1
|
Alghashmari IH, Zelai NT. Knockdown-resistant mutations in head lice (Pediculus humanus capitis) collected from schoolchildren in Riyadh, Saudi Arabia. Sci Rep 2025; 15:2412. [PMID: 39827222 PMCID: PMC11743152 DOI: 10.1038/s41598-025-86574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Head lice infestation remains one of the most common child problems. This problem is not only attributed to the ability of head lice to spread rapidly but also because of the head lice resistance that develops from incomplete or improper treatment. Pyrethroids are a group of medications that have been widely used for the treatment of head lice. However, in recent years, several countries reported knockdown resistance (kdr). The aim of this study is to evaluate the frequency of pyrethroid-resistant mutations in Riyadh City, Saudi Arabia. To do that, Sanger sequencing was employed to find the frequency of mutated alleles in the voltage-sensitive sodium channel gene (VSSC). The result showed that the frequency of the resistant alleles in T917I was 0.83. In addition, three new mutations (L920F, V966F, and F967L) were detected in the examined samples. These findings highlight the significant prevalence of pyrethroid-resistant mutations, which may be attributed to the cultural and tourism openness that leads to the abundance of numerous job opportunities for different workforces from all around the world.
Collapse
Affiliation(s)
- Imtinan H Alghashmari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noha T Zelai
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
2
|
Guo Y, Li X, Gao K, Sun X. Impact of anxiety profiles in trait anxiety on visual discrimination performance in Wistar rats. Neurosci Lett 2024; 838:137920. [PMID: 39111652 DOI: 10.1016/j.neulet.2024.137920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/28/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Affiliation(s)
- Yifan Guo
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, PR China
| | - Xianglei Li
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, PR China
| | - Kai Gao
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, PR China
| | - Xiuping Sun
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, National Center of Technology Innovation for Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, PR China.
| |
Collapse
|
3
|
Caruso MG, Nicolas S, Lucassen PJ, Mul JD, O’Leary OF, Nolan YM. Ageing, Cognitive Decline, and Effects of Physical Exercise: Complexities, and Considerations from Animal Models. Brain Plast 2024; 9:43-73. [PMID: 38993577 PMCID: PMC11234681 DOI: 10.3233/bpl-230157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/13/2024] Open
Abstract
In our ageing global population, the cognitive decline associated with dementia and neurodegenerative diseases represents a major healthcare problem. To date, there are no effective treatments for age-related cognitive impairment, thus preventative strategies are urgently required. Physical exercise is gaining traction as a non-pharmacological approach to promote brain health. Adult hippocampal neurogenesis (AHN), a unique form of brain plasticity which is necessary for certain cognitive functions declines with age and is enhanced in response to exercise. Accumulating evidence from research in rodents suggests that physical exercise has beneficial effects on cognition through its proneurogenic capabilities. Given ethical and technical limitations in human studies, preclinical research in rodents is crucial for a better understanding of such exercise-induced brain and behavioural changes. In this review, exercise paradigms used in preclinical research are compared. We provide an overview of the effects of different exercise paradigms on age-related cognitive decline from middle-age until older-age. We discuss the relationship between the age-related decrease in AHN and the potential impact of exercise on mitigating this decline. We highlight the emerging literature on the impact of exercise on gut microbiota during ageing and consider the role of the gut-brain axis as a future possible strategy to optimize exercise-enhanced cognitive function. Finally, we propose a guideline for designing optimal exercise protocols in rodent studies, which would inform clinical research and contribute to developing preventative strategies for age-related cognitive decline.
