of Richmond, Richmond, VA, USA.
| |
Collapse
|
2
|
Lewis V, Laberge F, Heyland A. Transcriptomic signature of extinction learning in the brain of the fire-bellied toad, Bombina orientalis. Neurobiol Learn Mem 2021; 184:107502. [PMID: 34391934 DOI: 10.1016/j.nlm.2021.107502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/21/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022]
Abstract
Insight into the molecular and cellular mechanisms of learning and memory from a diverse array of taxa contributes to our understanding of the evolution of these processes. The fire-bellied toad, Bombina orientalis, is a basal anuran amphibian model species who could help us describe shared and divergent characteristics of learning and memory mechanisms between amphibians and other vertebrates, and hence answer questions about the evolution of learning. Utilizing next generation sequencing techniques, we profiled gene expression patterns associated with the extinction of prey-catching conditioning in the brain of the fire-bellied toad. For this purpose, gene expression was at first compared between toads sacrificed after acquisition and extinction of the conditioned response. A second comparison was done between toads submitted to extinction following either short or long acquisition training, which results in toads displaying response extinction or resistance to extinction, respectively. We analyzed brain tissue transcription profiles common to both acquisition and extinction learning, or unique to extinction learning and resistance to extinction, and found significant overlap in gene expression related to molecular pathways involving neuronal plasticity (e.g. structural modification, transcription). However, extinction learning induced a unique GABAergic transcriptomic signal, which may be responsible for suppression of the original response memory. Further, when comparing extinction learning in short- and long-trained groups, short training engaged many pathways related to neuronal plasticity, as expected, but long training engaged molecular pathways related to the suppression of learning through epigenetic mediated transcriptional suppression and inhibitory neurotransmission. Overall, gene expression patterns associated with extinction learning in the fire-bellied toad were similar to those found in mammals submitted to extinction, although some divergent profiles highlighted potential differences in the mechanisms of learning and memory among tetrapods.
Collapse
Affiliation(s)
- Vern Lewis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Frédéric Laberge
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Andreas Heyland
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
3
|
Gao M, Pusch R, Güntürkün O. Blocking NMDA-Receptors in the Pigeon’s Medial Striatum Impairs Extinction Acquisition and Induces a Motoric Disinhibition in an Appetitive Classical Conditioning Paradigm. Front Behav Neurosci 2019; 13:153. [PMID: 31354445 PMCID: PMC6630161 DOI: 10.3389/fnbeh.2019.00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/21/2019] [Indexed: 11/13/2022] Open
|
4
|
Neuwirth LS, Masood S, Anderson DW, Schneider JS. The attention set-shifting test is sensitive for revealing sex-based impairments in executive functions following developmental lead exposure in rats. Behav Brain Res 2019; 366:126-134. [PMID: 30878351 PMCID: PMC6732195 DOI: 10.1016/j.bbr.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 03/11/2019] [Indexed: 12/19/2022]
Abstract
The literature on lead (Pb) exposure has focused in large part on hippocampal-based learning and memory deficits, although frontoexecutive dysfunctions are known to exist in Pb-exposed humans. This study examined the effects of perinatal (PERI) and early postnatal (EPN) developmental low-level Pb-exposures in rats on frontoexecutive functions, using the Attention Set-Shift Test (ASST). Control males and females performed the ASST similarly. Male EPN rats had difficulty with simple discrimination (SD) of odors and failed to complete the compound discrimination (CD) stage of the ASST. All other Pb-exposed rats completed the training and testing. Male PERI rats performed worse on the SD, intradimensional (ID), and intradimensional-reversal (ID-Rev) ASST stages when compared to male Control rats. Female EPN rats performed similar to Controls on the ID-Rev rats, whereas PERI rats performed better the trials-to-criterion on the ID-Rev than EPN and Control rats. Pb-exposed female rats had significant difficulty performing the ED/ED-Rev stages, with the number of trials-to-criterion double that required by Pb-exposed and Control male rats and Control female rats. Together, the ASST results showed that developmental Pb-exposure induces frontoexecutive dysfunction that persists into adulthood, with different sex-based vulnerabilities dependent upon the time-period of neurotoxicant exposure.