Collapse
Affiliation(s)
- Maria Giovanna Caruso
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul J. Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Joram D. Mul
- Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam, Amsterdam, The Netherlands
| | - Olivia F. O’Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| |
Collapse
|
4
|
Shirenova SD, Khlebnikova NN, Krupina NA. Changes in Sociability and Preference for Social Novelty in Female Rats in Prolonged Social Isolation. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2023; 53:103-118. [PMID: 36969361 PMCID: PMC10006548 DOI: 10.1007/s11055-023-01395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/26/2022] [Indexed: 03/25/2023]
Abstract
Chronic stress due to social isolation (SI) can lead to distress with negative consequences for both humans and animals. Numerous disorders caused by SI include disorders in the emotional-motivational domain and cognitive functions, as well as changes in social behavior. There are currently no data identifying the sequelae of SI when its duration is significantly increased. Although female rats have been shown to be highly sensitive to stress, research on them is lacking. The present study assessed sociability and preference for "social novelty" in a three-chamber social test in female Wistar rats in two series of experiments at different time points during prolonged SI, which began at adolescence and continued to ages 5.5 and 9.5 months. At two months of SI, rats showed an increased preference for a social object over a non-social object (increased sociability) simultaneously with the appearance of signs of a decrease in the preference for a new social object over an already familiar social object (signs of a decrease in the preference for social novelty). In a social interaction test, the rats also displayed increases in the durations of social contacts, including aggressive interactions; they showed a decrease in exploratory risk assessments (head dips from the open arms) in the elevated plus maze test and a decrease in exploratory activity. After SI lasting 8.5 months, the rats showed signs of social deficit and a marked decrease in the preference for social novelty. No signs of increased aggressiveness were found. Thus, the impact of SI on social behavior depended on its duration and, we believe, was accompanied by a change in coping strategies.
Collapse
Affiliation(s)
- S. D. Shirenova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N. N. Khlebnikova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - N. A. Krupina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
5
|
Performance of the intracerebroventricularly injected streptozotocin Alzheimer's disease model in a translationally relevant, aged and experienced rat population. Sci Rep 2022; 12:20247. [PMID: 36424423 PMCID: PMC9691696 DOI: 10.1038/s41598-022-24292-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022] Open
Abstract
The intracerebroventricularly (icv) injected streptozotocin (STZ) induced brain state is a widely used model of sporadic Alzheimer-disease (AD). However, data have been generated in young, naive albino rats. We postulate that the translationally most relevant animal population of an AD model should be that of aged rats with substantial learning history. The objective of the study was thus to probe the model in old rats with knowledge in various cognitive domains. Long-Evans rats of 23 and 10 months age with acquired knowledge in five-choice serial reaction time task (5-CSRTT), a cooperation task, Morris water-maze (MWM) and "pot-jumping" exercise were treated with 3 × 1.5 mg/kg icv. STZ and their performance were followed for 3 months in the above and additional behavioral assays. Both STZ-treated age groups showed significant impairment in the MWM (spatial learning) and novel object recognition test (recognition memory) but not in passive avoidance and fear conditioning paradigms (fear memory). In young STZ treated rats, significant differences were also found in the 5CSRTT (attention) and pot jumping test (procedural learning) while in old rats a significant increase in hippocampal phospho-tau/tau protein ratio was observed. No significant difference was found in the cooperation (social cognition) and pairwise discrimination (visual memory) assays and hippocampal β-amyloid levels. STZ treated old animals showed impulsivity-like behavior in several tests. Our results partly coincide with partly deviate from those published on young, albino, unexperienced rats. Beside the age, strain and experience level of the animals differences can also be attributed to the increased dose of STZ, and the applied food restriction regime. The observed cognitive and non-cognitive activity pattern of icv. STZ in aged experienced rats call for more extensive studies with the STZ model to further strengthen and specify its translational validity.
Collapse
|
6
|
Martis LS, Højgaard K, Holmes MC, Elfving B, Wiborg O. Vortioxetine ameliorates anhedonic-like behaviour and promotes strategic cognitive performance in a rodent touchscreen task. Sci Rep 2021; 11:9113. [PMID: 33907240 PMCID: PMC8079376 DOI: 10.1038/s41598-021-88462-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/12/2021] [Indexed: 11/08/2022] Open
Abstract
Depression-associated cognitive impairments are among the most prevalent and persistent symptoms during remission from a depressive episode and a major risk factor for relapse. Consequently, development of antidepressant drugs, which also alleviate cognitive impairments, is vital. One such potential antidepressant is vortioxetine that has been postulated to exhibit both antidepressant and pro-cognitive effects. Hence, we tested vortioxetine for combined antidepressant and pro-cognitive effects in male Long-Evans rats exposed to the chronic mild stress (CMS) paradigm. This well-established CMS paradigm evokes cognitive deficits in addition to anhedonia, a core symptom of depression. Learning and memory performance was assessed in the translational touchscreen version of the paired-associates learning task. To identify the mechanistic underpinning of the neurobehavioural results, transcriptional profiling of genes involved in the stress response, neuronal plasticity and genes of broad relevance in neuropsychiatric pathologies were assessed. Vortioxetine substantially relieved the anhedonic-like state in the CMS rats and promoted acquisition of the cognitive test independent of hedonic phenotype, potentially due to an altered cognitive strategy. Minor alterations in gene expression profiling in prefrontal cortex and hippocampus were found. In summary, our findings suggest that vortioxetine exhibits an antidepressant effect as well as behavioural changes in a translational learning task.