Collapse
Affiliation(s)
- Lorenz S Neuwirth
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY 11568, United States; SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury NY 11568, United States; Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States.
| | - Sidrah Masood
- Department of Psychology, SUNY Old Westbury, Old Westbury, NY 11568, United States; SUNY Neuroscience Research Institute, SUNY Old Westbury, Old Westbury NY 11568, United States
| | - David W Anderson
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| | - Jay S Schneider
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, United States
| |
Collapse
|
5
|
Neuwirth LS, Phillips GR, El Idrissi A. Perinatal Pb 2+ exposure alters the expression of genes related to the neurodevelopmental GABA-shift in postnatal rats. J Biomed Sci 2018; 25:45. [PMID: 29793500 PMCID: PMC5967126 DOI: 10.1186/s12929-018-0450-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 05/18/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Lead (Pb2+) is an environmental neurotoxicant that disrupts neurodevelopment, communication, and organization through competition with Ca2+ signaling. How perinatal Pb2+ exposure affects Ca2+-related gene regulation remains unclear. However, Ca2+ activates the L-Type voltage sensitive calcium channel β-3 subunit (Ca-β3), which autoregulates neuronal excitability and plays a role in the GABA-shift from excitatory-to-inhibitory neurotransmission. METHOD A total of eight females (n = 4 Control and n = 4 Perinatal) and four males (n = 2 Control and n = 2 Perinatal) rats were used as breeders to serve as Dams and Sires. The Dam's litters each ranged from N = 6-10 pups per litter (M = 8, SD = 2), irrespective of Pb2+ treatment, with a majority of males over females. Since there were more males in each of the litters than females, to best assess and equally control for Pb2+- and litter-effects across all developmental time-points under study, female pups were excluded due to an insufficient sample size availability from the litter's obtained. From the included pup litters, 24 experimentally naïve male Long Evans hooded rat pups (Control N = 12; Pb2+ N = 12) were used in the present study. Brains were extracted from rat prefrontal cortex (PFC) and hippocampus (HP) at postnatal day (PND) 2, 7, 14 and 22, were homogenized in 1 mL of TRIzol reagent per 100 mg of tissue using a glass-Teflon homogenizer. Post-centrifugation, RNA was extracted with chloroform and precipitated with isopropyl alcohol. RNA samples were then re-suspended in 100 μL of DEPC treated H2O. Next, 10 μg of total RNA was treated with RNase-free DNase (Qiagen) at 37 °C for 1 h and re-purified by a 3:1 phenol/chloroform extraction followed by an ethanol precipitation. From the purified RNA, 1 μg was used in the SYBR GreenER Two-Step qRT-PCR kit (Invitrogen) for first strand cDNA synthesis and the quantitative real-time PCR (qRT-PCR). The effects of perinatal Pb2+ exposure on genes related to early neuronal development and the GABA-shift were evaluated through the expression of: Ca-β3, GABAAR-β3, NKCC1, KCC2, and GAD 80, 86, 65, and 67 isoforms. RESULTS Perinatal Pb2+ exposure significantly altered the GABA-shift neurodevelopmental GOI expression as a function of Pb2+ exposure and age across postnatal development. Dramatic changes were observed with Ca-β3 expression consistent with a Pb2+ competition with L-type calcium channels. By PND 22, Ca-β3 mRNA was reduced by 1-fold and 1.5-fold in PFC and HP respectively, relative to controls. All HP GABA-β3 mRNA levels were particularly vulnerable to Pb2+ at PND 2 and 7, and both PFC and HP were negatively impacted by Pb2+ at PND 22. Additionally, Pb2+ altered both the PFC and HP immature GAD 80/86 mRNA expression particularly at PND 2, whereas mature GAD 65/67 were most significantly affected by Pb2+ at PND 22. CONCLUSIONS Perinatal Pb2+ exposure disrupts the expression of mRNAs related to the GABA-shift, potentially altering the establishment, organization, and excitability of neural circuits across development. These findings offer new insights into the altered effects Pb2+ has on the GABAergic system preceding what is known regarding Pb2+ insults unto the glutamatergic system.
Collapse
Affiliation(s)
- Lorenz S. Neuwirth
- Department of Psychology, SUNY Old Westbury, 223 Store Hill Road, Bldg.: NAB, Room: 2059, Old Westbury, NY 11568-1700 USA
- SUNY Old Westbury, Neuroscience Research Institute, 223 Store Hill Road, Bldg.: NAB, Room: 2059, Old Westbury, NY 11568-1700 USA
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314 USA
- The CUNY Graduate Center, Biology Program, New York, NY 10016 USA
- The Center for Developmental Neuroscience, Staten Island, NY 10314 USA
| | - Greg R. Phillips
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314 USA
- The CUNY Graduate Center, Biology Program, New York, NY 10016 USA
- The Center for Developmental Neuroscience, Staten Island, NY 10314 USA
| | - Abdeslem El Idrissi
- Department of Biology, The College of Staten Island (CUNY), Staten Island, NY 10314 USA
- The CUNY Graduate Center, Biology Program, New York, NY 10016 USA
- The Center for Developmental Neuroscience, Staten Island, NY 10314 USA
| |
Collapse
|