Collapse
Affiliation(s)
- Lena-Sophie Martis
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Kristoffer Højgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Megan C Holmes
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Betina Elfving
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Environmental determinants of behavioural responses to short-term stress in rats: Evidence for inhibitory effect of ambient landmarks. Behav Brain Res 2020; 379:112332. [PMID: 31678423 DOI: 10.1016/j.bbr.2019.112332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/23/2019] [Accepted: 10/25/2019] [Indexed: 02/05/2023]
Abstract
Behavioural responses to stress occur in an environment-dependent manner. Complex environments require flexible behavioural coping strategies and chronic stress usually generates psychomotor inhibition. Here, we examine if short-term stress also exerts an inhibitory effect on novelty-seeking, exploratory behaviours. Rats underwent acute restraint stress or were left undisturbed, and their neuroendocrine and behavioural responses were assessed at short- and long-term time points. Animals were individually tested in the open field task (OFT) and the corridor field task (CFT) with and without a central object for free exploration and novelty seeking behaviour. Stress-related psychomotor alterations were measured by path speed, path length, number of stops and thigmotaxis in both tasks. Short-term stress activated the hypothalamic-pituitary-adrenal axis causing elevated plasma corticosterone levels. Stress also impacted psychomotor functions in terms of motivational changes (higher speed and longer path) only in the central-object variations of the OFT and CFT. Moreover, stress-induced emotional alterations were manifested by a higher number of stops and thigmotactic behaviour only in the central-object condition. These findings suggest that environmental landmarks determine the type and direction of exploratory behaviour under transient stress.
Collapse
|
8
|
Martis LS, Brision C, Holmes MC, Wiborg O. Resilient and depressive-like rats show distinct cognitive impairments in the touchscreen paired-associates learning (PAL) task. Neurobiol Learn Mem 2018; 155:287-296. [PMID: 30138691 DOI: 10.1016/j.nlm.2018.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/06/2018] [Accepted: 08/18/2018] [Indexed: 01/17/2023]
Abstract
Depression-associated cognitive impairments persist after remission from affective symptoms of major depressive disorder (MDD), decreasing quality of life and increasing risk of relapse in patients. Conventional antidepressants are ineffective in restoring cognitive functions. Therefore, novel antidepressants with improved efficacy for ameliorating cognitive symptoms are required. For tailoring such antidepressants, translational animal models are in demand. The chronic mild stress (CMS) model is a well-validated preclinical model of depression and known for eliciting the MDD core symptom "anhedonia" in stress-susceptible rats. Thus, cognitive performance was assessed in rats susceptible (depressive-like) or resilient to CMS and in unchallenged controls. The rodent analogue of the human touchscreen Paired-Associates Learning (PAL) task was used for cognitive assessment. Both stress groups exhibited a lack of response inhibition compared to controls while only the depressive-like group was impaired in task acquisition. The results indicate that cognitive deficits specifically associate with the anhedonic-like state rather than being a general consequence of stress exposure. Hence, we propose that the application of a translational touchscreen task on the etiologically valid CMS model, displaying depression-associated cognitive impairments, provides a novel platform for pro-cognitive and clinically pertinent antidepressant drug screening.
Collapse
Affiliation(s)
- Lena-Sophie Martis
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, United Kingdom
| | - Claudia Brision
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Megan C Holmes
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Scotland, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Scotland, United Kingdom
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Health Science and Technology, Aalborg University, Denmark.
| |
Collapse
|